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Abstract. This paper proposes another point of view for analyzing the
approaches to intelligent monitoring and diagnosis, present in the literature we
reviewed.
In first place, the state of the art in diagnosis is reviewed and afterwards, we
propose a framework for analyzing the approaches presented so far, based on
the KADS standard for development of KBSs.
In the end, we present a "3-correlation" we found for describing the problem
of diagnosis, facing to present a general description of it.

1  Introduction
The literature is almost unanimous in recognizing the existence of a major problem in
the specification and design of large and complex reactive systems [6]. A reactive
system is characterized by being, to a large extent, event-driven, continuously having
to react to external and internal stimuli. Examples include cars, communication
networks, computer operating systems, the man-machine interface of many kinds of
ordinary software, and many other complex industrial processes, such as the operation
of blast furnaces, for example [10].
Since there is no operational mathematical model for the dynamics of reactive
complex continuous processes, the usual means of control theories cannot be used to
design an automatic controller, suited for such complex systems. In addition,
processes required to reach a very high level of economic performance tend to be
complex.
In the past three decades, however, several approaches have been proposed for
dealing with this complexity. One consists of compensating the lack of a
mathematical model for the process dynamics by the knowledge used by the human
operator who controls those complex processes.
Recent advances in different computer sciences such as artificial intelligence and
simulation propose methods, techniques and tools to exploit such informal
knowledge, and new kind of controllers have been developed since 1980 [8].
In this paper, we aim to compare different approaches for monitoring and diagnosis of
continuous processes, whose behavioral models come from expert knowledge.
In first place, we recall the general definition of diagnosis and we describe the state of
the art in intelligent monitoring and diagnosis of industrial systems, namely the
heuristic-based, the model-based and the task-based approach.
In a second place, we propose a method for comparing the approaches reviewed so
far, as the level of description of them vary and make hard to understand the



differences and coincidences among them. This framework is based on the KADS
standard for KBS development.
In the end, we show our conclusions, facing to find a general description for the
problem of diagnosis and a correlation for the techniques used for solving it.

2  Diagnosis Problem Solving
Given:
•  A system (device, physical system, physiological system, ...)
•  A set of observations (measurements, tests, symptoms, examinations ... )

corresponding to abnormal (unexpected, anomalous ...) behavior
It is expected to determine what is wrong with the system in order to re-establish the
system normal behavior (therapy, repair, reconfiguration, ...) [7].
Diagnosis was a fundamental area for Artificial Intelligence since the 70's, as many
Artificial Intelligence methodologies originated from it and then spread to other areas
of and because it was a blend of theoretical and experimental research [7].

3  State of the Art in Diagnosis
3.1  Heuristic-Based Approach
The basic assumption of this approach (70's) is that diagnosis is a heuristic process. It
implies that experts rely on associational knowledge of the form symptoms → faults
(diseases). This kind of knowledge derives from experience and must be elicited from
domain experts and represented using suitable knowledge representation languages
(Figure 1).
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Figure 1. Diagnosis as a heuristic classification [7]

This knowledge often consists of rules of thumb (heuristics) that associate symptoms
to possible causes.  These systems can reach a high level of performance and may be
efficient in their reasoning, but there are some well-known limitations [3,4,5]:



•  they exhibit steep performance degradation if the problem lies a bit outside the
scope of the system's knowledge,

•  knowledge acquisition depends on the existence on human expertise. This means
that before a diagnosis system can be built, diagnosis experience should be
available,

•  they provide limited explanation as to how a solution has been arrived at,
•  once a heuristic based system has been built for a specific application, it is

difficult to reuse parts in other applications, as the rule sets are strongly device
dependent.

Examples in the literature: Mycin (Stanford Univ. 72/79), Delta-Cats1 (General
Electric), PIP (MIT, 72-78). [7]

3.2  The Model-Based Approach
The basic paradigm of the model-based approach (late 70's - beginning of the 80's)
can be understood as the interaction of observations and predictions (Figure 2) [5].
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Figure 2.  Interaction between observations and predictions

On the one hand, there is the actual device, a technical system whose behavior can be
observed.  On the other hand, there is the model of the device that is used to make
predictions about its behavior.  Such a model describes the components of the system,
their connections, and the behavior of the components. The device model includes all
possible knowledge about it, including correct and fault behavior [3,4,5].
A difference between an observation and a prediction is called a discrepancy.  A
match between an observation and a prediction is called a corroboration. Both
discrepancies and corroborations are used to identify which parts of the device are
incorrect [3, 4, 5].
Model-based means a "deep" model of the device will be used, which can be
described in general terms as follows [1]:
Model or System Description SD=<COMP, BM> where



•  COMP={c1, ..., cn}: Structure, i.e. list of components (and interconnections
between them).

•  BM={bm1, ..., bmp}: Behaviors, i.e. what each component is supposed to do
(each bm is hence a list of behaviors).

