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Abstract. In this paper we concern with the automatic generation of
document temporal metadata, and how to exploit it in current Informa-
tion Retrieval and Topic Detection systems. Specifically, we first propose
a method to automatically detect the time references appearing in a
document and to translate them into a formal time model. Then, we
describe an algorithm that constructs the event-time period of a docu-
ment starting from its extracted time references. Finally, we demonstrate
through a clustering experiment that such generated event-time periods
are as accurate as regarding all the time references of the document. This
greatly simplifies the representation of the document temporality and its
management within IR and databases systems.

1 Introduction

Many digital documents that currently populate the Web have a relevant tem-
poral component. Newspaper articles, medical reports and legal texts are some
examples of documents whose contents can be clearly located along time. Clearly,
regarding the temporality of documents can be helpful in Information Retrieval
and Knowledge Discovery tasks. In fact, the Dublin Core metadata initiative
has include several elements to express several temporal aspects of documents
(e.g. the creation date, the publication date, and the temporal coverage of the
document). Moreover, the MUC entity task has also included the tag TIMEX to
identify the time references within a text.

However, current Information Retrieval (IR) systems do not make use of
these temporal features, mainly because they do not support a set of temporal
operators [Ara01]. Additionally, these metadata need to be manually assigned,
which is infeasible in applications where the flow of documents is too high. As a
result, these systems only deal with the publication date, which cannot express
properly the location of the document contents.

In this paper we concern with the automatic generation of document tempo-
ral metadata, and how to exploit it in current IR [Bae00] and Topic Detection
systems [Pap99]. Specifically, we first propose a method to automatically detect
the time references appearing in a document, and to translate them into a formal
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time model. Then, we describe an algorithm that constructs the event-time pe-
riod [Ara01] of a document starting from its extracted time references. Finally,
we demonstrate through a clustering experiment that such generated event-time
periods are as accurate as regarding all the time references of the document.
This greatly simplifies the representation of the document temporality and its
management within IR and databases systems.

The remainder of the paper is organized as follows. Section 2 describes the
formal time model and the method for extracting time references from texts.
Section 3 is dedicated to describe the different temporal features of documents.
Section 4 presents two approaches to measure the similarity between documents,
both taking into account the document temporal features. Finally, Section 5 is
dedicated to the clustering experiment, that evaluates the retrieval effectiveness
of the proposed measures.

2 Extracting Time References

The temporal sentences expressed in Natural Language usually involve the use
of multiple calendar granularities. In this section we describe a time model that
takes into consideration the time entities appearing in temporal linguistic sen-
tences with supports multiple granularities. Afterwards, we describe the tool
TimeExtractor, which detects all the time references from the document text,
codes them according to the formal time model, and resolves the coded time
references in order to obtain concrete dates or date intervals.

2.1 Time Model

Granularities. In our time model we adopt a linear time domain that is isomor-
phic to the set of natural numbers. Thus, each time instant is uniquely associated
to a natural number, and the ≤ relationship represents the total order between
these time instants.

Over this time line, the time model defines a set of granularities to express
the different abstraction levels of the Gregorian Calendar. Specifically, we have
identified the following granularities: day (i), month-day (d), week-day (x), week
(w), month (m), quarter (t), 4-month (q), semester (e), year (y), decade (z),
century (s) and millennium (l). The letters between parenthesis represent the
code that we use to identify each granularity in the time model.

From these granularities, the Gregorian Calendar can be formally defined as
follows [Bet00]:

C = (G, E) (1)

where:

– G = {(i,Z), (x, 1..7), (y,Z), (z, 1..10), (s,Z), (l,Z), (m, 1..12), (e, 1..2), (c, 1..3),
(t, 1..4), (d, 1..Ld), (w, 1..Lw)}, here each pair (g,Lg) represents a granularity
g along with its domain Lg,

– day (i) is the terminal granularity for the partition relationship � and,
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– E contains the rules that generate the valid values of each granularity, which
are described in the following table.

