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Towards a General Model for Heuristics and
Heuristic-Preserving Problem Reductions

Fernando Ndufel do Amaral and Edward Hermann Haeusler

Dept. of Informatics,
Pontificia Universidade Catdlica, Rio de Janeiro, Brazil
{fnaufel ,hermann}@inf.puc-rio.br

Abstract. We present the first definitions and results of ongoing work
to define a general formal model for heuristic techniques. One of our
goals is to use this model to study problem reductions that preserve
properties of interest of the heuristics involved. We use Category Theory
as our main tool.

1 Introduction

It has been a common task to model and formalize a research field after some set
of important and relevant results have been obtained. This is the very case in
problem-solving techniques based on Artificial Intelligence/heuristics. As with
the NP = P question, the knowledge that the scientific community has on the
so-called hard problems is of the kind that might be termed exploratory. It is
worthwhile mentioning the advances on the creation of heuristics for dealing
with certain practical instances of these problems requiring near-optimal solu-
tions, as opposed to exact and optimal ones. Simulated Annealing, Tabu Search
and Genetic Algorithms are among the most popular ways of achieving solutions
for hard problems with randomness and approximability features. On the other
hand, some problems are known that allow quite good approximation algorithms
to be built from knowledge obtained from a detailed study of their own nature.
In this scenario there is a lot to be learned besides the establishment of a rele-
vant methodology for approaching this issue. These ways of applying heuristics
to solve hard problems, however, are often case-driven and success-driven. One
can wisely point out that this is only a facet of the essential question of how
to solve problems efficiently using a computer. However, there are also some
foundational /methodological approaches to this. Here it is worth mentioning
the studies that try to mathematically relate problems, solutions, patterns of
achieving solutions and so on. Instead of developing specific tools to solve some
class of problems, this kind of study aims at the establishment of some charac-
terization result that helps to understand the very nature of the hard problems.
The discovery of NP-complete problems is one of the most representative ex-
amples of this sort of research. Since the 70’s there has been some important
work addressing this panoramic approach ([1, 13], among others). In most of this
research the notion of reduction between problems plays a central réle. [12] has
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extended this definition of reduction between problems to cope with approximate
solutions and quality-preserving reductions.

Category Theory was a milestone in the development of a mathematical
language for dealing with the universals of a research area. The seminal work
relating mathematical results from topology and algebra (culminating in the co-
homology concept), the establishing of a foundational alternative for the mathe-
matical discourse, and its widespread use in the various aspects of computational
models helping the elucidation of some basic question regarding concurrency the-
ory, typing discipline, software specification and so on, are quite good examples
of the application of Category Theory. This article follows the approach started
by [5] in applying categorical tools to the analysis of hard problems and their
relationships. Here the focus is on the heuristics. The establishment of some
definitions of heuristics and heuristic-preserving morphisms between problems is
one of our goals. By relating problems which lend themselves to the application
of the same heuristic strategies we hope to gain some knowledge on the intrin-
sic nature of the hard problems discussed above; perhaps the establishment of
some universals in the classes associated to each kind of heuristic will lead to
some completeness-like concept pertaining to heuristics. However, we have not
achieved the main goal yet. This paper describes our first results and definitions
and discusses some future directions.

The paper is organized as follows: Sec. 2 presents the basic definitions of a
General Theory of Problems on which we base our own work; Sec. 3 shows that
every problem may be viewed as one of search, allowing us to concentrate on the
class of search problems but draw general conclusions that apply to problems of
any kind; Sec. 4 begins to formalize the process of operationalizing a problem by
defining proto-operators as primitive objects that specify how the search graph
of a problem may be built; finally, Sec. 6 presents a discussion of the present
status and future directions of our work, as well as a brief comparison to related
work in the literature.

