
Biresiduated Multi-Adjoint Logic Programming �

Jeśus Medina,1 Manuel Ojeda-Aciego,1 A. Valverde,1 and Peter Vojtá̌s2

1 Dept. Mateḿatica Aplicada. Universidad de Ḿalaga.
Tel: (+34) 952 132 871. Fax: (+34) 952 132 766

{jmedina,aciego,a valverde}@ctima.uma.es
2 Institute of Computer Science, Czech Academy of Sciences.

Tel: (++421) 55 62 209 49. Fax: (++421) 55 62 221 24
vojtas@cs.cas.cz

Abstract. Multi-adjoint logic programs were recently proposed as a generalisa-
tion of monotonic and residuated logic programs introduced, in that simultaneous
use of several implications in the rules and rather general connectives in the bod-
ies are allowed.
In this work, the possible existence of biresiduated pairs is considered, later, on
the resulting framework of biresiduated multi-adjoint logic programming, a pro-
cedural semantics is given and a completeness result is proved. As a consequence,
alternative hypotheses are obtained for a previous quasi-completeness theorem
for multi-adjoint logic programs.

Keywords: Fuzzy logic programming, Biresiduation, Completeness

Topic(s): Models of reasoning (under uncertainty). Foundations of AI and rep-
resentation of knowledge

� Paper track submission



Biresiduated Multi-Adjoint Logic Programming

Jeśus Medina,1 Manuel Ojeda-Aciego,1 A. Valverde,1 and Peter Vojtá̌s2

1 Dept. Mateḿatica Aplicada. Universidad de Ḿalaga.� � �

{jmedina,aciego,a valverde}@ctima.uma.es
2 Institute of Computer Science, Czech Academy of Sciences.†

vojtas@cs.cas.cz

Abstract. Multi-adjoint logic programs were recently proposed as a generalisa-
tion of monotonic and residuated logic programs introduced in [3], in that simul-
taneous use of several implications in the rules and rather general connectives in
the bodies are allowed.
In this work, the possible existence of biresiduated pairs is considered, later, on
the resulting framework of biresiduated multi-adjoint logic programming, a pro-
cedural semantics is given and a completeness result is proved. As a consequence,
alternative hypotheses are obtained for a previous quasi-completeness theorem
for multi-adjoint logic programs.

1 Introduction

During the past several decades there has been a proliferation of logics, many of which
have been motivated by the problem of reasoning in situations where information may
be vague or uncertain. Such reasoning has been called inexact or fuzzy or approxim-
ate reasoning. Here we propose a lattice-valued logic programming paradigm that we
call biresiduated multi-adjoint, which permits the articulation of vague concepts and,
moreover, has the property that the truth of an argument can diminish as the number of
inferences in it increases.

A comprehensive introduction to the logical foundations of fuzzy reasoning can
be found in [4]. A somewhat categorical discussion of inexact reasoning can be seen
in [5] where the properties of a generalized conjunction operator links the implication
operator to the conjunction operator (via a condition usually referred to as adjointness),
and promotes the idea of taking truth values in a lattice.

Multi-adjoint logic programming was introduced as a refinement of both initial
work in [11] and residuated logic programming [3]. It allows for very general connect-
ives in the body of the rules, and sufficient conditions for the continuity of its semantics
are known. Such an approach is interesting for applications: for instance, in [10] a sys-
tem is presented where connectives are learnt from different users’ examples; one can
imagine a scenario in which knowledge is described by a many-valued logic program
where connectives can be general aggregation operators (conjunctors, disjunctors, arith-
metic mean, weighted sum,. . . ), even different aggregators for different users and, in

� � � Partially supported by Spanish DGI project BFM2000-1054-C02-02.
† Partially supported by Czech project GACR 201/00/1489

1



addition, the program is expected to adequately manage different implications for dif-
ferent purposes.

The special features of multi-adjoint logic programs are: (1) a number of different
implications are allowed in the bodies of the rules, (2) sufficient conditions for continu-
ity of its semantics are known, and (3) the requirements on the lattice of truth-values
are weaker that those for the residuated approach.

