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Abstract. Most of control algorithms for robotic reaching and grasping tasks,
from visual and motor perception systems, are based on feedbacked systems. It
supposes a limitation for the performance of remote reaching applications and
for the robustness of the system. In this paper, a very robust learning-based
model for visual-motor coordination is presented. This architecture is based on
how the human system projects the sensorial stimulus onto motor joints and
how it sends motor commands to each arm in open-loop mode, starting from
initial visual and propioceptive information. The self-organizing characteristics
of this model have allowed to obtain good results on robustness, flexibility and
adaptability in both simulation and real robotic platforms. Coordination of the
information from different spatial representations is based on VAM (Vector As-
sociative Maps) algorithms, developed in CNS (Boston University). Indeed,
compatibility requirements and system adaptation capability, give a solution for
control of redundant systems.

1   Introduction

Motor equivalence computations allow humans and other animal to flexibly employ an
arm with more degrees of freedom than the space in which it moves to carry out
reaching tasks under conditions that may require novel joint configurations. Any
three-dimensional point can typically be reached by one arm using multiple motor
means. Psychophysical studies of reaching, handwriting and drawing have shown that
the spatial trajectory is more invariant that the joint rotations, or than force-time pat-
terns [1], [3].

The need for spatial representation in the control of motor-equivalent behaviors is
not merely a matter of defining target movements with respect to an external 3D
space. Manly it concerns in how internal representations of 3D space can be used to



control motor equivalent actions. These internal representations are expressed in both
head-centered coordinates and body-centered coordinates since the eyes move within
the head, whereas the head, arm, and legs move with respect to the body. Several
researches of CNS (Cognitive and Neural Systems) of Boston University, have pro-
posed different models of human neural structures, involved in target reaching tasks.
These models are based on VAM (Vector Associative Maps) architectures and explain
how the visual-motor system projects the sensorial stimuli onto motor commands in
redundant systems. One of these architectures is named AVITE (Adaptative Vector
Integration To End Point). In [2], a model for visuo-tactile-motor integration in ro-
botic reaching and grasping task, using AVITE models is described.

The goal of this work is to design a system which is capable of autonomously
learning to combine visual, spatial, and motor information in a way that supports mo-
tor equivalent reaching behaviors. In particular, it can learn an inverse kinematic
transformation from directions in 3-D space to joint rotations that are capable of
moving the arm in these spatial directions. In order to increase the capabilities of
robustness, adaptability and flexibility, as well as to reach the target in an open-loop
way, an adaptative process based on learning cells has been designed. These charac-
teristics give to the system the capability of remote operation for precise reaching
tasks.

2   Characteristics and Description of  Propose Neurocontroller

The neurocontroller implemented on the robotic platform follows neuro-biological
models proposed in the CNS (Cognitive and Neural Systems) research group of the
Boston University. Grossberg, Bullock and others, proposed some models of the ani-
mal neural system related with the reaching process. Adaptation of these models to
redundant robotic platforms has permitted to develop a neural control architecture for
reaching tasks which integrates several perception systems (visual, tactile and propio-
ceptive).

The relationship between both representation spaces is carried out by means of
VAM (Vector Associative Maps) adaptative algorithms. It consists of a self-
organizing neural model that quickly projects sensorial onto motor information in
robust mode. This control architecture for reaching carries out the cinematic control of
a redundant robot arm guided by the visual information given by acquisition system of
the LINCE1 stereohead.

The most important characteristic is that the neuro-controller does not need the ro-
botic model of the experimental platform, and therefore, does not need to calibrate the
system. All the necessary knowledge of the robotic platform is learned by means of
action – reaction cycles form visual-motor trials. This neural architecture has been
developed integrating a set of neural network of some discovered biological function
carries out by the animal neural system. This architecture is characterised by the fol-
lowing capabilities:

                                                          
1 LINCE Stereohead has been entirely developed by NEUROCOR Research Group, Spain



− Integration of  multiple algorithms. This architecture integrates different algorithms
which execute concrete task. The consistency of the communication between these
algorithms warrants the global robustness of the architecture.

− Parallel. The architecture is able to execute multiple algorithms, and simultane-
ously each algorithm is executed simultaneously in parallel.

− Relocation of  resources, dynamically. With the purpose of facilitated the image
processing, the system is able to lead the visual sensors in order to find a better
point of view which alleviates the visual processing load.

− Active, the global system has the active perception capability.
− Reactive, meaning the capability to be data-driven by environment changes.

In the structure of neuro-controller, several real-time concurrent processes are de-
veloped for the performance of the different tasks intervening in the final reaching
operation. This architecture contains three main modules, which correspond with the
interconnected processes: spatial internal representation module, stereohead controller
and robot arm controller.

2.1. Spatial Internal Representation Module

This module carries out an internal representation on two reference frames, a head-
centred and a body-centred frame, of the position of visually selected objective (ro-
botic arm end-effector or object). It captures the images, processes the data based on
colour parameters and transmits the selected information by means of visual algorithm
and visual system.

