
Modularity and Complexity Profiles in Overconstrained Resource
Allocation Problems

Alejandro Bugacov‡, Donghan Kim‡, Carla Gomes† and Bart Selman†

(†) Information Sciences Institute, University of Southern California
4676 Admiralty Way Marina del Rey, California 90292

(‡) Department of Computer Science, Cornell University, Ithaca, NY 14853

(bugacov,donghank)@isi.edu, (selman,gomes)@cs.cornell.edu

Abstract

We propose a technique for solving a type of over-
constrained resource allocation problem that is
commonly encountered at the heart of many real-
world planning and scheduling applications. This
type of resource allocation problems are charac-
terized by what we call modular constraints: good
solutions are those that guarantee the allocation
of resources to tasks that can satisfy all of its re-
quirements and avoid generating assignments that
result in broken or partially satisfied tasks. Us-
ing SAT and Pseudo-Boolean encodings, we show
that a typical or plain encoding results in solutions
with a large number of broken tasks while our pro-
posed encodings, by taking into account the mod-
ular constraint structure of the problems, guar-
antee good solutions. In addition, we show that
the phase-transition characteristics of the result-
ing SAT formulas can be used to rapidly estimate
the maximum number of satisfiable tasks. This in-
formation can be very valuable in the design and
implementation of transition-aware solvers.

Introduction
Recent advances in constraint-based reasoning have led
to substantial improvements in planning and scheduling
systems. For example, the Graphplan (Blum and Furst
1997) and Blackbox (Kautz and Selman 1999) planners
have significantly extended the range of feasible plan-
ning tasks (Weld 1999). A common feature of these
approaches is that the planning task is translated into
a set of constraints, either as a Boolean satisfiability
(SAT) encoding or a more general constraint satisfac-
tion formulation. Instead of search techniques specifi-
cally tailored to a particular planning task, general SAT
solvers of CSP engines are used to find a satisfying so-
lution (if one exists) for the set of constraints. (In fact,
the solvers have no notion of goal state, initial state, or
operators.) The general solvers are competitive with,
and often outperform, specialized search methods on a
range of planning benchmarks.

Copyright c© 2002, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

In this paper, we extend the constraint-based ap-
proach to the case where we cannot fulfill all desired ob-
jectives of the goal state due to resource constraints. To
be more specific, we consider a challenging real-world
resource allocation problem. Our resource allocation
problem is inspired by the complex issue of resolving re-
source conflicts in the scheduling of flight training exer-
cises. In this domain, beside the satisfaction of a series
of constraints, the scheduling of a training exercise (or
task) depends on the availability of qualified resources
for every requirement of the task and will fail to get
scheduled otherwise. At the same time, the schedul-
ing of some tasks is more valuable than others and thus
there is also an optimization component to the problem.
Frank et al. (Frank et al. 2001) introduced a model re-
source allocation problem capturing these features to-
gether with some distributed solving schemes that they
refer to as Marbles. The Marbles problem plays a fun-
damental role in the efficient allocation of resources to
tasks in the CAMERA/SNAP negotiations-based flight
scheduling system developed at USC ISI (for more infor-
mation see www.isi.edu/camera). Recently, it has been
shown (Zhang 2001) that finding the optimal solution to
this problem is NP-hard. We focus on the development
of Boolean (and Pseudo-Boolean) modular encodings of
this problem that result in proper solutions and contain
valuable information about the complexity characteris-
tics of the problems that can lead to the implementation
of phase-transition aware solvers for this domain.

