
A Point-Interval Logic for Temporal Knowledge
Representation

Manuel Enciso, Inmaculada P. de Guzmán, and Carlos Rossi

E.T.S.I. Informática. Universidad de Málaga
Campus de Teatinos. 29071 Málaga, Spain

enciso@lcc.uma.es {guzman,rossi}@ctima.uma.es

Abstract. This paper may be classified within the area of the represen-
tation of temporal knowledge and, specifically, within its specification
and processing. We present a point and interval logic, LNint-e, which in-
tegrates approaches that traditionally appear as conflicting in literature:
LNint-e permits point and interval expressions, absolute and relative
treatment of time and, notably, the distinction between classes and exe-
cutions of events. Unlike temporal modal logics existing in bibliography,
LNint-e allows to express connectives related to any number of intervals
as Moszkowski’s chop connective. Besides, LNint-e uses the topological
semantics to avoid the use of first order logic as meta-theory.
We introduce LNint-e to be not only a powerful tool for specification,
but also to be a preliminary step in the design of new temporal reasoning
methods. In order to do that, as a remarkable contribution of this work,
we define reduction transformations that allow us to reduce, in linear
time, the complexity of LNint-e formulae.
Finally, we want to mention that the usefulness of LNint-e has been
verified by its successful application to dynamic behaviour modelling,
specially in the areas of user interfaces and UML statechart diagrams.

1 Introduction

The representation of temporal knowledge is an area of a great importance,
contrasted by its many applications in Artificial Intelligence. This paper deals
with logic-based time representation. Among the applications which have caused
the theoretical development included in this paper, we place particular emphasis
on two of them 1 for which it has already shown its usefulness: the modelling
of the dynamic behavior of user interfaces [3] and systems [4] (by means of
statechart diagrams). In this kind of diagrams there appear different elements
(each one of them with different temporal connotations):

– States, which occur during a period of time. They are characterized by some
properties that are true at every instant of the period.

1 When we look for a temporal representation language for these applications, we find
in the literature some approaches that may be classified in three large groups: modal
temporal logics, reified logics and temporal arguments logics. Our work is situated
among the first ones, because they are more natural and expressive than others.

– Transitions, which are activated by instantaneous events. Statechart events
can be described relatively or absolutely (dates).

– Operations, that must be executed by the system. Operations are executed
completely at one period of time.

When we analyze the existing works about temporal logic, we detect arti-
ficially opposing views, as the selection of the temporal primitives (points or
intervals) or the treatment of time (absolute or relative). Our approach, consol-
idated in [2], combines the precedent ones.

In this paper we present the LNint-e logic, a point modal logic extended to
express interval situations,2 and with the chance of treating time either in an
absolute and in a relative way. A differentiating characteristic of this logic is its
topological semantics, strongly based on the flow of time and which avoid the use
of the first order logic as meta-theory. LNint-e is based on LN point logic [11].
LNint-e has fully expressive power as regards point expressions and at least the
same expressive power as Allen’s [1] and Halpern and Shoham’s [5] logics as
regards interval expressions. LNint-e can be considered as an improvement of
LNint logic [2] with the addition of the following characteristics:

– LNint expressivity is increased, differentiating between classes and execu-
tions of events. This technique has been previously used by several authors [1,
9, 6]) and it permits us to express temporal situations of abutment and over-
lapping of executions of the same event.

– We provide interval temporal connectives with an homogeneous structure,
whichever be their type.

– Both syntax and semantics are remarkably simplified.

The expressive power of LNint-e lead us to an unavoidable complexity in
the initial description of the language. However, as we will see, we can palliate
this problem by means of efficient transformations of simplification that allow to
ensure its usefulness in computing applications. Particularly, we will highlight
those transformations which allows the elimination of some binary temporal
connectives (those which entail a greater difficulty of processing by any prover
or deductive mechanism). These transformations have also a particular interest
in order to obtain a definition of the normal form for LNint-e formulas [12], with
the corresponding advantages on specification tasks.

