
Restricted ∆-trees in
Multiple-Valued Logics?

I.P. de Guzmán, M. Ojeda-Aciego, and A. Valverde

Dept. Matemática Aplicada
Universidad de Málaga

Bvd. Louis Pasteur s/n (Campus de Teatinos)
{guzman,aciego,a valverde}@ctima.uma.es

Abstract. This paper generalises the tree-based data structure of ∆-
tree to be applied to signed propositional formulas. The ∆-trees allow
a compact representation for signed formulas as well as for a number
of reduction strategies in order to consider only those occurrences of
literals which are relevant for the satisfiability of the input formula. The
conversions from signed formulas to ∆-trees and vice versa are described
and a notion of restricted form based on this representation is introduced,
allowing for a compact representation of formulas in order to consider
only those occurrences of literals which are relevant for its satisfiability.

Keywords and topics: AI foundations, reasoning models, uncertainty man-
agement, Automated Reasoning, Many-valued logics.

Section: Paper track

? Research partially supported by Spanish DGI project BFM2000-1054-C02-02.

Restricted ∆-trees in
Multiple-Valued Logics?

I.P. de Guzmán, M. Ojeda-Aciego, and A. Valverde

Dept. Matemática Aplicada
Universidad de Málaga

{guzman,aciego,a valverde}@ctima.uma.es

Abstract. This paper generalises the tree-based data structure of ∆-
tree to be applied to signed propositional formulas. The ∆-trees allow
a compact representation for signed formulas as well as for a number
of reduction strategies in order to consider only those occurrences of
literals which are relevant for the satisfiability of the input formula. The
conversions from signed formulas to ∆-trees and vice versa are described
and a notion of restricted form based on this representation is introduced,
allowing for a compact representation of formulas in order to consider
only those occurrences of literals which are relevant for its satisfiability.
Keywords. Automated Reasoning. Knowledge Representation

1 Introduction

Proof methods for multiple-valued logic have developed alongside the evolution
of the notions of sign and signed formula. The use of signs and signed formulas
allows one to apply classical methods in the analysis of multiple-valued logics.
Forgetting the set of truth-values associated with a given logic, in the metalan-
guage one may interpret sentences about the multiple-valued logic as being true-
or-false. For example, in a 3-valued logic with truth-values {0, 1/2, 1} and with
{1} as the designated value, the satisfiability of a formula ϕ can be expressed
as: Is it possible to evaluate ϕ in {1}? In the same way, the unsatisfiability of
ϕ is expressed by: Is it possible to evaluate ϕ in {1, 1/2}? These questions can
be represented by the signed formulas {1}:ϕ and {1/2,1}:ϕ which are evaluated on
the set {0, 1} with the following meaning:

{1}:ϕ takes the value 1 iff ϕ can be evaluated in {1}

{1/2,1}:ϕ takes the value 1 iff ϕ can be evaluated in {1/2, 1}

In other words, the formulas in a signed logic are constructions of the form
S:ϕ, where S is a set of truth-values of the multiple-valued logic, called the sign,
and ϕ is a formula of that logic. The interpretations that determine the semantics
of the signed logic are defined from the interpretations of the multiple-valued
logic as follows:

Iσ(S:ϕ) = 1 if and only if σ(ϕ) ∈ S

? Research partially supported by Spanish DGI project BFM2000-1054-C02-02.

The first works to provide a systematic treatment of sets of truth-values as signs
were due to Hähnle in [5] and Murray and Rosenthal in [7]. There the notion of
signed formula is formally introduced. In [5] these tools are used in the framework
of truth tables, while in [7] they are used to develop another, nonclausal proof
method, that of dissolution. As a result of these works, the use of signed formulas
in the field of automated deduction has been extended, and has lead to significant
advances in this method; therefore, efficient representations for signed formulas
are necessary in order to describe and implement efficient algorithms on this
kind of formulas.

An approach to the efficient handling of signed formulas that one can find in
the literature is the clause form [6], which allow the extension of classical tech-
niques such as resolution, or Davis-Putnam procedures. Another representation
is the Multiple-Valued Decision Diagrams (MDDs) and its variants [11, 2], but
they are not useful for the study of satisfiability because although they make
straightforward the testing of satisfiability, the construction of a restricted MDD
for a given formula is exponential in the worst case. Some specific representa-
tion approaches exist for particular tasks, such as labelled rough partitions [3]
to work with multiple-valued relations.

