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Abstract. Data Envelopment Analysis (DEA) is a well-known methodology for
the measurement of the relative efficiency of comparable processing units.
Generally, DEA models are based on linear programming . Although there is a
family of DEA models known as Free Disposal Hull (FDH) which uses binary
variable, in the conventional approach those models are decomposable and
easily solved. However, when a centralized approach is used, as in this paper,
the problem develops a combinatorial structure which makes appropriate the
use of metaheuristic approaches such as genetic algorithms and tabu search. For
benchmarking, although its computational inefficiency precludes its use in
large scale problems, an optimal branch and bound approach will also be pre-
sented. The results show that the metaheuristics (especially, the genetic algo-
rithm) can get very good results with very low computing requirements.

1   Introduction
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2   Relevant resource allocation literature

There have been some previous approaches in the literature that handle the DMUs in
a joint manner. Golany et al (1993) presented a resource allocation model (with input
orientation ) based on the DEA methodology. In a later paper, Golany and Tamir
(1995) proposed a DEA model for resource reallocation (with output orientation)
which includes constraints that impose upper bounds on the total consumption of the
units. Athanassopoulos (1995) presents a goal programming DEA model (GoDEA)
for centralized resource planning. Athanassopoulos (1999) proposes a new model,
this time not based on the envelopment form but on the multiplier form. Likewise,
Färe et al (1997) and Beasley (2001) present models where the DMUs are treated in a
joint form.



3   Proposed FDH resource allocation models using DEA

In this section a model for resource allocation with FDH technology is presented:
centralized FDH-I model. It is a radial model.

3.1   Centralized FDH input orientation model

There are two essential differences which distinguish this model from the conven-
tional DEA:� Instead of solving a linear programming model for every existing DMU in the

problem, all the units are projected simultaneously.
- Instead of reducing the inputs of every DMU, it is the total input consumption of

DMUs what is tried to reduce. Besides what is important is maintaining the same
level of the total amount of outputs but it is not forbidden that a certain DMU re-
duces its outputs.

Let:
j,r=1,2,...,n indexes for DMUs
i=1, 2,...,m index for inputs
k=1, 2,...,p index for outputs
xij amount of input i consumed by DMU j
ykj amount of output k produced by DMU jT radial reduction of total input
(O1r, O2r,..., Onr) vector for projecting DMU r

The model is: �0LQLPLVH
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This is a linear programming problem that contains n2+1 variables and  m+(p+1)un
constraints. Once the model is resulted, the corresponding vector (O1r, O2r,..., Onr) de-
fines for each DMU r the operating point at which it should aim. Inputs and outputs
of each such point can be computed as
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4   Resolution of the centralized FDH problem

In this section we will consider the different solution methods that can be used for the
proposed model.

4.1   Solving the traditional FDH model.

The first approach is to solve the traditional FDH model:
As we mentioned in the introduction, this problem can be solved using a simple al-

gorithm. Let
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This is the set of existing DMUs that dominate the DMU r. The optimal solution to
the traditional FDH model can be obtained as
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For that solution, the radial reduction of total input can be computed as
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In this way, the saving in total input consumption achieved by solving the tradi-
tional FDH model is obtained.

4.2   Solving centralized FDH model

The centralized FDH-I model performs a projection of each processing unit with an
existing DMU belonging to the efficient frontier, in order to find the largest feasible
reduction of the total of inputs. Therefore, if one wants to find the solution that real-
izes the maximum reduction of resource consumption, all the possible projections of
the DMUs onto every efficient unit must be considered. This is a combinatorial
problem whose difficulty will depend on the number of existing units and on the
number of them that are efficient. If there are ‘n’ units in the problem of which ’e’
they are efficient (edn), the number of possible combinations will be  en .

Even for problems with a number of DMUs not very large, the number of combi-
nations can be very high, which makes necessary to use some metaheuristic for ex-
ploring the solution space. In this paper two of the most successful metaheuristics
have been tried: genetic and tabu search algorithms. Also, in order to benchmark this
approximate methods, the optimal solution has also been computed through a branch
and bound algorithm that is also described below.

Tabu search heuristic. The algorithm starts its exploration with the solution
provided by the traditional FDH model. Let E be the set of efficient units set in the
problem. This set corresponds to the nondominated units, i.e. those units r whose set
D(r)={r}. A solution corresponds to projecting each nonefficient unit onto an efficient
one. A move will consist in the projection of a DMU r over another efficient unit
e´�E, different from the current one.