It is fairly straightforward to capture the underly-
ing constraints in a Boolean SAT encoding (or, if we
want to include numerical information, in the some-
what richer form of a pseudo-Boolean representation
(Walser 1997)). In a typical or ”plain” SAT encod-
ing of constraint satisfaction problems of this kind, one
will begin by associating Boolean variables to the allo-
cation of a resource to a given task and then create a
Boolean formula in conjuctive normal form (CNF) con-
sisting of two main types of clauses: 1) those stating
that at least one resource must be allocated to a given

task (or requirement in a task) and 2) those precluding
a resource to be allocated to more than one task at a
time. Obtaining a solution to the problem will then
amount to finding a truth assignment of the variables
that will satisfy the whole formula. Unfortunately, such
a solution will only be likely to exist if the problem is
so under-constrained that there are enough resources
to satisfy all tasks: a case that is of no practical im-
portance to most real-world applications which usually
run over-constrained or at the limit of their capacity.
Since the problem is over-constrained, we could use a
MAXSAT approach or other optimization technique to
find a schedule that satisfies the largest possible number
of constraints. Unfortunately, because of the uniform
nature of the constraint representation, the resulting
schedules will contain a large number of broken tasks
for which some of the required resources are not avail-
able. The problem we are encountering is that the con-
straints are represented in a uniform manner, whereas
in the underlying problem domain, we are really deal-
ing with a modular constraint structure, where each
task corresponds to a specific set of constraints. Only
when we schedule a task, do we want to ”activate” the
constraints corresponding to that task.

We therefore explore instead a special encoding of our
problem domain. In this so-called modular encoding,
we introduce a special set of Boolean variables, called
task activation variables. We modify our encoding in
such a way that the sets of constraints for a certain task
are only activated when the corresponding task activa-
tion variable is set to True. To obtain a pure decision
problem, we also introduce clauses that state that at
least K of the task selection variables should be acti-
vated. Varying the value of K, either by a binary search
or incrementally from an initial guess, we can rapidly
find the maximum number of tasks that can be filled
with the current resource level and imposed constraints.
In our pseudo-Boolean encoding, we do not need to add
the clauses that select at least K tasks, rather we use
a set of soft weighted constraints to directly optimized
the number of selected (weighted) tasks.

Both our modular SAT and pseudo-Boolean encod-
ings allow again for the use of state-of-the-art solvers
to find schedules. The key question is whether our spe-
cial modular encoding preserves the advantages of a
constraint-based approach. In particular, it could be
the case that the encodings become much harder to
solve. We present a detailed empirical evaluation of our
approach and show how the modular encodings can still
be solved effectively. We also show how our approach
outperforms a special purpose scheduling procedure tai-
lored directly towards the domain.

Resources
Task[value] A B C D E F G H I

Q1 • •
T1 [300] Q2 • •

Q3 • •
Q1 • •

T2 [600] Q2 • •
Q3 • •
Q1 • •

T3 [200] Q2 •
Q3 •

Figure 1: Example of a Marbles resource allocation
problem with 3 tasks and 9 resources

Marbles Resource Allocation Problem

The resource allocation problem that we consider for
our encodings can be formulated as follows. There is
a collection R of M available resources and a set of N
tasks T = T1, T2, . . . , TN . Each task Ti has a domain
value Vi and a set of qi requirements. Each require-
ment Qj of task Ti has a different list Pij of possible
or qualified resources, with Pij ∈ R. A task needs to
acquire one resource for each of its requirements and
have all its requirements filled in order to be executed
and add up its domain value to the total value of a
solution. (This is the condition that imposes the mod-
ular constraints.) Figure 1 shows an example problem
with four tasks and nine resources. In the example each
task has three requirements but in the general case the
number of requirements can vary from task to task. A
• mark in a given cell indicates that the resource of the
corresponding column is qualified or is a possible can-
didate for the requirement of the corresponding row. If
a task partially fills its requirements (broken task) it
does not get scheduled and it does not contribute to
the total domain value of the solution.

In a flight training scheduling application, each task
will represent a flight training exercise and the require-
ments represent different types of resources that the
task needs to obtain in order to get scheduled (e.g., 1
Pilot, 1 Airplane and 1 Range). In addition, there is
a value associated to each training exercise represent-
ing some domain value (e.g., training readiness or flight
hours) that a task will contribute to the squadron total
value if it gets scheduled. In the following sections we
describe various techniques to encode this problem into
a set of constraints that enable the use of state-of-the-
art off-the-shelf solver.

