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Abstract. This paper discusses abductive reasoning, that is, reasoning
in which explanatory hypotheses are formed and evaluated. Specifically,
we present a neural net based development of abductive multi-adjoint
reasoning, introduced in [4], where adaptations of the uncertainty factor
in a knowledge base are carried out automatically so that a number of
given observations can be adequately explained.

1 Introduction

Uncertainty, incompleteness, and/or inconsistency are problems that have to be
faced, sooner or later, when dealing with complex applications of knowledge
representation. As a result, several frameworks for manipulating data and know-
ledge have been proposed in the form of extensions to classical logic programming
and deductive databases. The underlying uncertainty formalism in the proposed
frameworks includes probability theory, fuzzy set theory, many-valued logic, or
possibilistic logic. Our approach to modelling uncertainty in human cognition
and real world applications is based on the multi-adjoint logic programming
paradigm.

In this paper we introduce and study a model of abduction problem. Ab-
ductive reasoning is widely recognized as an important form of reasoning with
uncertain information that is appropriate for many problems in Artificial Intel-
ligence.

Broadly speaking, abduction aims at finding explanations or causes for ob-
served phenomena or facts; it is inference to the best explanation, a pattern
of reasoning that occurs in such diverse places as medical diagnosis, scientific
theory formation, accident investigation, language understanding, and jury de-
liberation. More formally, abduction is an inference mechanism where given a
knowledge base and some observations, the reasoner tries to find hypotheses
which together with the knowledge base explain the observations. Reasoning
based on such an inference mechanism is referred to as abductive reasoning. The
purpose of this work is to link, following ideas from [1, 6], the theoretical frame-
work for abductive multi-adjoint reasoning presented in [4], and its neural net
implementation [3].
� Partially supported by Spanish DGI project BFM2000-1054-C02-02 and Junta de
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Transformation rules carry multi-adjoint logic programs into corresponding
neural networks, where the confidence values of rules relate to output of neur-
ons in the net, confidence values of facts represent input values for the net, and
network functions are determined by a set of conjunctors, implications and ag-
gregation operators; the output of the net being the values of the propositional
variables in the program under its minimal model. Also, some examples from a
first prototype are reported.

2 Preliminary Definitions

In order to make this paper as self-contained as possible, we give here the es-
sentials of multi-adjoint logic programming, and its abductive framework. Due
to space limitations, neither comments nor motivations are presented, the inter-
ested reader is referred to [5] where multi-adjoint logic programs are formally
introduced and its procedural semantics is given, to [4] where the framework
for abductive reasoning is set, and to [3] in which a neural net implementa-
tion of the immediate consequences operator for [0,1]-valued multi-adjoint logic
programming is given.

Originally, the multi-adjoint paradigm was developed for multi-adjoint lat-
tices (a much more general structure for the set of truth-values than the unit real
interval [0, 1]), but in this specific application we will restrict our attention to
examples on the unit interval. However, the other special feature of multi-adjoint
logic programs, that a number of different implications are allowed in the bodies
of the rules, will remain in force. Formally,

Definition 1. A multi-adjoint program is a set of rules 〈A ←i B, ϑ〉 satisfying:

1. The head of the rule A is a propositional symbol.
2. The body formula B is a formula of F built from propositional symbols

B1, . . . , Bn (n ≥ 0) by the use of conjunction (&j) operators.
3. The confidence factor ϑ is an element (a truth-value) of [0, 1].

Facts are rules with body �, and a query (or goal) is a propositional symbol
intended as a question ?A prompting the system.

Regarding the implementation as a neural network, it will be useful to give
a name to a specially simple type of rule: the homogeneous rules.

Definition 2. A rule 〈A ←i B, ϑ〉 is said to be homogeneous if its body is either
a propositional symbol or a &i-conjunction of variables.

As usual, an interpretation is a mapping I:Π → L. Note that each of these
interpretations can be uniquely extended to the whole set of formulas. The order-
ing � of the truth-values L can be easily extended to the set of interpretations,
which also inherits the structure of complete lattice.
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Definition 3.