2 A General Theory of Problems

We base our formal definitions of problems, solutions and reductions between
problems on Veloso’s work on a General Theory of Problems ([13]):

Definition 1 (Problem). A problem P is a tuple < D, R,p >, where

— D is a nonempty set called the data domain. An element d of D is called an
instance;

— R is a nonempty set called the result domain. An element r of R will usually
be called an answer;

— p is a relation over D x R called the problem condition. Having (d,r) € p
means that instance d has r as one of its acceptable (correct) answers.

Definition 2 (Solution). A solution of P is a function ¢ : D — R such that

Vae D (d,¢(d)) €p



Towards a General Model for Heuristics... 3

Definition 3 (Link). Given P=< D, R, p >and Q=< E, S, q >, a
link L from P to Q is a pair (1,0), where

— 7: D — FE is the data transformation function;
— 0: S — R is the result retrieval function.

Definition 4 (Reduction). A reduction of P to Q is a link L from P to Q
such that for any solution ¢ of QQ, the composite o o ¢ o T is a solution of P.

Proposition 1. Problems and reductions form a category PROB.

Ezample 1 (The TSP). The Traveling Salesman Problem (TSP) is defined as
< D,R,p >, where

— D is the set of all finite complete directed graphs with a distance associated
to each edge;

— R is the set of all hamiltonian circuits over the graphs in D;

— p relates each graph d € D to its minimum-distance hamiltonian circuit (or
circuits).

2.1 Search Problems
An important class of problems is the class of search problems, defined as follows:

Definition 5 (Search Problem). A search problem is a problem of the form
< G,N,s >, where

— G is a set of graphs, each graph having a designed initial node ng;
— N is a set of sets of nodes, N C |, p(nodes(g));
— sC{(g,5)| S C nodes(g) and Vn € S there is a path in g from ng to n}.

Having the result domain N as a set of sets of nodes allows for search prob-
lems where the goal is to find more than one node (possibly all nodes) of the
graph having a certain property.

Note that the TSP, as defined in Example 1 above, is not a search problem.

3 Every Problem is Isomorphic to a Search Problem

Our first step in the definition of a heuristic for a problem of any kind is seeing
the problem as one of search, so that heuristic search techniques may then be
used to solve it. This can be accomplished by realizing that solving an instance
d € D consists in searching for a specific element r € R such that (d,r) € p. For
example, the search can be conducted according to a “split-and-prune” strategy
(see [7]) where we initially consider all members of R as possible answers and
then repeatedly and systematically discard answers until we are left with one
that is acceptable for the instance in question. Alternatively, sets of candidate an-
swers can be manipulated according to so-called “modern heuristic techniques”
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(Genetic Algorithms, Tabu Search or Simulated Annealing — see [11]) until an
acceptable answer is found.

It helps — but is by no means necessary — to associate to each instance d € D
a subset f(d) C R containing all the answers in R meeting some well-defined
criteria that an answer for d must satisfy. This defines a function f : D — p(R),
called the feasible answer function. We require, for all r with (d,r) € p, that
r € f(d); i.e., every correct answer for an instance d must be a feasible answer
for d.

In order to comstruct the search problem associated to a problem P =
< D, R, p >, we start out by defining for each instance d € D a huge graph
gqa where the nodes represent sets of feasible answers and where each edge rep-
resents a change in the set of feasible answers currently considered as candidate
answers for d. Because some modern heuristic techniques usually add elements
to the current set of candidate answers (unlike split-and-prune, where the cur-
rent set is only partitioned at each step), we define g4 as a complete graph, to
account for any kind of change in the set of candidate answers.

Furthermore, we also want to retain information on the instance d which gave
rise to this search graph, so we define each node of the graph to be a pair (S, d),
with S C f(d) a set of feasible answers for d and d the instance in question.