SAT(K) Modular Encoding

In our approach, we focus on the formulation of a SAT
encoding of the Marbles problem described above (see
Figure 1) that will guarantee resource assignments sat-

isfying at least K of the N tasks forming the problem.
For each value of K(K ≤ N), the encoding generates a
CNF formula, that if solvable, guarantees that from the
original set of N tasks at least K are filled. (A task is
filled when it finds one available resource for each of its
requirements.) For a given value of K, we start our for-
mulation by composing a SAT formula of the following
form

f = (fK) ∧ (fcross) ∧ (f1 ∧ f2 ∧ f3 ∧ · · · fN) (1)

The formula f represents the problem of finding re-
source assignments for at least K tasks and is in turn
the conjunction of three main sub-formulas fK , fcross

and fi (i = 1, . . . , N). The formula fK contains the
clauses responsible for selecting at least K different
tasks, fcross is the formula containing resource variables
across tasks and requirements and is formed by clauses
restricting a given resource from being assigned to more
than one requirement at a time and fi (i = 1, 2, . . . , N)
contains the clauses responsible for selecting at least
one, and optionally no more than one, resource for each
requirement in task i.

The fK formula is completely independent of the re-
sources and is the only term in Eq. (1) that depends
on the value of K. The clauses in fK are formed by
two types of Boolean variables: task activation vari-
ables and dummy variables. For a problem with N
tasks we introduce N Boolean task activation variables
m1,m2,m3, . . . , mN , where each variable mi represents
a task Ti and its activation (i.e., mi = TRUE) indicates
that Ti got filled in a given solution. In addition, we
define K ×N dummy variables:

a1, a2, . . . , aN ; b1, b2, . . . , bN ; k1, k2, . . . , kN (2)

to select K different task activation variables such that
in a given solution at least K of the N activation vari-
ables will be set to TRUE. These dummy variables are
introduced with the conditions that

xi → yi (3)

for any pair of variables x, y ∈ {a, b, . . . , k}(i =
1, 2, 3, . . . , N) and they are related to the tasks acti-
vation variables by

ai → mi , bi → mi , ci → mi , . . . , ki → mi (4)

for i = 1, 2, , N.

For convenience, we can decompose fK as fK = f
(1)
K ∧

f
(2)
K ∧ f

(3)
K , where f

(1)
K is used to turn on at least one of

the dummy variables with the same letter name while
f

(2)
K and f

(3)
K are introduced to encode the conditions in

Eqs. (3) and (4), respectively. The formulas f
(1)
K and

f
(3)
K can be written as

f
(1)
K = (a1 ∨ a2 · · · ∨ aN) ∧ (b1 ∨ b2 · · · ∨ bN) ∧ · · ·

(k1 ∨ k2 ∨ k3 · · · ∨ kN) (5)

f
(3)
K = (m1 ∨ a1 ∨ b1 · · · ∨ k1) ∧

(m1 ∨ a1) ∧ (m1 ∨ b1) · · · ∧ (m1 ∨ k1) ∧
(m2 ∨ a2 ∨ b2 · · · ∨ k2) ∧ (6)
(m2 ∨ a2) ∧ (m2 ∨ b2) ∧ · · · ∧ (m2 ∨ k2) ∧
...

(mN ∨ aN ∨ bN · · · ∨ kN) ∧
(mN ∨ aN) ∧ (mN ∨ bN) ∧ · · · ∧ (mN ∨ kN)

The formula f
(2)
K is composed by the conjunction of

all possible different binary clauses of the form

(xi ∨ yi) (7)
with x, y ∈ a, b, c, . . . , k and i = 1, 2, 3, . . . , N. An al-

ternative and simpler way of selecting K different vari-
ables from the original N, would be to generate a for-
mula with the conjunction of all clauses formed by all
possible disjunctions of N −K +1 task variables. How-
ever, the resulting number of clauses would be expo-
nential in K while the method proposed here by intro-
ducing the dummy variables scales polynomially in K
and N.