Relation Semantics
� partition
≤ order
� group
� finer
π groups periodically into
� sub-granularity
↔ equivalent

Granularity Rule
(x,1..7) x ↔ i, ∃ j ∈ Z, k = mod(j/7) + 1
(y,Z) π(y, i) = 400

(z,1..10) π(Z, y) = 1, 10
(s,Z) π(s, y) = 1, 100
(l,Z) π(l, y) = 1, 1000

(m,1..12) π(m, y) = 12
(s,1..2) π(m, s) = 6
(c,1..3) π(m, c) = 4
(t,1..4) π(m, t) = 3

(d,1..Ld) d ↔ i, and Ld ∈ [28..31] year dependent
(w,1..Lw) w ↔ i, Lw ∈ [1..7] month dependent

Granularity Relationships
Calendar generation rules

As it can be noticed, our model distinguishes between two types of granu-
larity, namely: relative and absolute domains. Absolute domains can be always
mapped into the time domain of the model, that is, each granularity domain
value has associated a disjoint set of concrete time instants. Relative granular-
ity domains need to be combined with absolute ones to define concrete time
instants. The granularities day, year, century and millenium have absolute do-
mains, and their domain is L = Z. Nevertheless, it must be pointed out that in
some contexts these granularities could take relative domains (e.g. ’the second
year of the century’). For this reason we introduce the equivalent granularities
day, month-day and week-day, which help us to distinguish between the absolute
domain, and the relative domains with respect to month and week, respectively.

Time Entities and Operators. We define the following time entities in our
model:

– A time point is expressed as an alternate sequence of granularities and nat-
ural numbers :

T = g1n1g2n2 . . . gknk

where gi ∈ G, ni ∈ Lgi
, and if i < j then gj � gi.

Consequently, the sequence of granularities must be ordered by the partition
relationship. The order relationship ≤ can be defined between time points
with the same granularities:

Let T = g1n1 . . . gknk and T ′ = g1n
′
1 . . . gkn

′
k be two time

points, then T ≤ T ′ if ni ≤ n′
i for all 1 ≤ i ≤ k.

– A time interval is an anchored span of time that can be expressed with two
time points having the same sequence of granularities:

I = [T1, T2], where T1 ≤ T2.
– Finally, a span of time is defined as an unanchored directed interval of time

(+ towards the future, - towards the past).
S = ±ng, where g ∈ G, n ∈ Lg, and ± is the direction of the span.

In order to extract and resolve time references, the systems uses the set of tem-
poral operators showed in Table 1 [Lli01]. Following we give some examples of
these operators:
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format(y1999m1d1,ymwx)=y1999m1w1x5

format(y1999d1,ymd)=y1999m1d1

refine(y1999, m) =[y1999m1, y1999m12]

refine(y2000m3, w) = [y2000m3w1, y2000m3w5]

refine([y2000, y2001], m) = [y2000m1,2001m12]

shift(y1999m3, +10m) = y2000m1

shift(y1998m2w2, -3w) = y1998m1w4

Operator Semantics

start(I) Starting point of I
end(I) Ending point of I
format(T, g1 . . . gk) Format T according to the specified granularity pattern
refine(T, g) Refine T into a finer granularity g
abstract(T, g) Abstract T up to a coarser granularity g
shift(T, S) Shift T by using the span S

Table 1. Temporal Operators.

2.2 TimeExtractor

TimeExtractor is a tool that detects and analizes the temporal expressions of the
document texts. This tool returns the original document with all the temporal
expressions labelled with the XML tag TIMEX [Chi97].

In order to deal with the flexibility and fuzziness of the Natural Language,
TimeExtractor defines a shallow representation language, called CodTemp, which
includes all the elements of the formal time model as well as further symbols to
capture the semantics of the linguistic expressions. For example, this language
includes the code r to denote a time reference relative to a date, the code R to
denote a time reference relative to an event, the code O to denote present time,
and so on. More details of this language can be found in [Lli01].