Definition 6 (Search problem associated to a problem). Given a problem
P=< D, R, p >, define the search problem P' =< D', R', p' >, where

— Let f: D — p(R) be the feasible answer function for P (as described above).
Let d € D. Let g4 be the complete graph whose set of nodes is p(f(d)) x {d}
and whose initial node is (f(d),d). Then D' ={gq | d€ D };

- R ={ {({r},d)} | ref(d),deD }

- ={ (9{({r},d)}) | dr)ep }

As there are obvious reductions (7,¢) from P to P’ and (t7!,07!) from P’
to P which, when composed, yield the respective identity reductions, we have
the following

Proposition 2. P and P' are isomorphic in PROB.

Example 2 (The TSP as a search problem,).

The feasible answer function f : D — p(R) maps each graph d € D to the
set of all hamiltonian circuits of d.

The search version of the TSP (Example 1) is TSP’ =< D', R',p' >, with

— D" ={g4 | d € D }, where for each instance d of the TSP g4 is the complete
graph where each node is a pair (A, d), with A a set of hamiltonian circuits
of d; the initial node of g4 is (f(d),d), with f(d) the set of all hamiltonian
circuits of d;

- R ={ {{r},d)} | r € f(d), d € D };ie. an answer for TSP’ is a
node corresponding to a pair consisting of an instance d of the TSP and of
a singleton set with a hamiltonian circuit of d;

-9 ={ (94, {{r},d)}) | (d,r) €p };ie., agoal nodeof gqis anode corre-
sponding to a pair whose first component is a minimum-distance hamiltonian
circuit of d.
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4 Refining the Complete Graph: Proto-operators

The next step in defining a heuristic for a problem P would be determining the
set of operators to be used in solving the associated search problem. Operators
are applied to states in a state graph, but the definitions of “operator” and
“state” are interdependent; so, we first define the more primitive notion of proto-
operator.

Given the complete graph g4 for instance d, a proto-operator 7 will refine g4,
eliminating some of its edges to transform it into another search graph g7.

Informally, we group subsets of the result domain together according to some
specified criteria. Then, at each step of the search, we may delete or add (or both)
an entire group of feasible answers from/to the current set of candidate answers.

Definition 7 (Proto-operator). A proto-operator @ for P=< D, R, p >
is a pair of families ({a;}ier,{0;}jer) of equivalence relations over R x R.

The « family specifies how answers in the result domain should be grouped
for being added to the current set of candidate answers, whereas the ¢ family
determines how the grouping should occur when answers are being deleted.

Definition 8 (The refined graph ¢7). Given graph gq for an instance d of a
problem P and a proto-operator © for P, with m = ({o, }ier, {0;}jer), the graph
g5 has the same set of nodes and the same initial node as gq, but the edges are
defined as follows:

Let (S,d), with S C f(d), be a node. Each o; € w | 1 and each 6; € © | 2
induces a partition of S. Let [r]s, and [r]s;, with r € f(d), be the equivalence
classes of v by o; and &;, respectively. Then there will be an edge from (S,d) to
each of the nodes in

{(SU[r]a;;d) | reS,iel}
and to each of the nodes in
{(Sn[rls;»d) | reS, jeJ}

The edges to nodes of the first set correspond to steps where a group of
answers is added to the current set S of candidate answers. The edges to nodes
of the second set correspond to steps where a group of answers is deleted from S.
An operation of a search process (e.g. a genetic algorithm) where both addition
and deletion of answers occur simultaneously must be split into two edges in g7,
one edge for addition, one for deletion.

Formally, as we do not want g7 to be a multigraph, if the same edge is created
by more than one equivalence relation in the a and ¢ families, we include only
one such edge in g7.

Definition 9 (Search problem with proto-operator). Given a problem
P=< D, R, p > and a proto-operator © for P, we define the search problem
with proto-operator Pr = < Dy, Ry, px >, where
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3

7

- =1 (93,{({r},d)}) | (d,r) € p and there is a path in gg from (f(d),d)
to ({r},d) }.