In the following section we present the syntax of LNint-e and in section 3, its
semantics. Section 4 illustrates the expressive ability of LNint-e with regard to
different kinds of expressions: absolute or relative, point or interval expressions,
etc. In section 5 we show the transformations of simplification and, finally, in
section 6 we include an illustrative example of the good characteristics of LNint-e
for the representation of temporal knowledge.

2 This approach makes that both point expressions and interval expressions be eval-
uated at an instant, the current instant. This way, the concept of current interval,
common in interval modal logics and difficult to treat computationally, is abandoned.

2 Syntax of LNint-e

At the syntactic level, we begin by considering a component to collect assertions
about points and dates. We emphasise that point expressions can be affirmed
over intervals which we call hereditary interval expressions 3.

To complement the treatment of interval expressions, we need another com-
ponent to collect events. We use atomic events in a similar sense to that used by
Allen [1], i.e., expressions about intervals which are not true at the subintervals
nor, more specifically, at the points of the interval over which the expression is
affirmed 4. Event expressions 5 will be called non-hereditary interval expressions.
In LNint-e, we distinguish between event classes (or event types) and event ex-
ecutions (or tokens) that represent each of the concrete occurrences of an event
class 6. Therefore,

The alphabet de LNint-e includes symbols to represent each of these kinds
of components. Specifically:

– An enumerable set Ωins = {p, q, . . . , pn, qn, . . .} of point atoms.
– A set Z = {m | m ∈ Z} of date atoms, used to name known instants.
– An enumerable set Ωev = {α, β, . . . , αn, βn, . . .} of event class atoms. To

distinguish the executions of an event class, the alphabet includes:

• A set Labels = {l, l1, l2, . . . , ln, . . .} of labels.
• The symbol *, which acts as a wild card for event execution labels.

– The symbols � and ⊥, to denote truth and falsity, respectively.
– The symbols ↑, ↓ y−→.
– The symbols of boolean connectives ¬,∧ and ∨.
– The symbols of binary temporal connectives of points � and �.

2.1 Language of LNint-e

In order to have a uniform treatment of every kind of atoms, we characterize the
events by means of their starting, ending and course instants.

Let EventExecs = {αl | α ∈ Ωev, l ∈ Labels} be the set of all event execu-
tions. For each αl ∈ EventExecs we use the following notation:

- ↑αl is read as this is the starting instant of execution l of event α.
- ↓αl is read as this is the ending instant of execution l of event α.
- −→αl is read as this is an instant at which execution l of event α is in process.

3 As states in an statechart diagram
4 As operations in an statechart diagram.
5 The LNint-e term “event” cannot be confused with the statechart term event. We

follow the notation used in bibliography, where the same term is used for these
different concepts.

6 We emphasise that a given execution of an event class will be true (at most) at an
unique interval of the flow of time.

Moreover, LNint-e language provide expressions which refer to an anonymous
execution 7 of an event class. Given an event class, α ∈ Ωev, the notation for the
anonymous execution thereof is α∗.

Definition 1. The language LN int-e is the inductive closure generated over the
base set

Ωev-e
ins = Ωins ∪ Z ∪ {�,⊥} ∪ {↑αl, ↓αl,−→αl | αl ∈ EventExecs}∪

{↑α∗, ↓α∗,−→α∗ | α ∈ Ωev}

by the monary connective ¬ and the binary connectives ∧,∨,� and �.

So, Ωev-e
ins is the set of atomic expressions that make sense declared on in-

stants.

3 Semantics of LNint-e

The semantics of LNint-e are an extension of the topological semantics intro-
duced in [11] for LN logic. The extension carried out is not trivial: the philosophy
of the topological semantics, originally created for the management of instants,
has been adapted to manage intervals, keeping its good properties.

We consider (Z,≤) as the flow of time. The key concepts in our semantics,
denoted m+

tA and m−
tA, are defined as follows:

Definition 2. If A is a wff of LNint-e and t ∈ Z, we define:

m+
tA = min{t′ ∈ Z | t′ > t and A is true at t′}

m−
tA = max{t′ ∈ Z | t′ < t and A is true at t′}

In other words, m+
tA is the first instant after t in which A will be true, and

m−
tA is the last instant before t in which A was true. We agree that min∅ = +∞

andmax∅ = −∞. Likewise, we extend the order of Z over the set {−∞,+∞}∪Z

in the usual manner. We denote Int(Z) = {[t1, t2] | t1, t2 ∈ Z, t1 < t2} as the set
of closed finite intervals of Z with different start and end points.

