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Abstract. In this paper we present an algorithm for learning a function able to
assss objeds. We assume that our teaders can provide a olledion o pair-
wise cmparisons but encourter certain difficultiesin assgning a number to the
qualiti es of the objeds considered. Thisis atypicd situation when deding with
food poduwcts, where it is very interesting to have repeaable, reliable
medhanisms that are & objedive & possgble to evaluate quality in order to
provide markets with products of a uniform quality. The same problem arises
when we ae trying to lean user preferences in an information retrieval system
or in configuring a wmplex device The dgorithm is implemented using a
growing variant of Kohoren's Self-Organizing Maps (growing reural gas), and
is tested with a variety of data sets to demonstrate the capabiliti es of our
approac.

1. Introduction

Generally spe&ing, quality assesament is a amplex matter: what we usually need to
evaluate ae the desirable traits of an oljed by means of a single number. Frequently
though this number does nat strictly refledt an absolute value, but rather the relative
quality of the objed with resped to ahers. This is espedally true for objeds of a
biologicd origin; their quality is dependent on a not aways well defined goup d
multisensorial properties resulting from their chemicad composition, the natural
structure of the food elements, their interadion and the way in which they are
percaved by human senses[13]. This stuation becomes even more complex when we
consider quality grading o food poducts from the viewpoint of experts or consumers.
Sinceno cetailed grading spedficdions exist, experts may adopt a quality profil e that
considerably exceals that expeded by the cnsumer [2]. The requirements of
consumers are usualy based on single dtributes that charaderize primary senses.

1 The reseach reported in this paper has been suppated in part under MCyT and Feder grant
TIC2001-3579



Consequently, the literature refleds disagreement between quality assessments
obtained throughconsumer or expert panels|[2, 9].

However, the foodindustry needs to supdy markets with uriform quality products
to satisfy consumer demands for normalized quality. Furthermore, if possble, food
producers would like to know what the objedive (chemicd and physicd) basis of the
asesed quaity is from the austomer viewpaint so as to improve the accetability of
their products.

The straightforward way to buld computable procedures to assess objeds is to
colled a set of representative asesanent events and then to apply a machine leaning
agorithm that employs regresson like CusisTt [6], M5 [16, 20], SAFE (System to
Acquire Functions from Examples) [15] or BETS (Best Examples in Training Sets)
[7]. However, our experience with hiologicd objeds [9, 10] tells us that the
complexity of the aseesanent task means that the repeaability of human evaluations
tends to be low. Hence, the reliability of the training material is poar, despite experts
having been trained exhaustively and having acamulated a large, valuable body d
knowledge used for assessng[12].

Experts or consumers are perfedly able to prefer one objed to ancther, but usually
fail when they are asked to label products with a number. There is a kind d batch
effect that often biases the assessmnent; human asesors try to number the diff erences
in a relative sense, comparing products with the other partners in the batch. Thus, a
product surrounced by worse things will probably obtain a higher assesament than if it
were presented with better products. However, athoughwe may find uracceptable
individual variability in the ésolute number obtained to asessthe quality of a given
product, the relative position oliained in abatch is quite constant.

In this paper we present a new approach to learning functions capable of assessng
objeds darting from reliable training material. Our training sets are formed by airs
of objed descriptions, given by continuots attributes, where the first one has been
considered worse than the second The goal is then a function able to quantify the
quality of objeds as coherently as posshble with the pair-wise ordering suppied as the
training set.

The oore ideais to consider ead training instance & an indication o a diredion
where we can find an increase in quality. Thus, the vedoria difference of compared
produwcts is interpreted as a kind o coding d the locd behavior of the assesanent
function. In this way, the leaning algorithm is a dustering that uses a growing
version [8] of Kohoren's Self-Organizing Maps (SOM) [11], where eat cdl
encapsulates aregressonrule.

After presenting the geometricd motivations of the dgorithm followed by the
implementation cetails, we dose the paper with a sedion devoted to presenting the
experimental results obtained with our assesament leaner.

2. Geometrical motivation of thealgorithm

Let u and v be vedors describing the feaures of two oljedsthat our experts compare,
resulting in u being worse than v; in symbads, u < v. Then, we seek a function f such
that f(u) < f(v). If we asume that f behaves linealy, at least in the surroundngs of
our vedors, we have to find avedor w such that



fw(U) =u- w <v- w =fu(v) D

where, for vedorsz andt, we represent their inner product by z-t.