Diagnosis Problem DP=<SD, CXT, OBS> where
•  CXT= contextual data (parameters and inputs).
•  OBS= observations (outputs).
The main feature of this model is to explicitly represent the structure of the device
(COMP) and to separately handle the predicted behaviors (BM), faulty or correct, on
one hand, and the observed behaviors (OBS) in another hand, the diagnosis process
amounting to dynamically comparing them, roughly speaking.
The model is inherently a (more or less) coarse one, i.e. a discrete approximation of
the real system, which is suitable to complex systems with simple enough general
behaviors (an abstracted model is sufficient and more tractable). Usually, only some
relevant outputs are accounted as observations (filtering), others are internal data that
can be checked through the model or directly on the device.
•  Pros: this allows to remove unnecessary details, raising a more compact and

robust representation.
•  Cons: the approximation may lead to an incorrect model, i.e. one might detect

non-existent faults that are only due to a lack of detailed information in the model
structure or correct behavior description.

Symbolic Models for Static Diagnosis
As already mentioned, the behaviors that are present in the model can be either
correct behaviors, or faulty ones, or both.
This distinction and the choices made in the representation according to it, raises the
distinction between the two main approaches to model-based diagnosis in Artificial
Intelligence, namely the consistency-based and the abductive ones [1].
These include:
•  Consistency-based diagnosis

Examples in the bibliography:  HT of Davis, DART of Genesereth, GDE of de
Kleer and Williams, GDE+ of Struss and Dressler, Sherlock of de Kleer and
Williams. [3]

•  Abductive diagnosis
Examples in the bibliography:  Cover & Differentiate of Eshelman, CHECK of
Console and Torasso. [3]

Symbolic Models for Dynamic Diagnosis
Until now, only classical Artificial Intelligent approaches to diagnosis have been
presented, which implicitely consider static domains. As far as one is interested in
dynamic processes, and needs to take into account states and times, the following
problems and requirements appear: [1]
•  Fault and correct behaviour models change from one state to another
•  Intermittent faults = only detected after a certain time, while the system has

continued evolving and the faulty component may have moved into some other
state meanwhile.

•  Transient faults = occur during a certain time interval, and then vanish.



•  One must distinguish inter-state vs intra-state faults: the former occur during a
dynamic change of a system, the latter correspond to the classical notion of fault,
if one makes a kind of "static projection" of the system into one of its states.

There exists many extensions to combine abductive and time-based reasoning.  This is
particularly important in environments where the observations are dated; and time
spans can be added to the causal relations that model the new temporal relations
between the occurrence of the causes and that of their effects.  The major difficulty
consists in exploiting the two types of knowledge; causal and temporal.  [2]
We may have three different kinds of symbolic models for dynamic diagnosis: [9]
•  Associative models, such as the ones used by expert systems and pattern

recognition, use representations of the form effects → causes.
•  Expert Systems [1, 2]

Examples in the industry: IFP (Institut Français du Pétrole) with the Alexip
software, for monitoring refining and petrochemical processes [13]; PICON,
that was a system for real time reasoning for process control applications and
that gave birth to G2 (developped by GENSYM), an expert system generator
[14]; Sollac in the SACHEM project, that relies on an approach using the
Kool object-oriented language; France Telecom for monitoring the Transpac
network using the Chronos software [2], RTWorks and CogSys [15]

•  Pattern Recognition [1, 2]
Examples in the industry: AUSTRAL project in order to analyze sequence of
alarms emitted by substations in a French medium voltage distribution
network [29]; GASPAR project in order to analyze alarms issued by the
network equipment in a telecommunications network (France Telecom) [2],
IxTet in the framework of project Esprit Tiger [16]

•  Predictive models allow the simulation of different possible system behaviors in
any of the different behavior modes available.
•  Qualitative Models [1, 2]

Examples in the industry:  MIMIC, a monitoring system [2], CA-EN system
in the frame of the Esprit Tiger project for the monitoring of gas turbines
[17]

•  Discrete Models [2, 9, 19]
Examples in the industry: ESSO refinery in Canada [18]; monitoring of the
Transpac network [20, 21, 22, 28]

•  Explanatory models are of two kinds: Influence graphs, that describe the
dependence links among the system variables, and Causal graphs, that describe
the causal links among the states or failure situations and their observed effects.
The representations used are of the form causes → effects.
•  Influence Graphs [2]

Examples in the industry: Esprit Alliance project [23], CA-EN software in
Tiger project [17]

•  Causal Graphs [9]
Examples in the industry: Matra Marconi Space for its satellite monitoring
software [24, 25, 26],  DIAPO system for diagnosing the cool and pump sets
in EDF nuclear power plants [27].