Definition 3. A temporal interpretation for LNint-e is a tern I = 〈Hev, Hexec, h〉
where

– Hev:Ωev −→ 2Int(Z), where Hev(α) is the set of all the intervals at which
the executions of the class event α take place.

– Hexec:EventExecs −→ Int(Z) associates each event execution αl with the
only interval of Int(Z) where αl holds. This function satisfies the following
conditions:
1. Hexec(αl) ∈ Hev(α) for all αl ∈ EventExecs
2. For all α ∈ Ωev, and any pair of labels, l, l′ ∈ Labels, l �= l′ if Hexec(αl) =

[t1, t2] and Hexec(αl′) = [t′1, t
′
2] then t2 − t1 = t′2 − t′1.

7 Whose particular label is either unknown or not interesting to be specified.

– h:Ωev-e
ins −→ 2Z associates each atom of Ωev-e

ins with a subset of Z that satisfies
the following conditions:
1. h(⊥) = ∅, h(�) = Z and h(t) = {t}, for all t ∈ Z

2. For all αl ∈ EventExecs, if Hexec(αl) = [t1, t2], then
h(↑αl) = {t1}, h(↓αl) = {t2} and h(−→αl) = (t1, t2).

3. For all α ∈ Ωev, we have
3.1 h(↑α∗) = {t | t ∈ h(↑αl), l ∈ Labels}
3.2 h(↓α∗) = {t | t ∈ h(↓αl), l ∈ Labels}
3.3 h(−→α∗) = {t | t ∈ h(−→αl), l ∈ Labels}

The extension of I = 〈Hev, Hexec, h〉 to LN int-e, also denoted I , only
requires the extension of h to LN int-e as follows: if A,B ∈ LN int-e

h(¬A) = Z \ h(A); h(A ∨B) = h(A) ∪ h(B); h(A ∧B) = h(A) ∩ h(B)
h(A � B) = {t ∈ Z | m+

tA < +∞ and m+
tA ≤ m+

tB}
h(A � B) = {t ∈ Z | m−

tA > −∞ and m−
tA ≥ m−

tB}
where m+

tA = min
(
(t,+∞) ∩ h(A)

)
and m−

tA = max
(
−∞, t) ∩ h(A)

)

Definition 4. Let A be a wff of LN int-e, A is said to be satisfiable if there ex-
ists t ∈ Z and a temporal interpretation I = 〈Hev, Hexec, h〉 such that t ∈ h(A).
A is said to be valid in a temporal interpretation I = 〈Hev, Hexec, h〉, de-
noted |=IA, if h(A) = Z. A is said to be valid, denoted |=A, if |=IA for all tem-
poral interpretation I. Two wffs A and B of LN int-e are equivalent, denoted
A ≡ B, if h(A) = h(B), for all temporal interpretation I = 〈Hev, Hexec, h〉.

4 Expressivity of LNint-e

H. Kamp’s [7] ensures that US logic is fully expressive. LNint-e has the same
expressive power since the connectives U 8 and S 9 are definable in LNint-e in
the following way:

U(A,B)
def
= A � ¬B and S(A,B)

def
= A � ¬B

We will distinguish, both for point expressions and interval expressions, two
kinds of connectives: those that represent an absolute treatment of time (relating
statements with dates or concrete positions along the line of time) and those
that represent a relative treatment (analyzing the mutual position of pairs of
statements, independently of their absolute temporal position).

From now on, we will refer only to the future connectives. The past connec-
tives are obtained using the mirror rules as usual.

8 U(A, B) is read as sometime in the future A will occur and B will be true from now
to A.

9 S(A, B) is read as sometime in the past A occurred and B was true since A.

4.1 Specifying with LNint-e

LNint-e point temporal connectives (� and �) describe future and past non-
strict precedence and, following Kröger [8] notation, they are strong connec-
tives10.