From a geometricd point of view, function f, represents the distance to the
hyperplane u-w = 0; i.e. the hyperplane of vedors perpendicular to w. If we search for
w considering orly normalized vedors (i.e. ||w| = 1), the largest diff erence between
f (u) andf (v) valuesis reated when w is the normalized vedor in the aldressof (v-
u). Infad,
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Fig. 1. Given two oljeds represented by vedorsu andv, if u isworse than v, the normal vedor
in the diredion d the difference, w = (v-u)/ || v-u||, defines a hyperplane, the distance from
which is asuitable locd assessment function.

In the general case we start from afamily of comparisons

{u<v:i=1,..,n} (©)]

and wish to induce afunction f, with locd linea behavior, and which hogefully is
capable of distingushing as often as possble that u, is worse than v,, because f(u)) <
f(v). The dgorithm propased in this paper uses the geometricd intuitionintroduced in
this ®dion as the basic building Hock of such a function f. Hence, the main task of
the dgorithm will be to combine the locd guidelines suggested by each comparison
supdied in the training set.

3. Thealgorithm: clustering partial functions

In line with the discussons presented in the previous sdion, the comparison
examples of (3) giveriseto aset of 2n pairs of vedors as foll ows:

(v -u) v -ull,u):i=1, .ony OLv,-u) /|| v, -u |l v.):i=1, ..., n}. 4)



If (w, u) is such a pair, we understand it to be asuggestion o a regresson rule
indicaing that the assessnent of avedor z is

f (2) if zisin thevicinity of u. 5)

Given that f, (z) = z-w, we will usualy identify w with the linea function f,.
Likewise, we will refer to u asthe conditions of the rule. For short, we writew « u

In general, we ae pursuing an assessnent function f defined by parts of the whole
attribute space In ather words, our assessmnent function will be given by a list of
regressonrules

(Wl - ul); (Wz - uz); e (Wm - um) (6)

that must be evaluated by means of a minima distance aiterion. In symbadls, the
function f that isfinally induced will work asfollows for an arbitrary vedor z.

@=w-z if|z-ul<lz-ul.0j=1..m 0

A first attempt to define the list of regresson rules (6) isto consider the whole set
of pairs (w, u) defined in (4), but these rule set must be improved: it is too bg and
may contain a lot of noise. Therefore, the idea of our leaning agorithm (see
Algorithm 1) is to cluster similar condtions u, and then to attach a function w
acording to the functions of the pairs of the same duster (seeFigure 2). To thisend,
we use agrowing version d Kohoren's Self-Organizing Maps (SOM) [11]: growing
neural gas (GNG) of Fritzke [8]. This approach has the advantage that we do nd need
to define apriori configuration parameters like SOM layout dimensions or the radius

used throughou the adaptation.
Fig. 2. The dusters of partial functions represents, in ead node, an environment in the atribute
spaceof the objeds to be assessed, drawn in gray in the picture, and a vedor pointing in the

diredion to measure the ssesanents. In ather words, the map represents a set of regresson
rulesto be gplied by means of aneaest-distance aiterion.

The GNG graph starts with two noces u,, u, representing two pdnts in the domain
of the assesament function, in ead iteration step a new node is added trying to fit
better this gace The number of steps (N) followed by GNG condtions the
granularity of the regresson rules. By default, N is the number of comparisons
divided by 1Q

Oncewe have anumber of clusters represented byu,, u,,...,u,, we mnsider the set
of comparisons (t, < t,) where eat t, is closer to the same u, than to any ather u,.



These @wmparisons will be used to compute alocd linear approximation d the
asesgnent functionin the surroundngs of u,.

The procedure followed to find alinea function with coefficientsw =(a,, ..., 8, is
taken from OC1 [14] only dlightly modified for this purpose. In fad, what we ae
looking for is a vedor w such that w- (t,-t,) > 0 as many times as possble. We can
start with w being the average of the normalized diff erences

w=(a, ..., a) =Average{(t,t,)/[|t,t,]: t;>t, & t,t, O cluster(u)}. (8)

Now we try to improve the wefficients a, one & atime. The key observation is
that for eadn namalized dfference (t,-t,)/|t,-t,|=(x,, ..., X,) we have that

w- (t-t)=%(a*x;:i=1.d)>0, 9)
when x, > 0, isequivaent to
q,> -(alxl taxX,t. .+ g X, T A Xt Tt auxd) /Xm =U (10)

or the oppasite when x, < 0. When x = 0O, the value of the mefficient a, does not
matter. So, for fixed values of al other coefficients, eat equation (10) represents a
constraint on the values of a,. Therefore, we sort all U values and consider as possble
setting for a, the midpdnts between ead pair of conseautive U’'s. We seled the g,
that satisfies the greaer number of constraints. Following the procedure of OC1, we
iterate this gep in order to adjust al the wefficients until no further optimisation can
be adieved.