The formula fcross is introduced to preclude resources
from being assigned to more than one requirement at a
time. At this point we introduce one Boolean resource
variable Xij for each • marked cell in the grid (shown
in Figure 1) and where Xij = TRUE indicates that
resource X is assigned to task i requirement j. With
this notation, fcross contains all possible binary clauses
of the form Xij∨Xkl, with X ∈ R and all possible pairs
of variables with i, j 6= k, l.

For each individual task Ti we define a formula fi

formed by two types of clauses encoding the following
two conditions for each requirement of the task: 1) at
least one of its possible resources must be selected and,
2) only one resource per requirement should be selected.
In order to avoid having broken of partially filled tasks,
we introduce in each of these clauses the corresponding
task activation variable negated, such that the clauses
in fi are only active when mi = TRUE and trivially
satisfied otherwise.

It is worth noting that thanks to the mechanism
adopted in fK to select K different task activation vari-
ables, the resulting total number of clauses and vari-
ables in the SAT(K) encoding scales polynomially with
the size if the problem as O(N3).

Pseudo-Boolean Modular Encoding

In order to obtain a more compact encoding of the
problem, we extended the modular encoding idea used
in SAT(K) to an integer programming encoding using
Pseudo-Boolean (PB) variables (Walser 1997). In this
encoding variables can only take values 0 or 1 and all
constraints are formulated as inequalities. Thus, the
large number of SAT clauses introduced in SAT(K) to
exclude resource contention across requirements can be
combined in a single constraint and therefore the num-
ber of resulting constraints is substantially lower than
the number of clauses in the SAT(K) encoding. At the
same time, we can introduce weights and differentiate
between soft and hard constraints, what makes this ap-
proach very attractive for finding optimal solutions to
the problem.

In the PB encoding we define the same set of re-
source and tasks activation variables as introduced in
the SAT(K) encoding and decompose the problem in
a similar fashion (see Eq. (1)), except for the fact
that the constraints corresponding to fK for selecting
at least K of the N variables are substituted by a set
of N weighted soft constraints. The set of exclusive
clauses corresponding to fcross are now written as the
following set of M inequalities (one for each resource
R ∈ R = {A,B, C, . . .}) :

N∑

i=1

ri∑

j=1

Rij ≥
N∑

i=1

ri − 1 (8)

where ri is the number of requirements in task i for
which R is a possible resource and the pseudo-boolean
variable Rij represents the allocation of resource R to
the requirement j of task i. (A bar over a variable
denotes its negated value.) In a similar fashion, the
clauses in each of the fi formulas expressing the con-
straints for the selection of resources within each re-
quirement j of task i, are now written as:

∑

R∈Pij

Rij + mi ≥ 1 (9)

where Pij is the set of possible resources for require-
ment j of task i and mi is the task activation variable
representing task i. In addition, each task activation
variable mi is evaluated by a soft constraint of the form

soft : Vi mi ≥ 1 (10)

where Vi is the domain value associated to task i.

To solve the problem we seek a solution to the system
of constraints that satisfies all hard constraints while
minimizing the number of violated soft constraints.

Simulated Annealing Solution
With the purpose of testing the efficacy of our SAT
encodings we implemented a simple stochastic solver
based on the concept of simulated annealing (SA)
(Kirkpatrick, Gelatt and Vecchi 1983). In this solver,
first we generate a random initial assignment or state
by allocating qualified resources to tasks until all re-
sources have been assigned (the case where all tasks
are satisfied before we run out of resources is not of
much interest in this work) and then we start a stochas-
tic hill-climbing process by swapping resource assign-
ments among different requirements and tasks. The
algorithm does maxFlips iterations of this kind and at
each iteration step we evaluate the resulting total do-
main value corresponding to the new assignment, and
accept the move with probability 1 if the new value is
larger or equal than the previous one and with proba-
bility exp (−(oldV alue−newV alue)

T) otherwise, where T is
the temperature parameter that takes the values pre-
scribed by a selected annealing schedule.