1. An interpretation I satisfies 〈A ←i B, ϑ〉 if and only if ϑ � Î (A ←i B).
2. An interpretation I is a model of a multi-adjoint logic program P iff all

weighted rules in P are satisfied by I.
3. An element λ ∈ L is a correct answer for a program P and a query ?A if for

any interpretation I which is a model of P we have λ � I(A).

The immediate consequences operator, given by van Emden and Kowalski,
can be easily generalised to the framework of multi-adjoint logic programs.

Definition 4. Let P be a multi-adjoint program. The immediate consequences
operator TP maps interpretations to interpretations, and is defined by

TP(I)(A) = sup
{

ϑ
.

&i Î(B) | 〈A←iB, ϑ〉 ∈ P

}

The semantics of a multi-adjoint logic program can be characterised, as usual,
by the post-fixpoints of TP; that is, an interpretation I is a model of a multi-
adjoint logic program P iff TP(I) 	 I. The TL

P
operator is proved to be monotonic

and continuous under very general hypotheses, see [5], and it is remarkable that
these results are true even for non-commutative and non-associative conjunctors.
In particular, by continuity, the least model can be reached in at most countably
many iterations of TL

P
on the least interpretation.

Definition 5. An abduction problem is a tuple A = 〈P, OBS, H〉, where

1. P is a multi-adjoint logic program.
2. H is a (finite) subset of the set of propositional symbols, the set of hypotheses.
3. OBS:OV → [0, 1] is the theory of observations (where OV is a set of obser-

vation variables such that OV ∩ H = ∅).

The intended meaning of OV ∩ H = ∅ is that observation variables should not
be explained by themselves.

Definition 6. A theory E:H → [0, 1] is a correct explanation to an abduction
problem 〈P, OBS, H〉 if

1. P ∪ E is satisfiable.
2. Every model of P ∪ E is also a model of OBS.

Definition 7. Consider an abduction problem A = 〈P, OBS, H〉 and m ∈ OV .
A successful abduction for A and m is defined as a sequence G = (G0, G1, . . . , Gl)
such that:

1. G0 = m.
2. Gl contains only variables from H.
3. For all i < l, Gi+1 is inferred from Gi by one of admissible rules:

R1. Substitute an atom A by (ϑ &i B) if there is a rule 〈A ←i B, ϑ〉 in P.
R2. Substitute an atom A by ⊥.
R3. Substitute an atom A by ϑ if there is a fact 〈A, ϑ〉 in P.
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4. For the interpretation I1:Π → {1} the inequality I1(Gi+1) ≥ OBS(m) holds.

The last condition is to be understood as a cut, because it allows to estimate
the best possible computation of remaining propositional variables.

Definition 8. A theory E:H → [0, 1] is a computed explanation for an abduc-
tion problem A = 〈P, OBS, H〉 if for every m ∈ OV there is an abduction Gm

for A and m such that

OBS(m) ≤ Gm(E(h1), . . . , E(hn))

In [4] it was shown that the procedural semantics given above is sound and
complete and, in addition, that the surface corresponding to all the solutions for
particular observations has the shape of a convex body. Moreover, the set of all
solutions is the union of such surfaces. In the rest of the paper, we describe a
prototype of neural net which solves an abduction problem separately on each
of these areas.

3 Model of Neural Network

Before describing the model of the network, some considerations are needed:
The set of operators to be implemented consists of the three most important
adjoint pairs: product (&P ,←P ), Gödel (&G,←G) and �Lukasiewicz (&L,←L).
Regarding the selection of operators implemented, just recall that every t-norm,
the type of conjunctor more commonly used in the context of fuzzy reasoning,
is expressible as a direct sum of these three basic conjunctors [2]. Regarding the
aggregation operators, we will implement a family of weighted sums, which are
denoted @(n1,...,nm) and defined as follows:

@(n1,...,nm)(p1, . . . , pm) =
n1p1 + · · · + nmpm

n1 + · · · + nm

Now, we can properly begin the description: A neural network will be con-
sidered in which each process unit is associated to either a propositional symbol
or an homogeneous rule. The state of the i-th neuron in the instant t is ex-
pressed by its output Ii(t). Therefore, the state of the network can be expressed
by means of a state vector I(p), whose components are the output of the neurons
forming the network and its initial state is the null vector.