The approach we follow in this paper is that introduced in [4], interpreting
signed formulas given means of ∆-trees, that is, trees of clauses and cubes. We
will be mainly concerned with the metatheory of multiple-valued ∆-trees, not
with implementation issues; however, the results obtained for the classical case
are promising. It is interesting to recall the intrinsic parallelism between the
usual representation of cnfs as lists of clauses and our representation of signed
formulas as lists of ∆-trees.

Clause ; List of literals
Cnf ; List of clauses
∆-tree ; Tree of clauses/cubes
signed formula ; List of ∆-trees

In this multiple-valued version, we will consider clauses and cubes with basic
literals: signed literals with singleton signs.

2 Reduced signed logics

The notion of reduced signed logic was introduced in [8] as a generalisation of
previous approaches. It is developed in the general framework of propositional
logics, without reference either to an initially given multiple-valued logic or to
a specific algorithm, ie. the definition is completely independent of the partic-
ular application at hand. The generalisation consists in introducing a possible
truth values function to restrict the truth values for each variable. These restric-
tions can be motivated by the specific application and they can be managed
dynamically by the algorithms. For example, in [8] these restrictions are used
to improve the efficiency of tableaux methods; in [10] are used to characterize
non-monotonic reasoning systems.

2

The formulas in the reduced signed logics are built by using the connectives
∧ and ∨ on the atomic formulas. The atomic formulas are the ω-signed literals :
if n = {1, . . . , n} is a finite set of truth-values,1 V is the set of propositional
variables and ω : V → (2n

r ∅) is a mapping, called the possible truth-values
function, then the set of ω-signed literals is

litω = {S:p | S ⊆ ω(p), p ∈ V} ∪ {⊥,>}

In a literal ` = S:p, the set S is called the sign of ` and p is the variable of `.
The opposite of a signed literal S:p is (ω(p) r S):p and will be denoted S:p.

The semantics of Sω, the signed logic valued in n by ω, is defined using the
ω-assignments. The ω-assignments are mappings from the language into the set
{0, 1} that interpret ∨ as maximum, ∧ as minimum, ⊥ as falsity, > as truth and
have the following properties:

1. For every p there exists a unique j ∈ S such that I({j}:p) = 1
2. I(S:p) = 1 if and only if there exists j ∈ S such that I({j}:p) = 1

These conditions arise from the objective for which signed logics were created:
the ω-assignment I over S:p is 1 if the variable p is assigned a value in S; this
value must be unique for every multiple-valued assignment and thus unique for
every ω-assignment. This is why we some times will write I({j}:p) = 1 as I(p) = j.

An important operation in the sequel will be the reduction of a signed lo-
gic. This operation decreases the possible truth-values set for one or more pro-
positional variables. The reduction will be forced during the application of an
algorithm but it can also help us to specify a problem using signed formulas.
Specifically, we will use two basic reductions: to prohibit a specific value for a
given variable, [p 6= j], and to force a specific value for a given variable, [p = j]:
If ω is a possible truth-values function, then the possible truth-values functions
ω[p 6= j] and ω[p = j] are defined as follows:

ω[p 6= j](v) =

{

ω(p) r {j} if v = p

ω(v) otherwise
ω[p = j](v) =

{

{j} if v = p

ω(v) otherwise

If A is a formula in Sω, we define the following substitutions:

– A[p 6= j] is a formula in Sω[p6=j] obtained from A by replacing {j}:p by ⊥,
{j}:p by > and S:p by (S r {j}):p. In addition, the constants are deleted
using the 0-1-laws.

– A[p = j] is a formula in Sω[p=j] obtained from A by replacing every literal
S:p satisfying j ∈ S by > and every literal S:p satisfying j /∈ S by ⊥; in
addition, the constants are deleted using the 0-1-laws.

An immediate consequence is the following: if I is a model of A in Sω and
I(p) 6= j, then (the restriction of) I is also a model of A[p 6= j] in Sω[p6=j]; if I is
a model of A in Sω and I(p) = j, then I is a model of A[p = j] in Sω[p=j].

1 The specific elements of n are not important, in the examples of this work we will
use n = {1, . . . , n} as set of truth values in a n-valued logic.

3

Throughout the rest of the paper, we will use the following standard defini-
tions. A signed formula A in Sω is said to be satisfiable if there is an ω-assignment
I such that I(A) = 1; in this case I is said to be a model for A. Two signed for-
mulas A and B are said to be equisatisfiable, denoted A ≈ B, if A is satisfiable iff
B is satisfiable. Two formulas A and B are said to be equivalent, denoted A ≡ B,
if I(A) = I(B) for all ω-assignment I . The symbols > and ⊥ denote truth and
falsity. We will also use the usual notions of clause (disjunction of literals) and
cube (conjunction of literals). A literal ` is an implicant of a formula A if ` |= A.
A literal ` is an implicate of a formula A if A |= `.