Critical Number of Scheduable Tasks
Prediction

The phase-transition phenomena observed in 3-SAT
and other combinatorial problems has been studied in
great detail in the past 10 years (Cheeseman, Kanef-
sky and Taylor 1991; Kirkpatrick and Selman 1994). A
key envisioned application of such phenomena in real-
world problems is the development of transition-aware
solvers that can reason about their proximity to the
critical region and make real-time smart trade-offs be-
tween solution quality and computational time. A main
practical issue is to identify the order parameter of the
transition diagram and the corresponding variables in
the application domain. Using our SAT(K) encoding of
the Marbles resource allocation problem, we have em-
pirically found that the parameter γ given by

γ =
Number of Active Clauses

(Number of Resource V ariables)1.48 (11)

can be identified as a reasonable order parameter.
For a problem with N tasks and M different resources
and where each tasks has, in average, r requirements
and each resource is a possible resource for a require-
ment with probability p, the average number of resource
variables can be approximated by rpNM . On a given
formula resulting from the SAT(K) encoding, the num-
ber of active clauses is given by the number of clauses
that are not trivially satisfied by the presence of a task
activation variable and can be expressed as a quadratic
formula in K. Therefore, from the critical value of γ,
we can derive an estimate of the critical value of K by
solving the following quadratic equation

a2Kc
2 + a1Kc + (a0 − γc) = 0 (12)

a2 =
(1 + N/2)

(rpNM)1.48

a1 =
[2−N/2 + r(1 + pM(pM − 1)/2)]

(rpMN)1.48

a0 = (rpN − 1)/2

In the next section we present experimental evidence
that this prediction mechanism can provide very rea-
sonable estimates of the maximum number of tasks that
a solver might schedule before reaching the critical re-
gion where a sharp exponential increase in the compu-
tational time is expected in order to satisfy additional
tasks.

Experiments and Results

We tested the performance and efficacy of our encod-
ing techniques in a large number of resource allocation
problems with the same characteristics of the one de-
scribed in Figure 1. These problems represent typi-
cal situations found in the resource allocation part of
the scheduling process of the CAMERA/SNAP system.
CAMERA/SNAP is a negotiations-based system de-
veloped at USC ISI which is currently being used for
scheduling of real-world flight training exercises. Using
the SAT(K) and Pseudo-Boolean (PB) encodings and
simulated annealing (SA) approaches described above
we solved problems with the number of resources, M,
and the number of tasks ranging from 30 to 190. The
SAT and PB encodings were solved using the state-of-
the-art local search engines for this problems: walk-
SAT (walksat v.35 available from www.satlib.org) and
WSAT(OIP) (www.ps.uni-sb.de/ walser), respectively.

Figure 2 clearly supports the claim that a modular
approach is needed to properly encode the problem.
In the figures we plot the number of filled and broken
tasks ((a) and (b), respectively) as a function of the re-
source deficit, i.e., the average number of requirements
per task times the number of tasks minus the number
of available resources. Figure 2 compares results ob-
tained using the modular SAT(K) approach to those
given by a plain SAT encoding for problems with 30
tasks and the number of resources varying from 30 to
100. In Figure 2a, we see that for negative values of the
resource deficit the problem is under-constrained and
both encodings manage to fill all tasks. As the resource
deficit increases the problem becomes over-constrained
and the gap between the two curves grows significantly
to a point where the modular encoding fills almost 3
times more tasks than the plain encoding. Looking at
Figure 2b we see that in the plain encoding case the

0

5

10

15

20

25

30

35

N
um

be
r

of
 F

ill
ed

 T
as

ks

(a)

modular encoding
plain encoding

0

5

10

15

20

25

30

35

-30 -20 -10 0 10 20 30 40 50 60

N
um

be
r

of
 B

ro
ke

n
T

as
ks

Resource Deficit

(b)