Regarding the user interface, there are two layers, a visible one, whose output
is part of the overall output of the net, and a hidden layer, whose outputs are
only used as input values for other neurons.

The connection between neurons is denoted by a matrix of weights W, in
which wkj indicates the existence or absence of connection between unit k and
unit j; if the neuron represents a weighted sum, then the matrix of weights
also represents the weights associated to any of the inputs. The weights of the
connections related to neuron i (that is, the i-th row of the matrix W) are
represented by wi•, and are allocated in an internal vector register of the neuron.
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The initial truth-value of the propositional symbol or homogeneous rule vi

is loaded in the internal register, together with a signal mi for distinguishing
whether the neuron is associated to either a fact or a simple rule; in the latter
case, information about the type of operator is also included. Therefore, we have
two vectors: one storing the confidence values v of atoms and homogeneous rules,
and another m storing the type of the neurons in the net.

The signal mi indicates the functioning mode of the neuron. If mi = 1 the
neuron is assumed to be associated to a propositional symbol (visible neuron),
and its next state is the maximum value among all the operators involved in its
input, its previous state, and the initial confidence values vi. More precisely:

Case p, mi = 1: Ii(t + 1) = max
{

max
k|wik>0

{Ik(t)}, Ii(t), vi

}

When a neuron is associated to the product, Gödel, or �Lukasiewicz implication,
respectively, then the signal mi is set to 2, 3, and 4, respectively. Its input is
formed by the external value vi of the rule, and the outputs of the neurons
associated to the body of the implication. The output of the neuron somehow
mimics the behaviour of the procedural semantics when a rule of type mi has
been used; specifically, the output in the next instant will be:

Case ←P , label mi = 2: Ii(t + 1) = max


Ii(t), vi ·

∏
k|wik>0

Ik(t)




Case ←G, label mi = 3: Ii(t + 1) = max
{

Ii(t),min
{

vi, min
k|wik>0

{Ik(t)}
}}

Case ←L, label mi = 4: Ii(t + 1) = max


Ii(t), vi +

∑
k|wik>0

Ik(t) − Ni


,

where Ni indicates the number of arguments of the body of the rule.

Case @, label mi = 5: the aggregators considered as weighted sums, therefore

Ii(t + 1) =
∑

k|wik>0

w′
ik · Ik(t) where w′

ik =
wik∑

r|wir>0

wir

Finally, neurons associated to the adjoint conjunctors have signals mi = 6, 7, 8,
for product, Gödel, or �Lukasiewicz conjunctions, respectively. Its output is:

Case &P , label mi = 6: Ii(t + 1) =
∏

k|wik>0

Ik(t)

Case &G, label mi = 7: Ii(t + 1) = min
k|wik>0

Ik(t)

Case &L, label mi = 8: Ii(t + 1) = max


0,

∑
k|wik>0

Ik(t) − Ni + 1
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It is important to note that the neurons’s output is never decreasing.
By an external reset signal r, common to all the neurons, one can modify

both the values of the internal registers of the neurons and their state vector
I(t).

r = 1. The initial truth-value vi, the type of formula mi, and the i-th row of
the matrix of weights wi• are set in the internal registers. This allows to
reinitialise the network for working with a new problem.

r = 0. The neurons evolve with the usual dynamics, and it is only affected by
the state vector of the net I(t). The value mi, set in their internal register,
selects the function which is activated in the neuron. By using a delay, the
output of the activated function is compared with the previous value of the
neuron.

Once the corresponding values for both the registers and the initial state of the
net have been loaded, the signal r is set to 0, and each neuron will only be
affected by the neurons given by I(t), its state vector at step t.