We will use the standard notions of list and tree. Finite lists are written in
juxtaposition, with the standard notation, nil, for the empty list; if λ and λ′

are lists, ` ∈ λ denotes that ` is an element of λ; the concatenation of two lists λ
and λ′ is written as either λ〈〉λ′ or λ ∪ λ′; the inclusion and intersection of lists
are defined in the usual way.

3 Multiple-valued ∆-trees

The satisfiability algorithm we will describe is based on the structure of multiple-
valued ∆-trees. In the classical case, nodes in the ∆-trees correspond to lists of
literals; in the multiple-valued case we will exploit a duality in the representation
of signed literals in terms of basic literals (whose sign is a singleton). To better
understand this duality, let us consider the literal {1,4}:p in the signed logic Sω

where ω(p) = {1, 2, 4, 5}, then:

{1,4}:p ≡ {1}:p ∨ {4}:p {1,4}:p ≡ {2}:p ∧ {5}:p

This way, we have both a disjunctive and a conjunctive representation of signed
literals using the literals {j}:p and {j}:p, which are called basic literals. In the
sequel, we will use a simpler representation for these literals:

pj
def
= {j}:p pj

def
= {j}:p

The basic literals pj are the positive literal and their opposites, pj, are the
negative literal. In the ∆-tree representation we work with lists of positive literals.

Definition 1.

1. A list/set of positive literals, λ, is saturated for the variable p if pj ∈ λ for
all j ∈ ω(p). (This kind of lists/sets will be interpreted as logical constants.)

2. A ∆-list is either the symbol] or a list of positive literals such that it does not
have repeated literals and it is non-saturated for any propositional variable.

3. A ∆-tree T is a tree with labels in the set of ∆-lists.

In order to define the operator sgf which interprets a ∆-tree as a signed
formula, we should keep in mind that:

4

1. The empty list, nil, has different conjunctive and disjunctive interpretations,
since it is well-known the identification of the empty clause with ⊥ and the
empty cube with >; but anyway it corresponds to the neutral element for
the corresponding interpretation. Similarly, we will use a unique symbol,],
to represent the absorbent elements, ⊥ and >, under the conjunctive and
disjunctive interpretation, respectively.

2. A given ∆-tree will always represent a conjunctive signed formula, however,
its subtrees are alternatively interpreted as either conjunctive or disjunct-
ive signed formulas, i.e. the immediate subtrees of a conjunctive ∆-tree are
disjunctive, and vice versa.

Definition 2. The operator sgf over the set of ∆-trees is defined as follows:

1. sgf(nil) = >, sgf(]) = ⊥, sgf(`1 . . . `n) = `1 ∧ · · · ∧ `n

2. sgf

(

λ

T1 . . . Tm

)

= sgf(λ) ∧ dsgf(T1) ∧ · · · ∧ dsgf(Tm)

where the auxiliary operator dsgf is defined as follow:

1. dsgf(nil) = ⊥, dsgf(]) = >, dsgf(`1 . . . `n) = `1 ∨ · · · ∨ `n

2. dsgf

(

λ

T1 . . . Tm

)

=dsgf(λ) ∨ sgf(T1) ∨ · · · ∨ sgf(Tm)

In short, we will write
∧

T = sgf(T) and
∨

T = dsgf(T); in particular, if T = λ =

`1 . . . `n we have:
∧

λ = `1 ∧ · · · ∧ `n and
∨

λ = `1 ∨ · · · ∨ `n.

The notions of validity, satisfiability, equivalence, equisatisfiability or model
are defined by means of the sgf operator; for example, a ∆-tree, T is satisfiable
if and only if sgf(T) is satisfiable and the models of T are the models of sgf(T).

In the next definition we introduce an operator to make the converse trans-
lation, that is, to define the ∆-tree associated to a signed formula. To begin
with, we will introduce the representation of clauses and cubes in terms of basic
literals.

Definition 3.

1. Given A = S1:p1 ∨ · · · ∨ Sn:pn, consider the following set of positive literals:

A = {ps | p = pi for some i and s ∈ Si}

Then the ∆-list d∆List(A) is] if A is saturated for some pi, otherwise it
is the list of the elements of A.