It is important to recall that many different “and” and “or” operations have been
proposed for use in fuzzy logic. It is therefore important to select, for each particular
application, the operations which are the best for this particular application. Several pa-
pers discuss the optimal choice of “and” and “or” operations for fuzzy control, when
the main criterion is to get the stablest control. In reasoning application, however, it is
more appropriate to select operations which are the best in reflecting human reasoning,
i.e., operations which are “the most logical”. In this paper, we build on the fact that
conjunctors in multi-adjoint logic programs need not be either commutative or asso-
ciative and, thus, consider the possibility of including a further generalisation of the
framework, allowing forbiresiduation, in the sense of[1]. This way, each conjunctor in
our multi-adjoint setting may potentially have two “lateral” residuated implications. Yet
another reason for introducing biresiduation is that fuzzy logic in a narrow sense [6] is
still an open system and thus, new connectives can and should be introduced. A natural
question then arises, whether the basic syntactico-semantical properties are not harmed
by this generalisation.

The purpose of this work is to provide a procedural semantics to the paradigm of
biresiduated multi-adjoint logic programming. The introduction of reductants will allow
us to prove a completeness result with respect to greatest correct answers. This result
also allows to obtain alternative hypotheses for a quasi-completeness result, given in [9],
without using thesupremum propertyon the lattice of truth-values. Due to the limitation
of the number of pages, proofs are not included in this paper, the interested reader is
referred to [8].

2 A motivating example

In fuzzy logic there is a well developed theory oft-norms,t-conorms and residual
implications. The objective of this section is to show some interesting non-standard
connectives to motivate the consideration of a more general class of connectives in
fuzzy logic. The motivation is the following:

When evaluating the relevance of answers to a given query it is common to use
some subjective interpretation of human preferences in a granulated way. This is, fuzzy
truth-values usually describe steps in the degree of perception (numerous advocations
of this phenomenon have been pointed out by Zadeh). This is connected to the well-
known fact that people can only distinguish finitely many degrees of quality (closeness,
cheapness, . . . ) or quantity in control. Thus, in practice, although we use the product
t-norm&p(x, y) = x · y, we are actually working with a piece-wise constant approx-
imation of it. In this generality, it is possible to work with approximations of t-norms
and/or conjunctions learnt from data by a neural net like, for instance, those in [10].

2



If we are looking for a hotel which is close to downtown, with reasonable price and
being a new building, then classical fuzzy approaches would assign a user “his” par-
ticular interpretation of “close”, “reasonable” and “new”. As, in practice, we can only
recognize finitely many degrees of being close, reasonable, new, then the corresponding
fuzzy sets have a stepwise shape. It is just a matter of representation that the outcome
is done by means of intervals of granulation and/or indistinguishability. This motivates
our lattice-valued approach, namely, the set of truth-values will be considered to be a
lattice:

– Generated by a partition of the real unit interval[0, 1].
– With all subintervals of[0, 1].
– With all the probability distributions on[0, 1].

Regarding the use of non-standard connectives, just consider that a variable repres-
ented byx can be observed withm different values, then surely we should be working
with a regular partition of[0, 1] of m pieces. This means that a given valuex should be
fitted to this “observation” scale as the least upper bound with the formk/m (analyt-
ically, this corresponds to

(
�m · x�

)
/m where� � is the ceiling function). A similar

consideration can be applied to both, variabley and the resulting conjunction; further-
more, it might be possible that each variable has different granularity.

Formally, assume inx-axis we have a partition inton pieces, iny-axis intom pieces
and inz-axis into k pieces. Then the approximation of the product conjunction looks
like

Definition 1. Denote(z)p = �p · z�
p and define, for naturalsn, m, k > 0

Ck
n,m(x, y) =

(
(x)n · (y)m

)
k

ConnectivesCk
n,m(x, y) can be non-associative and can be non-commutative, as the

following example shows:

Example 1.