The language of LNint-e allows us to define in a convenient way (in terms
relative to computing) the following types of connectives:

Strict precedence and simultaneity connectives:

– Strong connectives of strict precedence (denoted ≺ and �):
A ≺ B is read as in the future A, and the next occurrence of A will be before
the next occurrence of B. Therefore, its semantics is the following:

h(A ≺ B) = {t ∈ Z | m+
tA < m+

tB}
.

– Simultaneity connectives (denoted ≈+ and ≈−):
A ≈+ B is read as sometime in the future A and B, and the next occur-
rence of A will be simultaneous with the next occurrence of B. Therefore, its
semantics is

h(A ≈+ B) = {t ∈ Z | m+
tA = m+

tB < +∞}
It is a trivial task to prove that the formal LNint-e definitions of the above

connectives are the following11:

A ≈+ B
def
= A � B ∧B � A

A ≺ B
def
= A � B ∧ ¬(B � A)

Besides, the fully expressive power of LNint-e allows us to define the following
temporal connectives:

Standard temporal connectives:

– FA is read as A will be true sometime in the future. FA
def
= A � ⊥

– ⊕A is read as A will be true tomorrow. ⊕A def
= A � �

– GA is read as A will be true always in the future. GA
def
= ¬F¬A

Kröger connectives :

– AatnextB is read as A will be true at the next instant of time that B occurs.
AatnextB

def
= B ≈+ (A ∧B)

– AatlastB is read as A was true at the last instant of time that B occurred.
AatlastB

def
= B ≈− (A ∧B)

10 The connective � (resp. �) is strong if A � B (resp. A � B) implies sometimes in
the future (resp. past) A.

11 Moreover, we have that the the sets of connectives {�, �}, {≺,�} and {≈+,≈−}
are equivalent [11].

Connectives for absolute temporal treatment:

– The point connective: Aatm =def (A∧m)∨Aatnextm∨Aatlastm, which
allows us to know if A is true at a particular instant, independently of the
instant from which we speak. A at m will be true at every instant of the
flow of time or at none of them. Thus, its semantics are: h(Aatm) = Z if
m ∈ h(A) and h(Aatm) = ∅ in another case.

– The event connective for concrete executions

αl atev [m,n]
def
= (↑αl ∧ ↓αl ≈+ n) at m

where αl ∈ EventExecs and m < n. αl atev [m,n] is read as: the execution
αl occurs exactly at the interval [m,n].

– The event connective for anonymous executions

α∗ atev [m,n]
def
= (↑α∗ ∧ ¬−→α∗ ∧ ↓α∗ ≈+ n) at m ∧ ¬−→α∗ at n

where α ∈ Ωev and m < n 12.
The connective α∗ atev [m,n] is read: en [m,n] an execution of the event α
is carried out, and this one does not overlap any other execution of α.

Connectives for relative temporal event treatment:
All interval modal logics included in bibliography establish the reference of

a current interval from which formulas are evaluated. In LNint-e we consider
the current instant and we define the current interval as an interval to which
the current instant belongs. As it is shown in [1], a number of thirteen temporal
relations can occur between two intervals. In LNint-e it suffices to define seven of
them as primitives (an exhaustive description can be seen in [12]), among which
we remark the following. If αl, βl′ ∈ EventExecs,

- eq+(αl, βl′) holds at an instant t if and only if αl and βl′ are true 13 at an
interval [t1, t2], where t < t1 < t2. The definition in LNint-e is:

eq+(αl, βl′)
def
= ↑αl ≈+↑βl′ ∧ ↓αl ≈+↓βl′

12 The modification included in the precedent definition imposes that either m nor n
are an instant of course of no execution of α (this exigency is not contemplated in
the definition of connective for concrete executions previously defined). This way, we
avoid that α∗atev [m, n] be true in situations like the one represented in the following
figure:

m n

αl︷ ︸︸ ︷
αl′︷ ︸︸ ︷

13 Notice that we must not refer to the next occurence of an event, because event
executions take place only once.

- ab+(αl, βl′) holds at an instant t if and only if αl is true at an interval [t1, t2]
and βl′ is true at an interval [t2, t3] adjacent to [t1, t2], where t < t1 < t2 < t3.
The definition in LNint-e is:

ab+(αl, βl′)
def
= F ↑αl ∧ ↓αl ≈+↑βl′

Analogously, it is possible to define the corresponding connectives for anony-
mous executions.