2. Given A = S1:p1 ∧ · · · ∧ Sn:pn, consider the following set of positive literals:

B = {ps | p = pi for some i and s ∈ ω(p) r Si}

Then the ∆-list c∆List(A) is] if B is saturated for some pi, and it is the
list of the elements of B otherwise.

5

Example 1. In the logic Sω with ω(p) = {1, 2, 4, 5}, ω(q) = {1, 2, 3}, ω(r) =
{2, 5}.

– d∆List({1,4}:p ∨ {1,2}:q) = p1 p4 q1 q2
– c∆List({1,4}:p ∧ {1,2}:q) = p2 p5 q3
– d∆List({1,4}:p∨{2}:r∨{2,4,5}:p) =], for {p1, p2, p4, p5, r2} is saturated for p.
– d∆List({1}:q ∧ {1,2,4}:p ∧ {2}:q) =], for {p5, q1, q2, q3} is saturated for q.

In the following definition, we will work with lists of ∆-trees. To help the
reading, we will write these lists with the elements separated by commas and
using square brackets as delimiters. This way, for example, p1s1 . . . pnsn is a ∆-
list, and [p1s1, . . . , pnsn] is a list of ∆-trees (in which each ∆-tree is a leaf, which
turns out to be a singleton ∆-list).

Definition 4. Let A be a signed formula, ∆Tree(A) is a list of ∆-trees defined
recursively as follow:

1. If A is a disjunctive signed formula, and the disjunction of its literals dis-
juncts is A0 = S1:p1∨· · ·∨Sk:pk, and A1,. . . , An are the non-literal disjuncts
of A, then
(a) If k = 0 then ∆Tree(A) = [c∆Tree(A1), . . . , c∆Tree(An)] (in this case,

necessarily n 6= 0)
(b) If d∆List(A0) =], then ∆Tree(A) = [nil] (that is, a list with just one

∆-tree, the leaf nil.)
(c) ∆Tree(A) = [c∆List(S1:p1), . . . , c∆List(Sk:pk),

c∆Tree(A1), . . . , c∆Tree(An)] otherwise

2. If A is a conjunctive signed formula, then ∆Tree(A) = [c∆Tree(A)] (that
is, a list with just one ∆-tree)

The auxiliary operators d∆Tree and c∆Tree are defined as follows:

– Let A be a conjunctive signed formula, let A0 = S1:p1 ∧ · · · ∧ Sk:pk be the
conjunction of its literal conjuncts, and let A1, . . . , An be the non-literal con-
juncts of A. If c∆List(A0) =], then c∆Tree(A) =]; if c∆List(A0) 6=],
then

c∆Tree(A) =
c∆List(A0)

d∆Tree(A1) . . . d∆Tree(An)

– Let A be a disjunctive signed formula, let A0 = S1:p1 ∨ · · · ∨ Sk:pk be the
disjunction of its literals disjuncts, and let A1, . . . , An be the non-literal dis-
juncts of A. If d∆List(A0) =], then d∆Tree(A) =]; if d∆List(A0) 6=],
then

d∆Tree(A) =
d∆List(A0)

c∆Tree(A1) . . . c∆Tree(An)

A ∆-tree will always be interpreted as a conjunctive signed formula. To work
with arbitrary signed formulas, we will use lists of ∆-trees; this way, the study
of satisfiability can be performed in parallel with the elements of the list.

6

Example 2. The following examples are from S3.

∆Tree(({1,2}:p ∨ {2}:q) ∧ ({2,3}:p ∨ {1,3}:r)=

[

nil

p1p2q3 p2p3r1r3

]

∆Tree({2,3}:q ∨ ({1,2}:p ∧ ({1,2}:q ∨ {2,3}:p) ∧ {3}:q ∨ {1}:p)))

=

[

q1,
p3

p2p3q1q2 p1q3

]

The next theorem shows that the operators sgf and ∆Tree are inverse, up
to equivalence.

Theorem 1. Let A be a signed formula

1. If A is disjunctive, then dsgf(d∆Tree(A)) ≡ A
2. If A is conjunctive, then sgf(c∆Tree(A)) ≡ A

3. If ∆Tree(A) = [T1, . . . , Tn], then A ≡
∧

T1 ∨ · · · ∨
∧

Tn. In particular, if n = 0,
then A ≡ ⊥.