1. For instanceC = C10
10,10 is not associative

C(0.7, C(0.7, 0.3)) = C(0.7, (0.21)10) = C(0.7, 0.3) = (0.21)10 = 0.3
C(C(0.7, 0.7), 0.3) = C((0.49)10, 0.3) = C(0.5, 0.3) = (0.15)10 = 0.2

2. C4
10,5(x, y) is not commutative.

C4
10,5(0.82, 0.79) = ((0.82)10 · (0.79)5)4 = (0.9 · 0.8)4 = (0.72)4 = 0.75

C4
10,5(0.79, 0.82) = ((0.79)10 · (0.82)5)4 = (0.8 · 1)4 = 1

As previously stated, to model precision and granularity, it is reasonable to work
with partitions of[0, 1]. In fact, in this case, the set of truth values is a finite linearly
ordered set. In practical applications it happens that we change the perspective and work
with finer and/or coarser partition. This is a special case studied in domain theory [2],
in which one of the most fundamental questions is about the representation of a real
number: a common approach to this problem is to identify each real numberr with a
collection of intervals whose intersection is{r}.

3



3 Preliminary definitions

The preliminary concepts required to formally define the syntax of biresiduated multi-
adjoint logic programs are built on those of the “monoresiduated” multi-adjoint case [9];
to make this paper as self-contained as possible, the necessary definitions about multi-
adjoint structures are included below.

Definition 2. Let〈L,�〉 be a complete lattice. Amulti-adjoint latticeL is a tuple(L,�
,←1,&1, . . . ,←n,&n) satisfying the following items:

1. 〈L,�〉 is bounded, i.e. it has bottom and top elements;
2. � &i ϑ = ϑ &i � = ϑ for all ϑ ∈ L for i = 1, . . . , n;
3. (←i,&i) is an adjoint pair in〈L,�〉 for i = 1, . . . , n; i.e.

(a) Operation&i is increasing in both arguments,
(b) Operation←i is increasing in the first argument and decreasing in the second

argument,
(c) For anyx, y, z ∈ P , we have thatx � (y ←i z) holds if and only if(x&i z) �

y holds.

The existence of multiple pairs satisfying property 3 (whenn > 1) in the previous
definition justifies the termmulti-adjoint. Note that residuated lattices are a special case
of multi-adjoint lattice, in which the underlying poset has the structure of complete
lattice which has monoidal structure wrt& and�, andonly one adjoint pair is present.

In this paper, we will stress on the fact that we are working with a non-commutative
& operator; now, the roles of the left hand side and the right hand side of& can be
different and they could lead two different implications through the adjoint property.
The biresiduated structure is obtained by allowing, for each adjoint conjunctor, two
“sided” adjoint implications, as detailed in the following definition.

Definition 3. Let 〈L,�〉 be a complete lattice. Abiresiduated multi-adjoint latticeL is
a tuple(L,�,↙1,↖1,&1, . . . ,↙n,↖n,&n) satisfying the following items:

1. 〈L,�〉 is bounded, i.e. it has bottom and top elements;
2. � &i ϑ = ϑ &i � = ϑ for all ϑ ∈ L for i = 1, . . . , n;
3. (↙i,↖i,&i) satisfies the following properties, for alli = 1, . . . , n; i.e.

(a) Operation&i is increasing in both arguments,
(b) Operations↙i,↖i are increasing in the first argument and decreasing in the

second argument,
(c) For anyx, y, z ∈ P , wehave that

x � y ↙i z if and only if x &i z � y

x � y ↖i z if and only if z &i x � y

It is the last condition (3c), which makes this algebraic structure suitable for being used
in a logical context, for it can be interpreted as a multiple-valuedmodus ponens-like
inference rule. Actually, property (3c) in the definition guarantees soundness of our
computational model with respect to this rule, as we will see later.

4



From the point of view of expressiveness, it is interesting to allow extra operators
to be involved with the operators in the biresiduated multi-adjoint lattice. The formal
construction makes use of the constructions and terminology of universal algebra, such
asΩ-algebra over a signature (or graded set)Ω, in order to define formally the syntax
and the semantics of the languages we will deal with. Anyway, for the sake of simplicity
in the presentation, we will rephrase all the needed concepts in more standard terms.