3.1 Neural Model for Abduction

Our main goal here is to adapt the neural model above to the abductive frame-
work for multi-adjoint logic programming. The general approach to abduction
is, given a program P and a set of observations, to obtain a set of explanations
for these observations, as a number of abduced facts. In addition, we are also
interested in allowing the possibility of changing the confidence values of the
rules in the given program for a number of reasons; for instance, it could hap-
pen that no explanation exists simply because the confidence values of the rules
have not been suitably assigned although, obviously, it might also happen that
no explanation can be obtained for a given problem, for instance, in the case of
badly posed problems.

Our neural model for abductive reasoning will allow to divide the set of rules
as rules with ‘hard’ confidence value and rules with ‘soft’ confidence value; the
former assumed to have a fixed confidence value throughout all the computation
and the latter whose confidence value could be modified if necessary.

Once the parameters v, m and W have been set in the initial registers of
the net, the program can be run in order to obtain the minimal model, which
may or may not explain all the observed values (loaded in a vector of observed
values ov). Obviously, the interesting case from an abductive point of view is
when the minimal model does not explain all the observed values.

The neural model for abduction will be a modification on that given in the
previous section which includes, apart from the vector of observed values ov,
another vector for setting the rules whose confidence values will remain unmod-
ified u.

Now, our goal will be to find either an explanation based solely on the set
of hypotheses or set new confidence values to rules (determined by vector u)
so that the observed values are attained. The search for these new confidence
values v is obtained by training the net.
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If there are n neurons in the net, and we have b observed values and h
hard rules, the net implements a function T : [0, 1]n−b−h → [0, 1]b, since the b
components of the observations and the h components of the hard rules will
remain fixed. Therefore we can consider the space [0, 1]n−b−h as the search space
and, given v ∈ [0, 1]n, its projection on the space of observed values [0, 1]b will
be denoted as πv.

Given the observations ov ∈ [0, 1]b, we define the feasible region as the set
F ⊂ [0, 1]n−b−h such that if πv ∈ F then ovj ≤ πvj

for all j = 1, . . . , b.
The n − b − h variables of the search space can be divided into two groups:

those corresponding to hypotheses and those corresponding to soft rules. Assume
that there are m hypotheses and s soft rules, then obviously n− b− h = m + s.
In the definition below we introduce the test function which, roughly speaking,
provides us the expected observed values under given inputs for hypotheses and
soft rules.

Definition 9. Given an abduction problem A = 〈P, OBS, H〉, with hypotheses
h1, . . . , hm, observations ov1, . . . , ovb and soft rules r1, . . . , rs, the test function
T : [0, 1]m+s → [0, 1]b is defined for all x = (x1, . . . , xm, xm+1, . . . , xm+s) as

T (x1, . . . , xm, xm+1, . . . , xm+s) = (Tω
Px

(�)(ov1), . . . , Tω
Px

(�)(ovb))

where Px is a program obtained from P by adding the facts 〈h1, x1〉, . . . , 〈hm, xm〉
and updating the confidence values of soft rules 〈r1, xm+1〉, . . . , 〈rs, xm+s〉.

Remark 1. Notice that the output of the test function is the value, under the
minimal model, of the observed variables. The interest of this function is that is
provides a means to test the feasibility of a proposed explanation.

The function implemented by the net has the following properties:

1. It is non-decreasing in all its components.
2. If there is some correct explanation, then T (1) ∈ F .
3. If every interpretation is a correct explanation, then T (0) ∈ F .

3.2 Training the Net

Given an abduction problem, firstly, we have to check whether there is at least a
model for the program and the observations. This is done by checking that the
vector πv = 1, changed by including the observed values, is a point of the feasible
region. If we get affirmative answer, then the effective training of the net begins,
having in mind that the components of v corresponding to the observations will
be fixed for all the training process, as well as m and W.