From this result we have that, in some sense, the structure of ∆-tree allows to
substitute reasoning with literals by reasoning with clauses and cubes. Other im-
portant consequence is that the structure of ∆-tree gives us a means to calculate
implicants and implicates, which will be used in the reduction transformations
below.

Proposition 1. If T is rooted with λ and pj ∈ λ, then:

sgf(T) |= pj and pj |= dsgf(T)

4 Restricted ∆-trees

In multiple-valued logic there is not a notion which captures the well-known
definition of restricted clauses of classical logic, in which opposite literals and
logical constants are not allowed. We can say that restricted ∆-trees are ∆-trees
without trivially redundant information. The aim of this section is to give a
suitable generalisation built on the notion of restricted multiple-valued ∆-tree
which is built from its classical counterpart [4].

To begin with, we need the technical definitions given below and in the
subsequent sections:

Definition 5. The operators Uni and Int are defined on the set of ∆-lists as
follows. If λ1, . . . , λn are ∆-lists then:

1. Uni(λ1, . . . , λn) =] if either there exists i such that λi =] or
⋃n

i=1 λi is
saturated for some variable p. Otherwise, Uni(λ1, . . . , λn) =

⋃n
i=1 λi.

2. Int(λ1, . . . , λn) =] if λi =] for all i.
Otherwise, Int(λ1, . . . , λn) =

⋂

λi 6=] λi.

7

Rule C1]

T1 . . . Tm

�]

Rule C2 λ

T1 . . . Tm]

� λ

T1 . . . Tm

Rule C3 λ

T1 . . . Tm nil

�]

Rule C4 λ1

T1 . . . Tn nil

λ2

Tn+1 . . . Tm

� Uni(λ1, λ2)

T1 . . . Tn Tn+1 . . . Tm

Rule C5 If λ2 ⊆ λ1 then λ1

T1 . . . Tn λ2

�]

Rule C6 If Uni(λ1, λ2) =] then
λ1

T1 . . . Tn λ2

Tn+1 . . . Tm

� λ1

T1 . . . Tn

Rule S λ

T1 . . . Tm pji1
. . . pjik

� Uni(λ, pjik+1
. . . pjin)

T1 . . . Tm

provided that ω(p) = {ji1
, . . . , jik , jik+1

, . . . , jin}.
Rule U λ

T1 . . . Tn λ′

λ1

. . .

. . . λm

. . .

� Uni(λ, µ)

T1 . . . Tn λ′

λ1

. . .

. . . λm

. . .

if nil 6= µ =

{

Int(λ1, . . . , λm) if λ′ = nil

Int(λ1, . . . , λm, pjik+1
. . . pjin) if λ′ = pji1

. . . pjik

provided that ω(p) = {ji1
, . . . , jik , jik+1

, . . . , jin}.

Fig. 1. Rewriting rules to obtain the restricted form

The following definition gathers the specific situations that will not be al-
lowed in a restricted form: nodes in the ∆-tree which, in some sense, can be
substituted by either ⊥ or > without affecting the meaning and leaves with only
one propositional variable; in addition, our restricted trees must have explicitly
the implicants and implicates of every subtree in order to perform the reductions
based in these objects (see [9]).

Definition 6. Let T be a ∆-tree.

1. A node of T is said to be conclusive if it satisfies any of the following con-
ditions:

– It is labelled with], provided that T 6=].
– It is either a leaf or a monary node labelled with nil, provided that it is

not the root node.
– It is labelled with λ, it has an immediate successor λ′ which is a leaf and

λ′ ⊆ λ.

8

– It is labelled with λ and Uni(λ, λ′) =], where λ′ is the label of its prede-
cessor.

2. A leaf in T is said to be simple if the literals in its label share a common
propositional variable.

3. Let λ be the label of a node of T ; let λ′ be the label of one immediate successor
of λ and let λ1, . . . , λn be the labels of the immediate successors of λ′. We
say that λ can be updated if it satisfies some of the following conditions:

– λ′ = nil and Int(λ1, . . . , λm) 6⊂ λ.

– λ′ = pji1 . . . pjik
and Int(λ1, . . . , λm, pjik+1

. . . pjin) 6⊂ λ, provided that
ω(p) = {ji1 , . . . , jik

, jik+1
, . . . , jin}.

We say that T is updated if it has no nodes that can be updated.