This algorithmic module has been developed, starting from neural network models
of how the brain learns spatial representation, with which to control sensory-guided
and memory-guided eye and limb movements. These spatial representations are ex-
pressed in both head-centred coordinates and body-centred coordinates, because the
eyes move within the head, whereas the head, arms, and legs move with respect to the
body. The structure of this spatial representation module is based on biological mod-
els, which explain how animals do this representation. In a binocular system, it is
possible to represent the position of an objective from the geometrical properties of
the head: version, vergence and elevation.

2.2. Stereohead controller

This module implements a visuo-motor control for the stereohead ocular joints. This
controller moves the neck and ocular joints of the stereohead. It positions the stereo-
head in a situation of symmetric vergence, which is the most favourable position for
visual processing and position representation.

For the control of the ocular joints a AVITE algorithm has been used. Figure 1
summarises the main components of the neural head controller.
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Fig. 2. Implementation scheme of neuro-controller. In this figure the blocks into the controller
are shown, including the real-time processes that have been implemented

The TPV vector (Target Position Vector) represents the desired final position of
the head. When an action of foveation is carried out, the Body-Centered Spatial Rep-
resentation vector of the target point is charged in the TPV. The PPV vector (Present
Position Vector) represents the real position of the head, this vector is charged with
the Body-Centered Spatial Representation vector of the gaze point. The difference
vector, ∆VT, continuously compute the discrepancy between present position vector
and the desired target position vector. The output of the difference vector is converted
into commands to the ocular joints. This conversion is carried out in a transformation
with fixed weights. The neck controller has the function of maintaining the head
structure in the best position in order to perform the visualization of the targets. The
optimal position is that in which the head has zero version angle and zero elevation
angle. To resolve this problem, a self-organizing neural network based on VITE
model has been used. The mapping between version variable (φH) and a neck compen-
sation variable (αpan) is established by means of an adaptative weight.

Hpanpan z φα ∆⋅=∆ (1)

In the learning phase, ERG (Endogenous Random Generator) module achieves
panoramic movements with random values of incremental rotation angles. Then, the
ocular controller module fix the target and the spatial representation module calculates
the new incremental values for  (∆φH) with respect to reference situation (φH=0).

2.3. Robot Arm Controller

This module carries out the positioning of the arm over a point marked by the stereo-
head. This algorithm receives the absolute internal representation of the end-effector
position and the absolute internal representation of the point marked by the stereo-



head, and determinates in one step the angular commands to the arm joints to reach
the desired point.

A neural controller the visual positioning of a robot manipulator has been devel-
oped. This neural controller is based in the biologically inspired AVITE model, which
gives an explication of how animals do the control of their limbs. The resulting con-
troller gives a solution to the motor equivalence problem and has the adaptation capa-
bility to the lose of degrees of freedom maintaining its performance in spice of a sud-
denly internal change. Also, this neural control algorithm has the capability to perform
without additional learning, reaching tasks with tools of variable lengths, with distor-
tions of visual input, and also has the capability to perform blind reaches. All the
workspace of the robot arm has been divided in cells. A scheme of this algorithm is
shown in figure 2.
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Fig. 2. This scheme shows the scene for learning process. The 3D space is divided into small
learning cells. So, the system obtains several sensorial-motor coordination maps in order to
achieve precise reaching operations in open-loop mode.

3   Sensorial-Motor Coordination based on Learning Cells

Each cell has an independent behaviour of the others, that is, if one cell is excited the
others are inhibits. Each cell implements the spatial – rotation transformation.



In order to control the arm/hand subsystem, the neuro-controller must obtain the
propioceptive data from the joints and visual information also according to the VAM
learning model from which is inspired. Figure 3 shows the scheme of learning system.

Fig. 3. Learning cell algorithm. The elements of the cell algorithm are: TPVs (desired spatial
position of the arm), PPVs (spatial position of the cell center), PPVm (angular position of robot
arm joints), DVs (different between TPVs and PPVs) and DVm (result of the transformation
between spatial and rotation increments). The center of the cell stores the spatial coordinates
and the motor coordinates in that point.

When a cell is excited, the center of the cell applies its content into PPVm and
PPVs vector. The DVs vector calculates the difference between the center of the cell
and the desired position. The DVs is transformed into the DVm through a set of neu-
rons. The resulting increments are integrated into the PPVm. The learning phase is
based in the knowledge acquired in action-reaction cycles. During this phase, random
increments are introduced in the DVm vector, the system produces these movements
and its spatial effect is taken over the DVs vector. In this way, the neuron weights are
updated by the equation:
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The final reaching operation is separated in two movements. The gross process is
carried out by means of mapping of three-dimensional spatial positions of prefixed
points (centres of cells) and the end-effector position of the arm. The fine approxima-
tion is carried out by means of implemented VAM model for learning the mapping
between increments of arm joints and difference of position between present position
(end-effector position) and desired position  (target visual position).  The specifica-
tions of this neuro-controller depend strongly of the number of cells that are prefixed,
the dimension of each cell and the learning trials.