Time Extractor is composed by two modules that work in cascade, namely:
TagTime, which extracts the temporal expressions and codes them into the
CodTemp language, and ModelTimex, which analyzes each coded expression and
tries to calculate the date or date interval related to it.

The module TagTime makes use of a lexicon with all the grammatical ele-
ments involved in temporal expression. This lexicon is classified into three cate-
gories: Time head nouns, which are words associated to the calendar granularities
and their domains (e.g. day, semester, June, Monday, etc.), Quantifiers, which
are adjectives that denote some order or quantity (e.g. first, second, two, etc.),
and finally Modifiers, which are words that denote the temporal direction and
the composed time entities such as intervals and lists. All these elements have
associated a semantic code from the CodeTemp description language. The way
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TagTime recognizes the temporal expressions is similar to current Information
Extraction Systems, and it is described in detail in [Lli01].

The module ModelTimex makes use of the relationships and operators defined
in the time model in order to translate the coded time references into concrete
dates. This module also uses the publication date of the document to solve the
relative time expressions that refer to the reader time reference point.

The division in two modules improves the portability of this tool to other
languages. Thus, to support a new language it is only necessary to rebuild the
lexicon and then create the grammars that recognize the particular temporal
expressions of the language. Notice that the module ModTimex is independent
of the particular language, and it does not need to be modified.

Following we present some examples of the output of the first module:

<TIMEX Value=’-1ny#nm#nd’> yesterday </TIMEX>

<TIMEX Value=’IO-wp’> from two weeks ago </TIMEX>

<TIMEX Value=’#Oy#m6#d1’> first of June </TIMEX>

<TIMEX Value=’34yp’> 34 years </TIMEX>

<TIMEX Value=’I#y1992’> from 1992 </TIMEX>

These time expressions are processed by the second module, which produces the
final output (here the publication date is 01/06/1999):

<TIMEX type=’DATE’ Value=’y1999m05d31’> yesterday </TIMEX>

<TIMEX type=’DATE’ Value=’[y1999m5w3,19990531]’> from two weeks ago </TIMEX>

<TIMEX type=’DATE’ Value=’y1999m6d1’> first of June </TIMEX >

<TIMEX Value=’34yp’> 34 years </TIMEX>

<TIMEX type=’DATE’ Value=’[y1992,y1999]’> from 1992 </TIMEX>

3 Document Temporal Features

In order to index the input documents in an Information Retrieval System
(IRS) [Bae00], we need to extract all the features that will be used in the retrieval
engine. Traditionally, an IRS represents each document with the list of terms
weighted by their frequency of appearance in the document text (TF vector).
This weight is usually modified to take into consideration the overall frequency
of each term in the collection (IDF).

In our approach, we also need to represent the temporal features extracted
from the texts. Similarly to the term vector, we can represent them as a list of
time entities weighted by their frequency in the document text, which is called
Vector of Weighted Time Entities.

Since many IRS and database models do not support the representation
of multiple dates, we have also introduced in the document representation the
event-time period [Ara01]. How can we obtain it from the set of extracted dates?

To determine the event-time period of a document we can start from the
following hypothesis:

– Events are published few days after they happened. So, time references far
away from the publication date are references to other related events.
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– Interval references are less important as greater the duration is.
– Long duration events (e.g. ‘a war’, ‘a trial’) are usually referenced by some

relevant days that are not contiguous. In this way, to determine their event-
time periods we must allow some gaps between the relevant dates appearing
in the article.