Figure 2: Evidence that a modular approach is needed
to properly encode the presented problems. The figure
shows the number of filled tasks (a) and the number
of broken tasks (b) as a function of the resource deficit
when a modular or a plain encoding of the problem is
used.

large fraction of unfilled tasks is a result of the ineffi-
cient assignment of resources to broken tasks while in
the modular encoding the number of broken tasks is
zero in most cases and the fraction of unfilled task is
formed by empty tasks that cannot be satisfied due to
resource insufficiency.

In Figure 3a and b we compare the efficiency of so-
lutions for three of the approaches described above:
SAT(K), PB and SA. Figure 3a shows the computa-
tional time as a function of K, the least number of filled
tasks in the SAT(K) approach. Full circles correspond
to the SAT(K) values while the dashed and dotted lines
show the values obtained with PB and SA, respectively.
(These last two approached are independent of K; thus,
we have marked their values as horizontal lines.) We
see that for most values of N, SAT(K) tends to be the
fastest solver for low values of K but it becomes about
an order of magnitude slower than PB when K reaches
the critical region. As expected, both SAT(K) and PB
outperform the SA approach. In Figure 3b we plot the
solution value as a function of K. (The solution value
is the sum of the domain values of the satisfied tasks.)
We see that in order to obtain solutions of comparable
value SAT(K) takes much longer than PB in even so
cannot reach a solution close to the PB value. This re-
sult is a combination of two issues. First, in contrast to
PB, where we introduce weighted soft constraints and

0.1

1

10

100

1000

10000

T
im

e
(s

ec
s)

K

(a)

PB
SA

SAT(K)

0

5000

10000

15000

20000

25000

30000

20 30 40 50 60 70 80 90

S
ol

ut
io

n
V

al
ue

K

(b)

Figure 3: (a)Computational time and (b) Solution value
as a function of the least number of filled tasks, K, for
problems with N tasks and N resources.

10

100

1000

10000

100000

1e+006

15 20 25 30 35 40 45 50 55 60

T
im

e
(m

se
cs

)

K

N=60

N=80
N=100

N=120

(a)

10

100

1000

10000

100000

1e+006

0.6 0.7 0.8 0.9 1 1.1

T
im

e
(m

se
cs

)

gamma

(b)

g_c ~ 0.83 N=60
N=80

N=100
N=120

Figure 4: (a) Phase-Transition profiles of the SAT(K)
encoding for a large collection of problems with N tasks
and N resources. The vertical arrows indicate the pre-
dicted values of Kc. (b) Reparametrization of the
curves in (a) as a function of γ, an empirical ratio of
the number of active clauses to a power of the number
of resource variables.

in SA where we hill-climb using the solution value, the
SAT(K) approach is not really tuned to the optimiza-
tion of the solution value. Second, since PB results in a
more compact encoding, the size of the problem that the
WSAT(IOP) solver is actually solving is significantly
smaller than the one being solved by walkSAT.

In Figure 4a we show the computational time needed
to find a solution of the SAT(K) encoding with at least
K satisfied tasks for problems of size N, with N ranging
from 60 to 120. (Each group of curves corresponds to
20 different problems with N tasks and N resources.)
We can clearly see that all problems display a similar
easy-hard transition behavior and where the computa-
tional cost encounters a sharp elbow as K approaches
the maximum number of satisfiable tasks and the prob-
lems become overconstrained. In order to use of this
information in the implementation of transition-aware
solvers, one would need to find a direct correlation be-
tween the position of the elbows and the characteris-
tics of the corresponding boolean formulas. Figure 4b,
shows how the empirical parameter γ, introduced in
Eq. (11) and given by the ratio of the number of active
clauses to a power of the number of resource variables,
provides a very reasonable scaling of the position of the
elbows purely in terms of the characteristics of the for-
mulas. Choosing a value of γc ≈ 0.83 and solving for the
critical value of K given by Eq. (12) we find the values
of Kc shown by the 4 vertical arrows in Figure 4a, which
provide a very reasonable prediction of the maximum
number of tasks that a solver might be able to satisfy
before hitting the hard region of the corresponding com-
plexity profile. The fact that this prediction mechanism
is purely based on counting the number of clauses and
variables in a corresponding boolean formula, suggests
that this information can be very quickly transmitted
to a generic solver to help it make smart decisions in
real-time.