The structure which allows the possibility of using additional operators is that of
a biresiduated multi-adjointΩ-algebra which can be understood as an extension of
a biresiduated multi-adjoint lattice containing a number of extra operators, which are
required to be monotonic in each argument.

We will be working with twoΩ-algebras: the first one,F, to define the syntax of
our programs, and the second one,L, to host the manipulation of the truth-values of the
formulas in the programs. To avoid possible name-clashes, we will denote the interpret-
ation of an operator symbolω in Ω underL as

.
ω (a dot on the operator), whereasω

itself will denote its interpretation underF.

Definition 4. A biresiduated multi-adjoint logic program(in short a program) on an
Ω-algebraF with values in a latticeL is a setP of rules of the form〈A ↙i B, ϑ〉 or
〈A ↖i B, ϑ〉 such that:

1. Theheadof the rule,A, is apropositional symbol ofΠ;
2. Thebodyformula,B, is a formula ofF built from propositional symbolsB1, . . . , Bn

(n ≥ 0) which contains no implication symbol;
3. Theconfidence factorϑ is an element (a truth-value) ofL.

As usual,factsare rules with body�, and aquery(or goal) is apropositional symbol
intended as a question?A prompting the system.

As usual, aninterpretationis a mappingI:Π → L. Note that each of these inter-
pretations can be uniquely extended to the whole set of formulas,Î:FΩ → L. Theset
of all interpretations of the formulas defined by theΩ-algebraF in theΩ-algebraL is
denotedIL.

The ordering� of the truth-valuesL can be easily extended toIL, which also
inherits the structure of complete lattice. The minimum element of the latticeIL, which
assigns⊥ to any propositional symbol, will be denoted�.

A rule of a biresiduated multi-adjoint logic program is satisfied whenever its truth-
value is greater or equal than the confidence factor associated with the rule. Formally:

Definition 5.

1. An interpretationI ∈ IL satisfies〈A ↙i B, ϑ〉 if and only ifϑ
.

&i Î (B) � I (A).

2. An interpretationI ∈ IL satisfies〈A ↖i B, ϑ〉 if and only if Î (B)
.

&i ϑ � I (A).
3. An interpretationI ∈ IL is a modelof a programP iff all weighted rules inP are

satisfied byI.
4. An elementλ ∈ L is a correct answerfor a query?A and a programP if for any

interpretationI ∈ IL which is a model ofP we haveλ � I(A).

5



Note that, for instance,⊥ is always a correct answer for any query and program.
The immediate consequences operator, given by van Emden and Kowalski, can be

easily generalised to the framework of biresiduated multi-adjoint logic programs.

Definition 6. Let P be a program, theimmediate consequences operatorTP maps in-
terpretations to interpretations, and for an interpretationI and propositional variable
A is defined by

TP(I)(A) = sup
{
{ϑ

.
&i Î(B) | 〈A ↙i B, ϑ〉 ∈ P} ∪ {Î(B)

.
&i ϑ | 〈A ↖i B, ϑ〉 ∈ P}

}

As usual, the semantics of a biresiduated multi-adjoint logic program is charac-
terised by the post-fixpoints ofTP; that is, an interpretationI of IL is a model of a
programP iff TP(I) � I. The proof simply follows from the adjunction property, and
it is remarkable that the result is still true even without any further assumptions on con-
junctors (definitely they need not be commutative and associative). In this generality,
it is possible to work with approximations of t-norms and/or conjunctions learnt from
data by a neural net like, for instance, those in [10].

4 Procedural semantics of biresiduated logic programs

It can be shown that theTP operator is continuous under very general hypotheses (the
proof of this fact can be found in [8]), therefore the least model can be reached in at
most countably many iterations. Now, it is worth to define a procedural semantics which
allows us to actually construct the answer to a query against a given program.