Algorithm 1 Event Time Algorithm
Require: pdi, Di, Ii, threshold, gap, maxdist

{pdi: publication date ; Di: list of extracted points entities ; Ii: list of extracted in-
tervals entities ; threshold: lowest frequency for a relevant time entity ; gap: allowed
days-distance between relevant time-entities ; maxdist: maximal days-distance be-
tween two proximal dates}

Ensure: Event T ime
1: for all [f1, f2] ∈ Ii do
2: if dayDistance(f1, f2) ≤ maxdist then
3: add to Di all dates between f1 and f2

4: delete [f1, f2] from Ii

5: else
6: add to Di the dates f1 and f2

7: end if
8: end for
9: F0 =′ ′ ; cont = 0 ; F1 =′′ ; FI =′′ ; FF =′′

10: for F1 ∈ Di do
11: if F0 ==′ ′ then
12: continue
13: else
14: if dayDistance(F1, F0) < gap then
15: cont+ = Di[F1] ; FF = F1
16: else
17: Ii[FI, FF ] = cont
18: F0 = F1; FI = F1; FF = F1; cont = 0
19: end if
20: end if
21: end for
22: Event T ime = ExtractMostRelevantInterval(Ii, maxdist, pdi, threshold)
23: {Obtain most relevant interval near to the pdi}
24: if not Event T ime then
25: Event T ime = [pdi − 1, pdi]
26: end if

The algorithm we propose to generate document event-time periods (see Algo-
rithm 1) takes into consideration these hypothesis. Basically, the algorithm de-
termines the most relevant interval near the publication date. For this purpose,
the algorithm first builds a list of intervals with the contiguous time entities of
the document, allowing some gaps between them. To determine the relevance of
each interval, the algorithm uses the frequency of the time entities that overlap
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with each interval. Only the intervals with a relevance greater than a predefined
threshold will be considered by the algorithm.
Summarizing, in our approach each document di is represented with the following
features:

– the publication date: pdi,
– the vector of weighted terms: T i = (TF i

1, . . . TF
i
n), where TF i

k is the fre-
quency term tk in the document di,

– the vector of weighted time entities: F i = (f i
1 : TFfi

1
, . . . f i

m : TFfi
m

), where
TFfi

j
is the appearance frequency of the time entity f i

j in the document di,
– and the event-time period: eti.

4 Time Similarity Measures

Information Retrieval Systems as well as Topic Detection ones require the def-
inition of a document similarity measures. The IR systems apply it, to rank
query results according to the similarity value between queries and documents.
The Topic Detection Systems applies it to cluster together those documents that
report about the same events.

Traditionally, IRS and TDT systems uses the cosine function over the docu-
ment term vectors as the similarity measure, which is as follows:

St(di, dj) =
∑n

k=1 TF
i
k · TF j

k√∑n
k=1 TF

i2
k ·

√∑n
k=1 TF

j2

k

(2)

In our approach, we must also regard the similarity between the other doc-
ument features. Specifically, we consider that two documents that report about
a same event must be similarity in both, their terms and time features. For
this purpose, we propose two similarity measures that mainly differs from the
selected temporal features:

– Time-Cosine Similarity [Pon02]: which uses all the time entities that
appears on the text. To define a global similarity measure between two doc-
uments di and dj applying a temporal similarity Sf measure, we propose the
following weighted measure:

S(di, dj) = WtSt(di, dj) + WfSf (di, dj) (3)

where Wt and Wf ∈ [0, 1] represent the weight of the term and dates vector
respectively.

The temporal similarity Sf is defined as follows:

Sf (d
i
, d

j
) =

Σ
mi
k=1TF

fi
k
· TF

s(fi
k

,dj) · g(F i
k, s(fi

k, dj)) + Σ
mj
k=1TF

fi
k
· TF

s(f
j
k

,di)
· g(F j

k , s(fj
k , di))

(2+ | mi − mj |) ·
√∑ mi

k=1 TF 2
fi

k

·
√∑ mj

k=1 TF 2
f

j
k

.