Therefore, the size of neighborhood is O[n*(|E|-1)]. However, since total output
levels must be maintained, not all the neighbors of a certain solution are feasible.
Before evaluating a move it is necessary to checked its feasibility. Once verified its
feasibility, the increase in the objective function due to a move is'F.O.= T after – T previous (9)

where:
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As adaptive memory mechanism two tabu lists are proposed. In one of them the
unit whose projection has been changed is recorded so that for a number of periods T
that unit is prohibited from changing its projection again. The second tabu list records
the efficient unit onto which the unit is now projected. For a number of periods T',
none of the units projected onto such efficient unit can change its projection. The tabu
restriction applied consists in that a move is tabu when it is contained in any of both
lists.

Additionally, a diversification strategy has been used consisting in that after a cer-
tain number of iterations (parameter REP) in which the objective function has not
been improved, the search is reinitialized to a solution where each DMU is projected
onto the efficient unit onto which it has been projected more fewer times so far. The
tabu search algorithm method ends when, for a certain number of iterations ITER, the
best solution found does not improve.

Genetic algorithm heuristic. The codification used consists in a vector with so many
components as units in the problem. The value of component r is the efficient unit on
which it is projected, e(r).

The size of the population is POP and the number of generations GEN. The initial
population consists of POP-1 admissible solutions which generated in a random way
and the solution of the traditional FDH model, which is a feasible solution of the
centralized model.

A steady state (a.k.a. as incremental) genetic algorithm has been implemented so
that in each iteration a new individual is generated (either through crossover or muta-
tion) and an old individual is deleted from the population. The uniform crossover
operator is suggested. Crossover is performed with probability 1-MUT and parents
are chosen randomly. For mutation, an individual is selected randomly and the value
of one of its components r is modified from e(r) to e´(r)ze(r). The mutation operator
is applied with probability MUT.

In every generation, the population is kept ordered according to the fitness value of
the individuals. Such fitness includes a specific term for penalizing the unfeasibility
that occurs whenever the total sum of a certain output is lower than the initial one. An
infeasible solution can be generated due to a mutation or crossover. The fitness used
in this paper is LQLWLDO LQLWLDONM NMM MDFWXDO DFWXDONM NMN NM M
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Clearly, the fitness value for feasible solutions is the radial reduction of the sum of
inputs T.

The selection of the individual to be deleted from the population is done in a ran-
dom but biased way according to a geometric probability distribution
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where x is the ranking of the individual in the population (x=1 is the best individ-
ual and x=POP is the worst), f(x) is the probability that an individual x is selected and
p0 is a constant that is determined by the following condition
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Note the elitism in equation (10), i.e. the best individual (x=1) is never selected for
deletion.

Branch and bound. An optimal B&B solution method has also been implemented.
The solution tree has as many levels as inefficient DMUs exist in the problem and for
node r there exist so many branches as efficient units on which they can be projected,
i.e. |E|. Thus each node can be codified by the DMU index r and the index e(r) of the
unit onto which it is projected. As initial upper bound, and in order to accelerate the
fathoming of nodes, the solution provided by tabu search has been used. A depth-first
strategy is proposed. A lower bound associated with a node can be computed as
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If this lower bound is larger than the upper bound then the node can be pruned. It
is also necessary to verify the feasibility of every node with regards to the total out-
puts.

5.   Computational experience.

In order to benchmark the two heuristic approaches that have been proposed, a total
of 50 random problems have been generated. All of them have two inputs and one
output. The number of DMUs have been kept low (10 DMUs). Although these can be
considered small problems (and the heuristic approaches can solve much larger
problems) we have had to use these size in order to be able to solve them optimally
with the branch and bound method which is notoriously inefficient. Both the test data
and the computer program that generates them are available from the authors upon
request.

The parameter values for Tabu search and genetic algorithm that were used are:

ITER=8000; REP=150; T=1; T ' =2
GEN=1000; MUT=0.2; POP=50; ALPHA=2



The results presented correspond to a PC with 500 MHz AMD-K6 processor and
are presented in table 2 in the appendix. It can be seen that both Tabu Search and
Genetic Algorithms have running times of the order of 10 seconds while B&B can
require several hours. Add to this that the relative error of the heuristic methods are
rather small (1.71% in average for tabu search and 0.77% for the genetic algorithm).