Conclusions

Recent developments in constraint-based approaches
combined with very fast solvers make it appealing to
use such techniques for tackling planning and schedul-
ing problems. We extend the constraint-based planning
and scheduling approach using an encoding technique
that is very well suited for solving over-constrained re-
source allocation problems with modular constraints.
Such type of resource allocation problems are commonly
found in real-world planning and scheduling applica-
tions, like the scheduling of flight training missions.
Our modular encoding is very suitable to capture the
complementarity of constraints, and our results clearly
demonstrate the potential of our approach.

We presented a special encoding technique for our
problem domain, the so-called modular encoding, and

through detailed empirical evaluation of this approach
we showed that the modular encoding properly captures
the nature of the problem and minimized the creation
of partially filled tasks. We use this approach both in a
SAT and a Pseudo-Boolean encoding and find that over-
all, due to the compactness of the representation, both
in time and solution quality, the Pseudo-Boolean en-
coding outperforms SAT. Studying the phase-transition
characteristics of the SAT formulas coming from the
modular encoding of large collections of problems in our
domain, we empirically derive a phase-transition based
prediction mechanism that can be used to rapidly esti-
mate the maximum number of tasks that a solver might
be able to satisfy before reaching the hard region of the
easy-hard phase-transition curve. This information can
be extremely very valuable in the design and implemen-
tation of transition-aware solvers.

Acknowledgments
We gratefully acknowledge funding by DARPA ITO
ANTS program (Contract No. F30602-00-2-0533). Ale-
jandro Bugacov thanks the members of ISI/CAMERA
and Andrew Parkes for very fruitful discussions and
support.

References
Blum, A, and Furst, M; Fast Planning Through Planning
Graph Analysis, Artificial Intelligence, 90:281–300 (1997).

Cheeseman, P.; Kanefsky, R.; and Taylor, W.; Where
the Really Hard Problems Are; Proc. IJCAI-91, 163-169,
(1991).

Frank, M; Bugacov, A; Chen, J; Dakin, G; Szekely, P;
Neches, R.T; The Marbles Manifesto: A Definition and
Comparison of Cooperative Negotiation Schemes for Dis-
tributed Resource Allocation; Proceedings of AAAI Fall
Symposium 2001, Cape Cod, MA (2001).

Kautz, H, and Selman, B; Unifying SAT-based and
Graph-based Planning. Proc. IJCAI-99, (1999).

Kirkpatrick, S.; Gelatt, C.; and Vecchi, M; Optimization
by Simulated Annealing. Science, 220, 671-680, (1983).

Kirkpatrick, S. and Selman, B; Critical behavior in the
satisfiability of Boolean expressions. Science, 264, (1994).

Selman, B.; Kautz, H.; and Cohen, B. Noise Strategies for
Improving Local Search. Proceedings of AAAI-94, 337-343,
Seattle, WA (1994).

Walser, J.P.; Solving Linear Pseudo-Boolean Constraint
Problems with Local Search. In Proceedings of the 14th Na-
tional Conference on Artificial Intelligence, AAAI-97, Prov-
idence, RI, (1997).

Weld, D; Recent Advances in AI Planning. AI Magazine,
(1999).

Zhang, W; Swanson, H; and Moran, M.P; Modeling and
Analyzing Soft Constraint Optimization Problems: Block-
Exclusive Resource Allocation as a Case Study. CP (2001).