In the following, we will be working in a hybridΩ-algebra made up from the ele-
ments of the lattice and propositional symbols as basic elements, and operators in a
subsetΩ′ ⊂ Ω obtained by removing all the implication symbols.

For the formal description of the computational model, we will consider an extended
languageF′ defined by the signatureΩ′ whose carrier is included in the disjoint union
Π ∪ L; this way we can work syntactically with propositional symbols and with the
truth-values they represent.

Definition 7. Let P be a program on anΩ-algebraL with carrier L and V the set of
truth values of the rules inP. Theextended languageF′ is the correspondingΩ′-algebra
of formulas freely generated from the disjoint union ofΠ andV .

Wewill refer to the formulas in the languageF′ simply asextended formulas.
Our computational model will take a query (an atom), and will provide a lower

bound of the value ofA under any model of the program. Intuitively, the computation
proceeds by, somehow, substituting propositional symbols by lower bounds of their
truth-value until, eventually, an extended formula with no propositional symbol is ob-
tained, which will be interpreted in the lattice to get the computed answer.

Given a programP, we define the following admissible rules for transforming any
extended formula.

Definition 8. Admissible rulesare defined as follows:

6



R1a Substitute an atomA in an extended formula by(ϑ &i B) whenever there exists a
rule 〈A ↙i B, ϑ〉 in P.

R1b Substitute an atomA in an extended formula by(B&i ϑ) whenever there exists a
rule 〈A ↖i B, ϑ〉 in P.

R2 Substitute an atomA in an extended formula by⊥.
R3 Substitute an atomA in an extended formula byϑ whenever there exists a fact

〈A↙i�, ϑ〉 or 〈A↖i�, ϑ〉 in P.

Note that if an extended formula turns out to have no propositional symbols, then
it can be directly interpreted in the as an element inL, rather than like a formula. This
justifies the following definition ofcomputed answer.

Definition 9. Let P be a program in a language interpreted on a latticeL and let?A
be a goal. An elementλ ∈ L is said to be acomputed answerif there is a sequence
G0, . . . , Gn+1 such that

1. G0 = A and Gn+1 = @(r1, . . . , rm) where1 ri ∈ L for all i = 1, . . . m, and

λ =
.
@(r1, . . . , rm).

2. EveryGi, for i = 1, . . . , n, is a formula inF′.
3. EveryGi+1 is inferred fromGi by exactly one of the admissible rules.

Note that our procedural semantics, instead of being refutation-based (this is not
possible, since negation is not allowed in our approach), is oriented to obtaining a bound
of the optimal correct answer of the query.

5 Greatest answers. Reductants

The definition of correct answer is not entirely satisfactory in that⊥ is always a correct
answer. Actually, we should be interested in the greatest confidence factor we can as-
sume on the query, consistently with the information in the program, instead of in the
set of its lower bounds. Therefore we will stress on thegreatest correct answer, ΛA, for
aprogramP and a query?A.

The following theorem states that the greatest correct answer is reached by the least
fix-point of theTP operator.

Theorem 1. Given a complete latticeL, a programP and a propositional symbolA,
we have thatTω

P
(�)(A) is the greatest correct answer,ΛA.

The proof follows from the facts that the least fix-point is also the least model of
a program; the second states a characterisation of correct answers in terms of theTP

operator, that is,λ ∈ L is a correct answer for a programP and a query?A iff λ �
Tω

P
(�)(A).
Regarding the computation of the greatest correct answer, it might well be the case

that for some lattices, our procedural semantics cannot compute the greatest correct
answer, as in the following example adapted from [7]:

1 Here theri represent all the variables occurring in theGn+1, @ represents the composition,
as functions in the lattice, of all the operators inserted by rules R1a and R1b and

.
@ is the

interpretation of@ as operator inL.

7



Example 2.ConsiderL to be the powerset of a two-element set{a, b} ordered by in-
clusion, and a programP with rules〈A ← B, a〉 and〈A ← B, b〉 and fact〈B ← �,�〉.
Assuming that the adjoint conjunction to← has the usual boundary conditions, then the
greatest correct answer to the query?A is �, since it has to be an upper bound of all
the models of the program, therefore it has to be greater than botha andb. But the only
computed answers are eithera or b.