4 Experimental Results

The implementation of the proposed system has been carried out in both simulation
and real robotic installation. Simulation results - figure 4 -have allowed to verify the
capability of the system for being applied to different redundant robotic systems.

Fig. 4. Simulation processes in redundants platforms for reaching one prefixed spatial point

The experimental tasks were developed in a real robotic installation - figure 5-,
formed by LINCE stereohead (5 d.o.f), robotic DEXTER2 (7 d.o.f) arm and
MARCUS hand (2 d.o.f). Initially, vision system detects the specified object and the
end-effector, based on colour information.  Then, the spatial representation of both
points is calculated. Finally, the neuro-controller projects that information over motor
joints and plans the gross and fine movement, in order to reach and grasp the object

Fig. 5. This picture shows the robotic installation. The communication between neuro-
controller, vision system and robotic arm-hand is based on TCP/IP protocol

                                                          
2 DEXTER and MARCUS robots belong to ARTS Laboratory (Pisa, Italy)



The experiments have been focused to evaluate the characteristics of the neuro-
controller about robustness (repeatability and affordability), adaptability, adaptability
(the same task with different objects) and flexibility (the same task in variable envi-
ronment conditions). Next tables show the obtained results in each category.

Table 1. Robustness

Table 2. Adaptability. Reaching and grasping of objects with different shaps and dimmensions,
in the same place

Trial Object Result Pos. Error [cm]

x y z x y z

1 Big Cylinder 67,99 -15,84 -3,45 68,039 -15,451 2,035 Success 0,39

2 Big Parallelepiped 67,99 -15,84 -3,45 68,867 -12,776 1,844 Success 3,19

3 Big Cube 67,99 -15,84 -3,45 70,281 -10,906 0,22 Fail 5,44

4 Little Cylinder 67,99 -15,84 -3,45 68,094 -12,279 1,412 Success 3,56

5 Little Sfere 67,99 -15,84 -3,45 66,954 -13,684 0,64 Fail 2,39

6 Little Cube 67,99 -15,84 -3,45 67,079 -13,768 0,555 Success 2,26

Object Position [cm] Hand Position [cm]

Table 3. Adaptability. Reaching and grasping the same object in different places of the same
learning cell, evaluating the error in positioning the arm.

T rial R e sult pos. Error [cm]

x y z x y z

P 1 78,6 5,35 -4,32 81,66 4,22 -0,6 S uccess 3,26

P 2 79,03 13,06 -2,92 81,05 12,41 -0,26 S uccess 2,12

P 3 78,4 0,95 -3,24 81,42 -1,79 -0,18 Fai l 4 ,08

P 4 85,92 4,75 -5,44 86,62 1,1 -2,12 S uccess 3,72

P 5 72,15 6,2 -4,67 75,91 5,27 0,86 S uccess 3,87

A verage 3,41

Variance 0,78

Object Position [cm] Hand Position [cm]



Table 4. Adaptability. Reaching and graspin the same object, moving the object from a cell to
another cell, after a learning phase of 10 positions

Trial Cell Result Pos.error [cm]

x y z x y z

1 First Cell 79,9 6,78 -4,32 80,77 3,7 -0,23 Success 3,20

2 First Cell 79,9 6,78 -4,32 80,48 4,04 0,25 Success 2,80

3 First Cell 79,9 6,78 -4,32 80,54 3,86 0,34 Success 2,99

4 Second Cell 76,4 33,97 -3,65 76,33 32,27 1,79 Success 1,70

5 Second Cell 76,4 33,97 -3,65 76,7 32,67 1,89 Success 1,33

6 Second Cell 76,4 33,97 -3,65 76,58 32,58 1,59 Success 1,40

Mean 2,24
Variance 0,85

Object Position [cm] Hand Position [cm]

Table 5. Flexibility. Evaluationg the system performance, moving the LINCE stereohead to
another position and after a previous learning phase. This new srelative situation between
robotic head and hand/arm is showed in figure 6.

Fig. 6. This control system is independent of the relative position between the robotic head and
the robotic ar,m-hand. The  obtained results demonstrate the flexibility of the system



6   Conclusions

In this paper the used methodology and techniques in the integration of the all HW
and SW modules into a system for reaching tasks has been presented. It includes sen-
sorial devices, actuator devices and a neuro-controller, implementing a biologically
inspired model of sensory-motor coordination in reaching operations.

This multisensorial architecture can be applied to any redundant robotic system,
starting from visual and propioceptive perception systems. The implemented algo-
rithm is based on neurophisiological models, developed in CNS (Boston University)
explaining how human behaviour is learning bay means of action-perception cycles.
Indeed, the open-loop behaviour for reaching operations allows remote reaching ap-
plications.

The design specifications of the system have allowed to obtain good results in
reaching and grasping tasks. In this way, the characteristics of robustness, flexibility
and adaptability have been quantified and analyzed.

Finally, the implementation of this model in both simulation and real robotic in-
stallations, have demonstrated the capability of the system to be applied to any redun-
dant system, given a solution for the equivalence motor problem in robotic platforms.
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