Figure 1 shows the average relative error as a function of the number of efficient
units. The larger this number, the larger the solution space and consequently the more
difficult the problem (at least in principle). The relative error for Tabu Search but
specially for the Genetic Algorithm is always very low.
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Fig. 1. Average relative error of FDH, genetic algorithm and tabu search.

Four additional test instances with 15 DMUs have been generated and the results
of the tabu search, genetic algorithm and branch and bound algorithms are shown
below, in table 1. The parameter values for Tabu search and genetic algorithm that
were used are:

ITER=10000; REP=150; T=1; T ' =5
GEN=2000; MUT=0.2; POP=50; ALPHA=2

Table 1. Results for 15 DMUs problems

TRADITIONAL
FDH

GENETIC
ALGORITHM

TABU
SEARCH

BRANCH & BOUND
Prob. |E| 6ROXWLRQ 7LPH 6ROXWLRQ 7LPH 6ROXWLRQ 7LPH 6ROXWLRQ 7LPH

1 5 0.5025 0.05s 0.3404 20.22s 0.3404 13.12s 0.3366 8h 29min 24s
2 4 0.4844 0.05s 0.3608 17.38s 0.3792 11.13s 0.3607 1h 46min 32s
3 7 0.6154 0.05s 0.3624 11.32s 0.3462 10.82s 0.3337 3d 22h 20min 8s
4 5 0.5094 0.05s 0.4651 18.56s 0.4651 9.73s 0.4651 17h 39min 1s

The large computing times of the exact method demonstrate that it is not suited for
relatively small problems. Note also that, the same as for the smaller problems, the
conventional FDH solution is not very good and that both Tabu Search and Genetic
Algorithms, which start with that solution, are able to significantly improve upon it.



6.   Summary and conclusions

Though conventional DEA models project each DMU in an independent manner, the
methodology also allows the consideration of a centralized resource allocation point
of view. This paper has presented such a centralized model for resource allocation
with FDH technology. The problem has a combinatorial structure and for solving it
two different metaheuristics have been implemented. To benchmark their perform-
ance, an optimal B&B method has also been developed. Computational experiences
show that the optimal B&B is not feasible for large problems and that the metaheu-
ristic, specially the Genetic Algorithm, can give very good solutions with minimal
computing requirements.
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Appendix

Table 2. Results for 10 DMUs problems

TRAD. FDH GEN. ALG. TABU S. BRANCH & BOUND
Prob. |E| 6ROXWLRQ 7LPH 6ROXWLRQ 7LPH 6ROXWLRQ 7LPH 6ROXWLRQ 7LPH

1 4 0.8580 0.01s 0.6561 9.09s 0.6561 7.09s 0.6561 17s
2 3 0.7070 0.06s 0.6567 8.90s 0.6716 1.04s 0.6567 5s
3 4 0.7753 0.01s 0.6598 8.89s 0.6598 4.26s 0.6598 23min 30s
4 4 0.4765 0.01s 0.4199 8.84s 0.4433 4.56s 0.4199 11min 42s
5 6 0.8192 0.01s 0.7269 9.06s 0.7306 4.12s 0.7269 7h 1min 25s
6 4 0.5150 0.05s 0.3728 8.95s 0.3728 1.21s 0.3728 2min 1s



TRAD. FDH GEN. ALG. TABU S. BRANCH & BOUND
Prob. |E| 6ROXWLRQ 7LPH 6ROXWLRQ 7LPH 6ROXWLRQ 7LPH 6ROXWLRQ 7LPH

7 5 0.6968 0.05s 0.4113 9.34s 0.4113 5.11s 0.4113 28s
8 3 0.5218 0.05s 0.4570 8.90s 0.4588 0.88s 0.4570 1min 34s
9 7 0.9158 0.01s 0.6691 9.06s 0.6245 3.35s 0.6245 54min 30s