Hereditary Expressions:
We can extend the concepts of start, course and end point to point assertions

by defining for all A ∈ Lins:

↑A =def ¬A ∧A; ↓A =def A ∧ ⊕¬A and −→
A

+
=def A ∧ ⊕A

Thus, we might define the following connective:

Int+(A)
def
= (⊕A→ ¬A) ∧ (A ≈+ −→A+

) ∧ F ↓A

Int+(A) is read as in the future A will occur, and the next time that A occurs,
A holds at a finite closed interval.

The operator chop is definable in LNint-e.
A remarkable property of LNint is that, unlike Halpern and Shoham’s logic

and other interval modal logics, we can define the operator chop introduced by
Moszkowski in [10]. This way, it is possible to express relations among three in-
tervals. As it is well-known, the connective chop represents the temporal relation
shown in figure:

t

chop+(A;B,C)

A︷ ︸︸ ︷
︸ ︷︷ ︸

B
︸ ︷︷ ︸

C

Its definition in LNint is as follows: Given three (point) formulas A,B,C ∈
Lins, we define:

chop+(A;B,C) =def

Int+(A) ∧ Int+(B) ∧ Int+(C) ∧ (A ≈+B) ∧ (↓A ≈+↓C) ∧ ab+(B,C)

5 Working with LNint-e. Reduction transformations

The expressive power of LNint-e, analyzed in previous section, of theoretical
interest by itself, does not guarantee its usefulness in computing as, though it
seems to be optimum for specification tasks (because of the transparency of its
semantical reading), the management of the introduced binary temporal connec-
tives contributes a great complexity for computing. This is the reason why, as
we said in the introduction, our following aim in view of the applications was

to have at our disposal reduction transformations for the wffs of LNint-e. The
results, as we will see, are remarkable and ratify the usefulness of our contri-
bution. Transformations now introduced are applied to formulas with nestings
of monary and binary temporal connectives. Concretely, these transformations
reduce binary connectives in the following two types of formulas:

i) Formulas in which one of the arguments of a binary temporal connective is
under the scope of a monary temporal connective.

ii) Formulas in which the argument of a monary temporal connective is based
on a binary temporal connective

Proposition 1. Let A,B be wffs of LNint-e, then:

(a) FA ≺ B ≡ F ⊕A ∧ ⊕¬B; FA � B ≡ F ⊕A.
(b) A ≺ FB ≡ FA ∧G⊕ ¬B; A � FB ≡ (G⊕ ¬B ∨ ⊕A) ∧ FA.
(c) GA ≺ B ≡ F (GA ∧ ¬B); GA � B ≡ FGA ∧G[¬B,A].
(d) A ≺ GB ≡ F [A,¬B]; A � GB ≡ ⊕A ∨ F [A, ¬B].
(e) Let γ ∈ {FG,GF}, then:

γA � B ≡ γA; γA ≺ B ≡ γA ∧ ⊕¬B;
A ≺ γB ≡ γ̄¬B ∧ FA; A � γB ≡ (γ̄¬B ∨ ⊕A) ∧ FA.

Proof. We prove some of the items. The rest of proofs are similar:

(a) For all temporal interpretation h, we have that t ∈ h(FA � B) if and only
if m+

t FA ≤ m+
t B and m+

t FA < +∞. This situation is fulfilled if and only if
m+

t FA = t+ 1, i.e. t ∈ h(F ⊕A) and, therefore, FA � B ≡ F ⊕A.
(e) For all temporal interpretation h, we have that t ∈ h(FGA � B) if and only

if m+
t FGA ≤ m+

t B and m+
t FGA < +∞. This situation is fulfilled if and only

if m+
t FGA = t+ 1, i.e. t ∈ h(FGA). Therefore, we conclude γA � B ≡ γA.