If the number of clustersis high, for instance whenever we use the default value for
N, the number of training examples divided by 1Q then the previous approach
inspired in OC1 can be skipped (the results are quite similar). We can simply upcate
the function w attached to a duster u as the average of the functions w' of pairs
(w’,u’) whose winner nodeis u.

In any case, the regresson rules o found real a final improvement process The
ideaisthat w — u may corredly resolve assssnents of objeds nea u. That is, when
t,>t,, and bah t, and t, are nea u, w was devised for obtainingw- (t,-t,) > 0. But w
may fail when ore of the objedsis goingto be assessed by ancother rulew’ — u’. To
solve these situations we ae going to look for adequate slope modifiers a and
independent terms b such that the function o the regresson rule will now be

aw-J)+b < u. (1D

The procedure followed to find a and bfor ead regresson rule is amost the same
that we have just described for adjusting the wefficients g, of ead w. The only
differenceis that now we cnsider comparisons where only one of the objedsis nea
the ondtion o theruleto beimproved.



Functi on LEARN TO ASSESS COMPRISONS FROM EXAMPLEYL ACE

(comparisons set { u,<v,:i=1,...,n}, number of steps N) {
E={( ViZUi u): i=l,...n} O {( Viz4 ,v,): i=1,...n}
vi - vi -
/I To have comparable values in [0,1]
Normalize each component of conditions u, and v, inE pairs;

/I Now, we cluster the conditions of E examples

Gydceonditions(E), steps = N); //by default N = |E|/(2*10)

Let( w,u),( w,u,),...,( w,u,)bethe nodes of the graph
where w | are the average values of the training
instances having node i as the nearest one

/lthe next loop can be safety skipped when N is high

for eachnode( w, u,)ingraph do {

/Inotice th at the function w . is an arbitrary value
wo= Cel{t -t <t )&& Just fI<fut o ss Just lsfut o 5o @

improve relative slopes and independent terms of regression rules;
return regression rules;

}
Algorithm 1. The dgorithm that leans to asessfrom pair-wise mmparison examples (LACE).

4. Experimental results

In order to test the validity of our approach we mndicted a number of experiments.
The ideais to ded with assesanent problems where we know a priori the kind d
results that we would like to oltain.

To ill ustrate the way that our algorithm works, we start with a simple problem. Let
us consider objeds describable by orly one @ntinuots attribute x with valuesin [0,
1], and having as true assessment function the parabola ta(x)= -x(x-1), see Figure (1,
a). To buld atraining set of comparisons E, we generated 3000 pirs (x1,x2) with
values in [0,1], and we alded to E the pair (x1,x2) if ta(x1) > ta(x2), and we alded
(x2,x1) otherwise. Our algorithm learned from E the function f drawn in Figure (2, b).
Notice that while the adual values of f(x) and ta(x) are quite different, the relative
values are dmost the same. In fad, building a test set of comparisons using the same
procedure foll owed for E, we only foundthat the 0.03% of the pairs were eroneously
ordered byf.

A semnd mdage of experiments (see Table 1) was caried ou with objeds
describable by two continuots attributes: x and y. Once an asessnent function hed
been fixed, the objeds were randomly generated as 2-dimensional pointsin the stated
redangles, once we have generated two such oljeds, they are written in the
comparison set, the worse one (acwrding to the mrrespondng gal assessment
function) first. We alditionally generated another test set of comparisons, changing
the randam seed. Both sets had 3000 pirs. The arors reported are the percentage of
test pairs that were misplaced by the assesgment function learned by our algorithm.
These data sets oud be eay problemsfor our leaner, andin fad were o, as can be
sean in the scores reported in Table (2): However, we can appredate significantly
better scores when the regions with diff erent assesament behavior are separated.
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Fig. 3. The objeds to be @w®sed are described by x O [0, 1]. (8 The true asssament is
ta(x) = -x(x-1). (b) The function leaned by ou agorithm f. Only 1 o the 3000test pairs is
erroneously ordered byf.

Table 3. Experiments caried ou with gaal functions defined by two linea subfunctions with
separate domains. The original objeds to be asessed were vedors in the redangles [0, 999] x
[0,999] in the first two rows, and for the other two [200,299] % [0,999], and [700,799] x [0,999].
Both training and test sets have 3000 elements. We used orly 3 steps to adapt the underlying
GNG graph.