Wecan cope with this problem by generalising the concept of reductant [7], that is,
whenever we have a finite number of rules〈A←jiDi, ϑi〉 for i = 1, . . . , k, then there
should exist another rule which allows us to get the greatest possible value ofA under
that set of rules.

Any rule 〈A←ji
Di, ϑi〉 contributes a value of the form eitherϑi

.
&i bi or bi

.
&i ϑi in

the calculation of the lower bound for the truth-value ofA, thus we would like to have
the possibility of reaching the supremum of all the contributions, in the computational
model, in a single step. This leads to the following definition.

Definition 10. Let P be a program; assume that the set of rules inP with headA can
be written as〈A ↙ij Bj , ϑj〉 for j = 1, . . . , n, and 〈A ↖kl

Cl, θl〉 for l = 1, . . . , m,
and contains at least a proper rule; areductant forA is any rule

〈A ↙ @(B1, . . . ,Bn, C1, . . . , Cm),�〉

where↙ is any implication symbol and the operator@ is defined as
.
@(b1, . . . , bn, c1, . . . , cm) = sup{ϑ1&i1 b1, . . . , ϑn&in

bn, c1&k1 θ1, . . . , cm&km
θm}

If there were just facts with headA, butno proper rule, then the expression above does
not give a well-formed formula. In this case, the reductant is defined to be a fact which
aggregates all the knowledge aboutA, that is,

〈A ↙ �, sup{ϑ1, . . . , ϑn}〉

As a consequence of the definition, and the boundary conditions in the definition of
biresiduated multi-adjoint lattice, the choice of the implication to represent the corres-
ponding reductant is irrelevant for the computational model. Therefore, in the following,
we will assume that our language has a distinguished implication to be selected in the
construction of reductants, leading to the so-calledcanonical reductants.

It is immediate to prove that the rule constructed in the definition above, in presence
of proper rules, behaves as a reductant (in the standard sense) forA in P, in that it
provides in a single step the greatest amount of information aboutA which can be
obtained from the rules (and facts) with headA.

It will be interesting to consider only programs which contain all its reductants, but
this might be a too heavy condition on our programs; the following proposition shows
that it is not true, therefore we can assume that a program contains all its reductants,
since its set of models is not modified.

Proposition 1. Any reductant for a programP is satisfied by any model ofP.

Note that we have followed just traditional techniques of logic programming, and
discarded non-determinism by using reductants.

8



6 Completeness results

The objective of this section is to introduce a completeness theorem with respect to the
greatest correct answers which allows for an alternative proof of a general biresiduated
version of Theorem 2 below, originally introduced in [9]:

Theorem 2. AssumeL has the supremum property,2 then for every correct answerλ ∈
L for a programP and a query?A, and arbitraryε ≺ λ there exists a computed answer
δ such thatε ≺ δ.

The main idea here is considering the possibility of obtaining an “optimal” answer
for a query to a program. Obviously, the greatest computed answer (if any) would be
considered as theoptimal answer, and a procedure for computing it (assuming it exists)
is described in the following proposition.

Proposition 2. Given a programP and a query?A, construct a computation sequence
by using the following procedure:

1. Apply R2 only on atomsB for which there are neither rules nor facts with headB.
2. Use the canonical reductant, otherwise.

Provided the procedure terminates, then the resulting computed answer is indeed the
optimal answerλA.

This proposition is interesting both from a practical and from a theoretical point
of view. For the former, it gives a procedure for computing the optimal answer for a
query to a program; for the latter, it is the key to prove that, under the assumption of
continuity of the fix-point semantics and the termination of the procedure, the least
fix-point is indeed the optimal answer which, in turn, is the greatest computed answer.

Theorem 3. If the procedure in Proposition 2 terminates for query?A and P, then
there exists a greatest computed answer which equals the greatest correct answer. In
other words,λA = Tω

P
(�)(A) = ΛA.