Proposition 2. Let A,B be wffs of LNint-e, then:

(a) G(A ≺ B) ≡ GFA ∧G⊕ ¬B; G(A � B) ≡ GFA ∧G⊕ (B → A)
(b) F (A � B) ≡ F ⊕A; F (A ≺ B) ≡ F ⊕ (A ∧ ¬B).
(c) FG(A ≺ B) ≡ GFA ∧ FG¬B; FG(A � B) ≡ GFA ∧ FG(B → A)
(d) GF (A � B) ≡ GFA; GF (A ≺ B) ≡ GF (A ∧ ¬B)

Proof. We prove some of the items. The rest of proofs are similar:

(a) t ∈ h(G(A ≺ B)) if and only if
for all x ≥ t+ 1, m+

xA <∞ and m+
xA < m+

xB , if and only if
for all x ≥ t+ 1,x∈ h(FA) and (x,m+

xA] ⊆ (x,m+
xB), if and only if

for all x ≥ t+ 1, x ∈ h(FA) and we have the following two cases:
if x+ 1 ∈ h(¬A) then x+ 1 ∈ h(¬B)
if x+ 1 ∈ h(A) then x+ 1 ∈ h(¬B) if and only if

for all x ≥ t+ 1, x ∈ h(FA) and x ∈ h(⊕¬B) if and only if
t ∈ h(GFA) and t ∈ h(G⊕ ¬B) if and only if
t ∈ h(GFA ∧G⊕ ¬B)

(c) Using item (a) we have that:
FG(A ≺ B) ≡ F (G(A ≺ B)) ≡ F (GFA ∧G⊕ ¬B) ≡
FGFA ∧ FG⊕ ¬B ≡ GFA ∧ FG¬B

6 Example

We conclude by illustrating the good characteristics of LNint-e for specifications.
The following example shows a defined connective that formalizes the initial
transition of a statechart diagram. The connective represents the transition (fired
by a creation event) from the initial state to a target state and the execution of
its entry action and activity14. The definition of the connective is the following:

InitialTrans(CreationEvent,TargetState,ActivityTarget ∗,EntryActionTarget ∗)
def
=

G
(
(InitialState ∧ CreationEvent) →

[ab+(EntryActionTarget ∗,TargetState) ∧
ab+(EntryActionTarget ∗,ActivityTarget ∗)]

)

References

1. J. F. Allen. Towards a general theory of action and time. Artificial Intelligence,
23(2):123–154, jul 1984.

2. I. Pérez de Guzmán and C. Rossi. LNint: a temporal logic that combines points
and intervals and the absolute and relative approaches. Journal of the IGPL, 3(5),
1995.

3. M. Enciso, J. M. Fŕıas, and C. Rossi. Formalización de interfaces de usuario
usando lógica temporal. In INTERACCIÓN 2001, 2nd Congreso Internacional de
Interacción Persona-Ordenador, 2001.

4. M. Enciso, I. P. de Guzmán, and C. Rossi. Using temporal logic to represent
dynamic behaviour of UML statecharts. In ECOOP 2002 Workshop on Integration
and Transformation of UML Models, 2002.

5. J. Halpern and Y. Shoham. A propositional modal logic of time intervals. Journal
of the ACM, 38(4):935–962, October 1991.

6. B. A. Haugh. Non-standard semantics for the method of temporal arguments.
In Proceedings de la International Joint Conference on Artificial Intelligence IJ-
CAI’87, pages 449–455, 1987.

7. H. Kamp. Tense logic and theory of linear orders. PhD thesis, University of
california, Los Angeles, 1968.

8. H. Kroger. Temporal Logic of Programs. Theoretical Computer Science. Springer
Verlag, 1987.

9. D. V. McDermott. A temporal logic for reasoning about processes and plans.
Cognitive Science, 6:101–155, 1982.

10. B. C. Moszkowski. Reasoning about Digital Circuits. PhD thesis, Standford Uni-
versity, 1983.

11. I. Pérez de Guzmán and A. Burrieza. A new algebraic semantic approach and
some adequate connectives for computation with temporal logic over discrete time.
Journal of Applied Non-Classical Logic, 2, 1992.

12. C. Rossi. Lógica Temporal de Intervalos. Formalización de Diagramas de Estados.
PhD thesis, Universidad de Málaga, Spain, 2001.

14 An exhaustive specification can be found in [12].