Ezample 8 (A proto-operator for the TSP). Given an instance d of the TSP, the
approach of finding a minimum-distance hamiltonian circuit for d by choosing
one unvisited city at a time is represented by the following proto-operator 7 for
the TSP:

7= ({ai}ier,{0;}jer), with

— I = ; i.e. there will be no edges corresponding to the addition of answers
in the refined graph;

- J=N

— For all feasible answers r1,72 and for all j > 1

(r,r2) €9; iff  prefix(r1,j) = prefix(ra, j)

where prefix(r, j) is a function returning the path consisting of the first j
cities of the circuit r. If r has fewer than j cities, then prefix(r, j) = r, making
all of the d; copies of the identity relation for j greater than the number of
cities in the instance.

In order to illustrate the effect of this proto-operator, consider a very small
instance d of the TSP consisting of a complete graph with 4 nodes (named A,
B, C and D). The distances associated to the edges are not relevant in this
discussion. The feasible answer function f(d) yields the set of all 24 hamiltonian
circuits for this graph. The complete graph g4 has 224 nodes, one for each subset
of f(d). The initial node of g4 is (f(d),d) (recall that we “store” the identity of
the instance d in every node of gq).

The proto-operator 7 defined above transforms gq into the graph g7 depicted
in Fig. 1. Recall that the nodes of g7 correspond to pairs of the form (S,d),
where S is a set of feasible answers and d is the problem instance that gave
rise to the graph. In the figure, however, only the set S is shown for each node;
furthermore, the common prefix characterizing a set S is used to represent the
set, followed by “x” (e.g. ABx* stands for all hamiltonian circuits with the prefix
A-B). Furthermore, the graph g7 is reflexive (there is an edge from every node
to itself) and transitive (given an edge from n; to n, and an edge from ns to
ng, there is an edge from n; to ng). These reflexive and transitive edges are not
shown in the figure.

A proto-operator is considered complete if all correct answers for all instances
of the problem are reachable in the refined graph.

Definition 10 (Completeness). Given a problem P = < D, R, p >, a
proto-operator w for P is complete iff

V(d,r) € p 3 a path in g from (f(d),d) to ({r},d)
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Fig. 1. The graph g] for an instance d of the TSP

Proposition 3. For any problem P and proto-operator w,

— There is a reduction from P to Py;
— If w is complete, P is isomorphic to P, in PROB.

5 Problem Reductions that Preserve Proto-operators

Although we have yet to obtain a precise definition of what heuristics are in our
model, we discuss in this section when and how properties of the proto-operators
we have defined may be preserved by problem reductions. In future developments
of this work, ideas and results from this early discussion will hopefully be refined
and applied to heuristics in the full model.

The one property of interest we mentioned above for proto-operators is com-
pleteness. This motivates the following definition:

Definition 11 (Proto-operator-preserving Problem Reduction). Given
two problems P =< D, R, p > and Q=< E, S, ¢ >, a proto-operator
for P and a proto-operator x for Q, and a reduction (1,0) from P to Q, we say
that the reduction preserves proto-operators iff

Vde D: Vre R with (d,r) € p and ({r},d) reachable in g7 :
ds € S with (7(d), s) € q¢ and ({s},7(d)) reachable in gf(d)
such that r = o(s)

Informally, we say a reduction from P to () preserves the proto-operators in-
volved if, given any instance of P, every answer to this instance that is obtainable
by P’s proto-operator 7 can still be obtained by @Q’s proto-operator x (modulo
the data transformation and result retrieval functions 7 and o, respectively).

From a category-theoretical viewpoint, this gives rise to a category whose
objects are problems (as in PROB) and where a morphism from P to @ is a
tuple (m,x,T,0), with 7 a proto-operator for P, x a proto-operator for @, and
(1,0) areduction from P to @) that preserves w and .
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6 Concluding Remarks

6.1 Discussion

The search techniques found in the literature can be divided into two basic
categories: the first consists of algorithms that attempt to construct an answer
for an instance one step at a time, usually tracing the steps of this construction
as a path in a suitable state graph associated with the instance being solved. An
example of this approach would be an algorithm to solve the Traveling Salesman
Problem by repeatedly choosing an unvisited node of the graph until a minimum-
cost hamiltonian circuit is built. The second category is comprised of algorithms
that start out with one or more candidate answers, applying repeated changes
to them in order to generate new answers to replace some of the previous ones.
Typical examples of this strategy are Genetic Algorithms and Tabu Search ([11]).