The theorem above is obviously interesting on its own, for it shows that the minimal
model for a programP on each propositional symbolA is the greatest computed answer
for query?A and programP. Furthermore, as a consequence of this result, we can obtain
Theorem 2 without assuming the supremum property.

7 Conclusions and future work

Wehave presented a procedural semantics for the general theory of biresiduated multi-
adjoint logic programming, and a completeness result w.r.t. the greatest correct answers.

Although the central topics of this paper are mainly at the theoretical level, a num-
ber of applications are envisaged for the obtained results, for instance the integration

2 A latticeL is said to satisfy thesupremum propertyif for all directed setX ⊂ L and for allε
we have that ifε < sup X then there existsδ ∈ X such thatε < δ ≤ sup X.

9



of information retrieval and database systems, in this context, a by-product of our res-
ults is the possibility of defining a fuzzy relational algebra and a fuzzy Datalog, by
the completeness theorem then one would have that the computational power of the
fuzzy relational algebra is the same that the expressive power of fuzzy Datalog; another
research line which could benefit from these results is multiple-valued resolution for
which it is not possible to deal with Horn clauses and refutation, mainly due to the fact
thatA ∧ ¬A can have strictly positive truth-value, but also to the fact that material im-
plication (the truth value function of¬A ∨ B) has not commutative adjoint conjunctor.
As our approach does not require adjoint conjunctors to be commutative, it would allow
the development of a sound and complete graded resolution.

As future work, from the theoretical side, we will investigate termination conditions
for the given procedure and express them in terms of supremum-like properties of the
underlying truth-values lattice; it is expected to link our approach with the interesting
approach taken in [3]; from the not-so-theoretical side, a practical evaluation of the
proposed approach has to be performed, to evaluate possible optimisation techniques.

References

1. C.J. van Alten. Representable biresiduated lattices.Journal of Algebra, 247:672–691, 2002.
2. K. Ciesielski, R. Flagg, and R. Kopperman. Polish spaces, computable approximations, and

bitopological spaces.Topology and applications, 119(3):241–256, 2002.
3. C.V. Daḿasio and L. Moniz Pereira. Monotonic and residuated logic programs. InSymbolic

and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU’01, pages 748–759.
Lect. Notes in Artificial Intelligence, 2143, 2001.

4. D. Dubois, J. Lang, and H. Prade. Fuzzy sets in approximate reasoning, part 2: Logical
approaches.Fuzzy Sets and Systems, 40:203–244, 1991.

5. J. Goguen. The logic of inexact concepts.Synthese, 19:325–373, 1969.
6. P. H́ajek. Metamathematics of Fuzzy Logic. Trends in Logic. Kluwer Academic, 1998.
7. M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic programming and

its applications.J. of Logic Programming, 12:335–367, 1992.
8. J. Medina, M. Ojeda-Aciego, A. Valverde, and P. Vojtá̌s. Biresiduated multi-adjoint lo-

gic programming. Technical Report MA-02-01, Dept. Matemática Aplicada. Univ. Ḿalaga,
2002. Available athttp://www.satd.uma.es/aciego/TR/bires-tr.pdf.

9. J. Medina, M. Ojeda-Aciego, and P. Vojtá̌s. A procedural semantics for multi-adjoint logic
programming. InProgress in Artificial Intelligence, EPIA’01, pages 290–297. Lect. Notes
in Artificial Intelligence 2258, 2001.

10. E. Naito, J. Ozawa, I. Hayashi, and N. Wakami. A proposal of a fuzzy connective with
learning function. In P. Bosc and J. Kaczprzyk, editors,Fuzziness Database Management
Systems, pages 345–364. Physica Verlag, 1995.

11. P. Vojt́ǎs and L. Pauĺık. Soundness and completeness of non-classical extended SLD-
resolution. InExtensions of Logic Programming, ELP’96, pages 289–301. Lect. Notes in
Comp. Sci. 1050, 1996.

10