(4)

where:
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• mi is the amount of time entities appearing in the document di ,
• s(f i

k, d
j) returns the closest date in dj to f i

k according to the Minkowsky
distance,

• and the function g is defined as follows:

g(f1, f2) =




1 : if f1 = f2,
0.8 : if d(f1, f2) = 1,

1√
d(f1,f2)

: otherwise.
(5)

– Event-Time Similarity: which uses the event-time period associated to
each document. To define a global similarity measure between two documents
di and dj , we propose the following measure:

S(di, dj) =
{
St(di, dj) : If d(di, dj) > βet

0 : otherwise.
(6)

where βet is a temporal threshold over the event-time period.

Both measures uses the Minkowski distance [Ich94] to compare date intervals.
It is defined as follows:
Let f1 and f2 be two intervals, then

d(f1, f2) = |f1 ⊕ f2| − |f1 ⊗ f2| + ρ · (2 · |f1 ⊗ f2| − |f2| − |f1|) (7)

where :

– f1 ⊕ f2 is the union interval,
– f1 ⊗ f2 is the intersection interval,
– and |f | is the number of days between the extremes of the interval.

To evaluate the Minkowsky distance over a date, we translate the date fi into
the interval [fi, fi]. It can be noticed that if f1 y f2 are dates, then Minkowsky
distance return the days between f2 y f1. We take the value 0.2 for ρ [Pon02].

5 Evaluation

In this section we present the experimental results for our document representa-
tion model. For this evaluation, we have implemented the Single-Pass clustering
algorithm, which has been widely adopted in on-line Topic Detection Systems
because of its simplicity and efficiency [Yan98b].

Briefly, this algorithm puts each incoming document into the most similar
already constructed cluster such that its similarity is greater than a given thresh-
old. In this case, the cluster is updated according to the new document. If there
not exists such a cluster the document becomes a new cluster.

The evaluation corpus comprises a set of news articles of June 1999 pub-
lished on ’El Páis Digital’. From this collection of 553 articles, we have manually
identified 246 topics, from which 80 are non-unitary.



Detection of Temporal Document Features for Information Retrieval 9

The effectiveness of the cluster algorithm is measured using the F1-measure
between each manually labelled topic i and each system-generated cluster j. In
order to measure the global performance, we firstly associate to each topic the
most similar system-generated:

σ(i) = argmaxj{F1(i, j)} (8)

Then, we define an overall F1-measure weighted with the size of the groups
[Pon02]:

F1 =
1

Ndocs

Ntopics∑
i=1

ni F1(i, σ(i)) (9)
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Fig. 1. Overall F1 for all topics

The optimal temporal threshold for the Time-Cosine measure is βf = 0.14,
whereas for the Event-Time one is βet = 0.36. Figure 1 presents the evolution
of the global F1-measure with respect to the term threshold βt, keeping the
temporal threshold constant with its optimal value. In the graphic we can notice
that the curves of the Event-Time and Time-Cosine similarities are very similar.
In both cases we obtain better results than using only the term similarity (‘no
time’ curve). This latter case can be compared with the results obtained in
[Yan98b], since all the articles of the collection are published in a time window
of one month. As a result, we think that the use of the proposed temporal
features could improve notably the results of current TDT systems.

Finally, these results also indicate that the use of the event-time period can
be as effective as using all the time entities, but with the advantage that it
simplifies the representation of the documents, and it reduces considerably the
cost of the clustering algorithm.
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6 Conclusions

In this paper we have analyzed different ways to express the temporality of
documents. Firstly, we have proposed a method to extract time entities from
document texts. Then, we have presented an algorithm to automatically obtain
the event-time period of a document taking into account the extracted time
entities.

We have shown how these temporal features can be used in Information
Retrieval and Topic Detection systems, by introducing two new similarity mea-
sures between documents: one for the list of extracted time entities (Time-Cosine
measure), and another for the event-time periods (Event-Time measure).

The obtained results for a clustering experiment demonstrate that both mea-
sures improve the retrieval effectiveness. Moreover, the Event-Time measure has
a similar effectiveness to the Time-Cosine one. This indicates that the generated
document event-time periods are good representations of the temporal coverage
of the document, and they can be efficiently used in Information Retrieval and
database systems.
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