In the model described in the previous sections, the elements of the result do-
main are organized in a search graph whose nodes correspond to sets of answers
and whose edges (induced by a proto-operator) represent the addition or dele-
tion of answers to/from a set. This model is adequate for representing search
techniques of both categories mentioned in the previous paragraph: a proto-
operator that only induces edges representing deletions (i.e. a proto-operator
with an empty a family) corresponds, by the split-and-prune paradigm, to the
step-by-step generation of answers. On the other hand, a proto-operator hav-
ing a nonempty « family is able to represent the operation of an algorithm of
the second category, where the set of candidate answers is subjected both to
additions and deletions.

This paper, as a communication of partial results of ongoing research, has
explained the model only up to the definition of proto-operators and the state-
ment of some related propositions. Parts of the model not treated here include
the following:

— The definition of the notion of state as an equivalence relation between sets
of answers. For the techniques in the first category, this equivalence relation
is based on the “partial problem” that remains to be solved at the given
point of the process of constructing the answer to the instance at hand. The
definition of state may identify some nodes in the search graph induced by
the proto-operator, transforming the search graph into a state graph. Note,
however, that techniques falling into the second category described above do
not usually make use of any definition of state. In this case, the search graph
remains unchanged, for the states correspond exactly to the sets of answers
in the graph.

— After “state” is defined, it becomes possible to speak of pre-conditions, and
some edges of the state graph may be deleted because they correspond to
the application of actions in states where such actions are not allowed. It is
only at this point that we may speak of operators having been defined for
the problem. Thus, in our model, the definition of a set of operators for a
problem encompasses the definition of a proto-operator, of a notion of state
and of a set of pre-conditions.
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— For optimization problems, it becomes necessary to map the original prob-
lem to one of near-optimization, where the problem condition p has been
extended to account for answers that are not exact, but rather approxima-
tions produced by the chosen heuristic strategy.

— Finally, in this setting, specific heuristic techniques may be modeled. These
may include the definition of a strategy such as hill-climbing, best-first,
means-ends analysis etc., as well as the heuristic functions used in the eval-
uation of states.

After the model is completely defined, it becomes possible to study problem
reductions that preserve properties of interest that heuristics in general may
possess, as was quickly illustrated by the proto-operator-preserving reductions
presented in Sec. 5 above.

6.2 Related Work

Heuristics have been the object of study of many researchers since the 70’s. The
approaches vary widely, however. Lenat ([6]), for example, does not concern him-
self with the explicit construction of state spaces and operators for the operation
of his AM program; he points out that it is the heuristics themselves (defined as
IF-THEN rules) that dictate all the actions the program may perform. On the
other extreme, Banerji ([1]) considers the state space and the operators as given
right from the start, including them in his definition of problem. As indicated
in Secs. 3 and 4 above, we are interested not only in giving a formal account of
the construction of the state space, but also in basing this construction on the
very structure of the problem.

Defining and analyzing formal properties of heuristics has also been common
among researchers whose goal is to automatically generate heuristics (which is
a natural objective to be pursued, since what has been formalized usually lends
itself easily to automation) — see [3, 4], for example. To this end, it is common to
manipulate and relate state graphs of different problems as we are interested in
doing. But rather than studying the generation of heuristics, we are interested
in exploring how problem reductions preserve properties of heuristics associated
to the source problem.

As far as modern heuristic techniques are concerned, a unified model for
Simulated Annealing, Tabu Search and Genetic Algorithms is found in [9].

Our work may be viewed as a generalization of the work on approximation-
preserving reducibilities ([12]).
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