We have chosen to randomly search for explanations, so that we have chance
to obtaining a wide range of possible explanations to a given abduction problem.
The training process aims at obtaining a vector of confidence values for hypo-
theses and soft rules such that the resulting minimal model (that is, the output
of the function implemented by the net) is as close as possible to the frontier of
the feasible region.
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The training is based on an iterative procedure which begins with the initial
vector v0 = πv, where v corresponds to the confidence values of rules and facts
in the program P, and zeroes assigned to variables which are not facts. Now,
assume that the net gets stable (that is, the minimal model is) at point T (v0),
and randomly take another vector v1 ∈ [0, 1]n−b−h, and assume the net stabilises
at T (v1). Then, calculate the values 0 ≤ k ≤ 1, such that the point kT (v0) +
(1 − k)T (v1) is the closest (using euclidean distance) to vector ov. The new
initial vector will be v2 = kv0 + (1 − k)v1, which by convexity is in the search
space.

The procedure is repeated by choosing new random vectors, until the result-
ing confidence values vn are such that T (vn) can be no longer improved, in the
sense of getting closer to ov. This occurs if in several trials (in a number greater
than the dimension n− b− h of the search space) the obtained point gets fixed.
This point is checked to be in the feasible region, if affirmative the training is
finished, otherwise, we will find the point in the frontier of the feasible region
contained in the segment [vn,1].

As a result, after the training process, the net is able to explain the observed
facts, in the sense that new confidence values are assigned to rules and facts, and
possibly new facts are added to the program, obtaining a modified program Px,
so that the observations are logically implied by Px.

4 Simulations

A number of problems have been carried out with the resulting implementation.
Here we present some toy examples:

Example 1. Consider the program with rules

〈p ←P (q&P r), 0.8〉 and 〈r ←G s, 0.7〉

and the observation 〈p, 0.7〉.
By assigning neurons with the variables p, q, r, s and with the two rules, the

initial registers will be v = (0, 0, 0, 0, 0.8, 0.7), m = (1, 1, 1, 1, 2, 3), the matrix
W whose entries are all zeroes but w15, w36, w52, w53 and w64 which are 1, and
the observed value p = 0.7.

After training the net, without considering any hard rule, we get the new
vector of confidence values v = (0, 0.8599, 0.9024, 0.9268, 0.8783, 0.9641), which
gives the new program with rules

〈p ←P (q&P r), 0.8783〉 and 〈r ←G s, 0.9641〉

and facts 〈q, 0.8599〉, 〈r, 0.9268〉,〈s, 0.9268〉.
Example 2. Consider the following program

〈hi fuel comp ←G @(2,1)(ri mix, lo oil), 0.8〉 (1)
〈overheating ←P lo oil, 0.5〉 (2)
〈overheating ←L lo water, 0.9〉 (3)
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This program is intended to represent some kind of knowledge about the beha-
viour of a car. Let us assume that we have two observed facts, namely

〈hi fuel comp, 0.75〉 〈overheating, 0.5〉

The vector of observed values is ov = (0.75, 0.5)
We have trained the net twice: the first one considering no hard rule, and

the second one considering no soft rule.
The non-homogeneus rule has been separated by introducing a hidden neuron

implementing its body The obtained results in either case are the following:

1. No hard rules: The obtained explanation, regarding the hypotheses, is

ri mix = 0.853, lo oil = 0.5656, lo water = 0.6214

and the updated confidence values for the rules are (1)= 0.75, (2)= 0.9519
and (3)=0.8837.
The values above give the following results to the observed variables is

hi fuel comp = 0.75 and overheating = 0.5384.

2. No soft rules: The obtained explanation is

ri mix = 0.8335, lo oil = 0.5864, lo water = 0.6

The values above give the following results to the observed variables is

hi fuel comp = 0.7511 and overheating = 0.5.

5 Conclusions

A neural model for abductive reasoning has been introduced, which implements
the procedural semantics given in [4]. This way, it is possible to adjust the
confidence values of the rules and facts of a given program which is supposed
to explain a set of given observations. An advantage of the use of multi-adjoint
logic programs is that the procedural semantics of the model is common for a
number of fuzzy rules and, as a result, the implementation can be easily modified
to add new connectives.

As future work, we will study different training strategies for the net in order
to minimise its complexity and improving the approximation to the observed
values.
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