10 7 0.8673 0.05s 0.7326 8.35s 0.7448 6.09s 0.7269 6h 29min 36s
11 7 0.7750 0.01s 0.3496 8.85s 0.3496 6.15s 0.3496 6min 40s
12 8 0.9194 0.06s 0.7196 9.44s 0.7444 2.86s 0.7196 3h 9min 21s
13 4 0.6381 0.01s 0.4708 8.46s 0.5050 2.15s 0.4708 1min 24s
14 5 0.8948 0.01s 0.7844 9.45s 0.7844 2.25s 0.7844 1h 10min 8s
15 5 0.5462 0.01s 0.2902 9.28s 0.2902 3.68s 0.2902 54s
16 5 0.8168 0.01s 0.6542 10.08s 0.6542 1.54s 0.6542 3h 45min 12s
17 6 0.8583 0.01s 0.6870 9.29s 0.6960 2.31s 0.6870 2h 49min 2s
18 8 0.8103 0.05s 0.5395 9.78s 0.5490 15.34s 0.5395 2h 50min 41s
19 5 0.6649 0.06s 0.5525 9.54s 0.5330 4.17s 0.5330 2h 8min 1s
20 3 0.5647 0.01s 0.5598 9.56s 0.5647 0.66s 0.5598 9s
21 6 0.7687 0.01s 0.6576 8.96s 0.6321 1.92s 0.6321 50min 54s
22 5 0.6700 0.01s 0.5927 9.89s 0.5927 0.87s 0.5927 24min 10s
23 6 0.7566 0.05s 0.6050 9.72s 0.6050 1.75s 0.6050 57min 14s
24 4 0.7754 0.06s 0.6526 10.11s 0.7002 1.54s 0.6526 13min 6s
25 3 0.6894 0.01s 0.6506 9.78s 0.6552 0.70s 0.6506 4s
26 3 0.3261 0.01s 0.2296 9.73s 0.2296 1.26s 0.2296 1s
27 3 0.5406 0.01s 0.3220 9.99s 0.3220 1.26s 0.3220 1s
28 5 0.8321 0.01s 0.7328 10.00s 0.7328 6.27s 0.7328 35min 26s
29 3 0.6281 0.01s 0.5892 9.72s 0.5892 9.77s 0.5892 2s
30 3 0.7129 0.01s 0.6157 9.84s 0.6157 10.98s 0.6157 2min 47s
31 5 0.6754 0.01s 0.5039 9.89s 0.5039 4.50s 0.5039 9min 22s
32 4 0.7710 0.01s 0.5752 10.16s 0.6522 1.59s 0.5752 43s
33 3 0.6194 0.01s 0.5298 9.94s 0.5298 10.82s 0.5298 32s
34 5 0.7179 0.01s 0.6068 10.38s 0.5912 2.42s 0.5912 4h 57min 17s
35 5 0.8108 0.01s 0.6384 10.11s 0.6384 1.21s 0.6384 1h 25min 1s
36 4 0.7002 0.06s 0.6638 10.16s 0.6638 7.09s 0.6638 37min 19s
37 4 0.5304 0.05s 0.3584 10.27s 0.4050 2.09s 0.3584 2min 5s
38 6 0.7484 0.01s 0.4781 11.04s 0.4697 6.76s 0.4697 4s
39 6 0.8224 0.01s 0.6148 10.16s 0.6196 2.14s 0.6148 5h 58min 27s
40 5 0.4816 0.01s 0.2755 10.28s 0.2755 11.20s 0.2244 1s
41 3 0.5057 0.05s 0.4522 10.16s 0.4522 0.98s 0.4522 3min 39s
42 4 0.5952 0.01s 0.3811 10.32s 0.4233 3.13s 0.3811 2s
43 3 0.5493 0.01s 0.4129 10.32s 0.4129 1.81s 0.4129 6min 38s
44 6 0.6536 0.06s 0.3444 10.80s 0.3444 5.87s 0.3444 3h 28min 51s
45 3 0.2703 0.05s 0.2559 10.71s 0.2559 1.54s 0.2559 2min 7s
46 3 0.5747 0.01s 0.4505 10.38s 0.4505 2.31s 0.4505 10s
47 2 0.3925 0.05s 0.2697 10.64s 0.2697 0.88s 0.2697 0.5s
48 4 0.7783 0.05s 0.4703 11.21s 0.4703 11.48s 0.4703 57min 59s
49 2 0.3365 0.01s 0.3107 10.49s 0.3125 1.98s 0.3107 9s
50 6 0.5165 0.01s 0.4103 10.65s 0.4103 0.98s 0.4103 2h 42min 5s