4. If T is updated and it has neither conclusive nodes nor simple leaves, then
it is said to be restricted.

The rewriting rules (up to the order of the successors) in figure 1 allow
to delete the conclusive nodes and simple leafes of a ∆-tree and in addition,
to update the updatable nodes. Note that the rewriting rules have a double
meaning; since they need not apply to the root node, the interpretation can be
either conjunctive or disjunctive. This is just another efficiency-related feature
of ∆-trees: duality of connectives ∧ and ∨ gets subsumed in the structure and
it is not necessary to determine the conjunctive/disjunctive character to decide
the transformation to be applied.

Theorem 2. If T is a ∆-tree, there exists a list of restricted ∆-trees, [T1, . . . , Tn],

such that sgf(T) ≡
∧

T1 ∨ · · · ∨
∧

Tn.

The proof of the theorem allows to specify a procedure to obtain [T1, . . . , Tn].
Let T ′ be the ∆-tree obtained from T by exhaustively applying the rules C1,
C2, C3, C4, C5, C6, S, and U till no one of them can be applied any more, then
the list of restricted ∆-trees [T1, . . . , Tn], denoted by Restrict(T), is defined as:

1. If T ′ =

nil

nil

T1 . . . Tn

then Restrict(T) = [T1, . . . , Tn]

2. If T ′ =

nil

λ

T1 . . . Tn

, and dsgf(λ) = S1:p1∨· · ·∨Sk:pk with pi 6= pj for every

i 6= j, then Restrict(T) = [c∆List(S1:p1), . . . , c∆List(Sk:pk), T1, . . . , Tn]

3. Otherwise, Restrict(T) = [T ′].

Example 3. Let us obtain the restricted form of the following ∆-tree in Sω with
ω(p) = 5, ω(q) = {1, 3, 5}, ω(r) = {1, 2}, ω(s) = {1, 4, 5}.

9

nil

nil

q1

p1p4q3 q3s4

r1s4s5

nil

p1p5r2 p2p5q5s1s5

p3r1

q1s4

p5s5

Rule C5 can be applied on the circled node because it contains its right
successor: the subtree is substituted by] and it is deleted by rule C2 obtaining the
leftmost ∆-tree in the figure below. The restricted form is obtained by applying
rules C4 and U on the corresponding circled nodes.

C5
� nil

nil

q1

p1p4q3 q3s4

r1s4s5

nil

p1p5r2

C4
� p1p5r2

nil

q1

p1p4q3 q3s4

r1s4s5

U
� p1p5r2

q3

q1

p1p4q3 q3s4

r1s4s5

References

1. G. Aguilera, I. P. de Guzmán, M. Ojeda-Aciego, and A. Valverde. Reductions for
non-clausal theorem proving. Theoretical Computer Science, 266(1), 2001.

2. C. Files, R. Drechsler, and M. Perkowski. Functional decomposition of MVL func-
tions using multi-valued decision diagrams. In Proc. ISMVL’97, pp. 7–32. IEEE
Press, 1997.

3. S. Grygiel and M. Perkowski, Labeled rough partitions—a new general purpose
representation for multiple-valued functions and relations, Journal of Systems

Architecture, 47(1):29–59, 2001.
4. G. Gutiérrez, I. P. de Guzmán, J. Mart́ınez, M. Ojeda-Aciego, and A. Valverde.

Satisfiability testing for Boolean formulas using ∆-trees. Studia Logica, 2002. To
appear.

5. R. Hähnle. Uniform notation of tableaux rules for multiple-valued logics. In Proc.

ISMVL’91, pp. 238–245. IEEE Press, 1991.
6. R. Hähnle. Short conjunctive normal forms in finitely valued logics. Journal of

Logic and Computation, 4(6):905–927, 1994.
7. N. V. Murray and E. Rosenthal. Improving tableau deductions in multiple-valued

logics. In Proc. ISMVL’91, pp. 230–237. IEEE Press, 1991.
8. M. Ojeda-Aciego, I. P. de Guzmán, and A. Valverde. Multiple-Valued Tableaux

with ∆-reductions. In Proc. of IC-AI’99, pp. 177–183. C.S.R.E.A Press, 1999.
9. I. P. de Guzmán, M. Ojeda-Aciego, and A. Valverde. Reducing signed propositional

formulas. Soft Computing, 2(4):157–166, 1999.
10. D. Pearce, I. P. de Guzmán, and A. Valverde. Computing Equilibrium Models using

Signed Formulas. In Proc. of CL’2000, London, UK, 2000. Springer-Verlag.
11. A. Srinivasan, T. Karn, S. Malik, and R. Brayton. Algorithms for discrete function

manipulation. In Proc. Intl. Conf. on CAD, pages 92–95, 1990.

10