Goal functions Error
wGaty | 489%
=g S 5.46%
e faey i o] [023%
i e

Finally, we used some pubicly available regresson catasets in an attempt to ded
with almost real-world data. We built training and test sets providing comparisons
between the dassvalues of pairs of examples instead of training ontheir classlabels
as in the mnventiona setting; for ead example we randaomly seleded other 10
examples, 8 of them were placal in the training set and the other 2 went to the test set.
In order to compare the adievements of LACE, we used two well-known regresson
leaners: M5 [16, 20], and Cubist [6]. We trained M5 and Cubist with the whole
dataset, that is considering nd only the description d the objeds, but the numeric
class too. To test what they leaned, we mmpared the values provided for eath
comporent of the cmparison. The scores © foundare reported in Table (4).

Let us remark that the comparative reported in Table (4) is not fair for our LACE.
The reason is that regresgon leaners have accasto the true numericd classes for all
test examples, while LACE can orly seepairs where there ae differences, but withou
knowing the anount of those differences. As was pointed ou in the introduction, in
real-world cases we will not have the numeric dasses and so we will not able to use
M5’ or Cubist.



Table 4. Error scores of our learner in pubicly avail able regresson datasets in addition to the
parabola dataset described above. The CPU, Body fat were dowloaded from Cubist URL [6],
while Boston housing, and Liver disorders can be foundat UCI Repositoty [1]. The number of
steps followed by GNG was the default value, i.e., the number of training comparisons divided
by 10 Noticethat LAcE readed orly 0.03% errors when N was 3 in the parabola dataset.

dataset Cubist| M5' | LAcE

CPU 13.16%|11.00%|11.48%
Boston Housing| 8.99%| 9.19%| 7.01%
Body fat 17.26%15.48%|11.10%
Liver disorders |31.59%)31.30%|14.63%
Parabola 0.86%| 9.13%)| 3.93%
Average 14.37%15.22%| 9.63%

5. Related work

Tesauro tadkled asimilar problem in [17] for finding afunction able to seled the most
preferable dternative in his famous badkgammon dayer. His proposal was to enforce
a symmetric neural network architedure consisting d two separate subretworks, one
for ead oljed in the comparison. In addition, he enforced that both subretworks
have the same weights (only multiplied by -1 in the output layer). However, this
restriction in the training medhanism only worked properly with perceptron networks,
at least in hisapplicaionfield. Other perceptron approacdhes are described in [18,19].
In information retrieval, user preferences were modelled by means of preference
predicates leaned from a set of comparisons [3, 4, 5]. This is a quite different
approach sinceour aim isto oktain afunction able to assessgrader preferences with a
number; for our purposes it is not enoughto knowv which oljed is preferable.
Additionally, once you have apreference predicate, to order a set of objedsis a NP-
hard problem [5] sincethe transitivity of the leaned predicae is naot guaranteed at all.

6. Conclusions

In this paper, we have presented a new approach to oltaining sound assessment
functions of objeds. Our approach allows us to make use of a kind o knowledge
cgpable of satisfadorily ranking a set of objeds from the best to the worst, but that
fals in assesdng the ‘goodress of a single objed with an absolute number.
Assesgnents caried out in an absolute way are strondgy affeded by a batch effed in
the sense that they tend to number the quality of an objed with resped to the other
objeds in a batch, but not in an absolute sense, as we hope for when we asdgn a
number to quelity. This stuation is charaderistic of biologicd objeds, and espedally
in the food indwstry, in which the rules for dedding the degreeof quality of a product



are not usualy well defined, but the ranking o products is quite mnstant and well
accepted onthe part of consumers and market operators.

From a computational point of view, we have to oktain a float function from
training sets withou categorica or continuous classes. The problem has been tadkled
with a growing modificaion o Kohoren’s SOM based ona geometricd intuition o
the transformations that shoud be gplied to the training data. The dgorithm thus
built was tested with bah artificial and red-world data in order to show the ailiti es
of the method poposed. The resultsrefled avery high degreeof acaracy.

The limitations of our approach, which shoud be overcome in a future work, have
to do with the granularity of the underlying GNG graph that clusters training deta.
Additionally, we hope that an improvement in the placanent of condtions (u) in
regresson rules (w — u) would provide abetter performance of solutions with a
lower number of steps, seeTable 3.
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