3.3  The Task-Oriented Approach
The task-based approach (beginning of the 90's) aims at modeling problem solving
behavior in terms of the knowledge that is used for the problem solving.  Thus,
regardless how a diagnostic system is implemented (rule based, frame based,
connection based), it is possible to focus on the goal of the system and on the
knowledge that is applied to achieve the goal.  This modeling is reached by
identifying tasks at various levels of abstraction above the implementation level.
Examples in the bibliography: Generic Tasks of Chandrasekaran, KADS of Wielinga
et al., Problem Solving Methods of McDermott, Components of Expertise of Steels,
Method-to-Task Approach (used to characterize the work of PROTEGE of Musen,
PROTEGE II of Puerta et al., and the work of Klinker)
These approaches aim at modeling problem solving by identifying tasks at various
levels of abstraction above the implementation level. The key concepts involved are:
•  Task: a task is associated with a goal to be achieved
•  Primitive inference: a procedure that directly achieves a goal
•  Problem solving method: a competence characterization that describes a way to

perform a task.  It decomposes a task (with a goal) into a set of subtasks and
primitive inferences (with sub-goals)

•  Control knowledge of a method: the control regime that determines the execution
of the subtasks and primitive inferences of a method

•  Domain knowledge or domain models: the knowledge about the application
domain that is consulted to achieve goals.

•  Knowledge requirements of problem solving methods: suitability conditions that
specify when methods are applicable to perform a task.

•  Role of knowledge in reasoning process: the role that domain concepts play in
the process of achieving the goal.
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Figure 3.  Task-oriented approach to diagnosis

A task is characterized by a goal that it has to achieved.  A task can potentially be
performed by a method, selected from a method library, that decomposes a task into
subtasks and/or primitive inferences.  A method is associated with a competence
description that describes what it can achieve.  Selection of a method can be
performed by a meta-level reasoning engine that queries suitability criteria of
methods.  A method consists of subtasks, each associated with a sub-goal, and/or
primitive inferences, that directly achieve goals (Figure 3) [3].



4. Our Framework for Analysis
Having reviewed the state of the art of intelligent diagnosis present in the literature,
the main remark to note is that the levels of description of each approach vary (some
of the approaches show aspects for modeling, but others face the resolution of the
problem).  This way it is hard to have a real comparison of the goals and scope of
each of them.
Due to the fact that CommonKADS is a standard for development of KBSs, it might
be used for describing any knowledge-based system.  Therefore, we have decided to
describe the approaches in Section 3, according to it.
The CommonKADS abstraction cycle is based on a conceptual model, CM, and
makes a distinction among this model and the Functional Model (FM) and the Design
Model (DM) (see Figure 4).
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Figure 4.  Abstraction cycle in CommonKADS

This general framework makes a specific differentiation among the Conceptual
Model, the Functional Model and the Design Model, each of them representing
different views of the system to be conceived.
The main characteristics of each model are described as follows:
•  The Conceptual Model is supposed to contain all the knowledge, and may be

validated by the "client". It lies at knowledge level.
•  The Functional Model is supposed to contain all the functions, and may be

validated by the development team. It lies at symbol level.
•  The Design Model includes all the techniques used to perform the functions

described at the functional level. It also lies at symbol level.
These three models gives us three levels of description that will allow us to perform a
critical analysis on the approaches for diagnosis present in the literature up to now
and described in Section 3.

•  Conceptual Level (associated with the Conceptual Model): At which we describe
the nature of the knowledge source and the nature of the reasoning process.

•  Functional Level (associated with the Functional Model): At which we describe
the nature of the models or, in other way, how causality is represented.



•  Technical Level (associated with the Design Model): At which we describe the
nature of the underlying theory for representing and exploiting the knowledge
(technical calculus or computation).

5. Our Proposal
We propose to reconsider the State of the Art in Intelligent Diagnosis according to
those 3 levels of description, explained in Section 4.

Conceptual Level Functional Level Technical Level

Static Model Based Approach
Heuristic Approach Heuristic System

Model
Associative models Expert Systems

First Order Predicate
Calculus

Consistency-based
diagnosis

"Predict & compare" Logical Models First Order Predicate
Calculus

Non-monotonic
reasoning

Abductive diagnosis "Observe & Explain" Logical Models First Order Predicate
Calculus

Dynamic Model Based Approach
Recognition based

approach
Heuristic System

Model
Temporal models Temporal Constraint

Propagation
Infinite State Machine

(DEVS)
"Tracking &

Interpretation"
Qualitative models Constraints Propagation

Qualitative Calculus
Simulation based

approach

"Predict & compare" Discrete Models Finite State Machine
(Petri nets)

Task-Oriented Approach
PSM for diagnosis "Symptom detection

Hypothesis generation
Hypothesis

discrimination"

any KBSs

KADS / CommonKADS Task templates any KBSs

Regarding the Functional Level, we remark:
•  In Associative Models, there is no explicit notion of causality.  There's only the

notion of associative empairement between what would be "causes" and
"consequences".

•  In Logical Models, "causes"  imply "consequences"
•  In Temporal Models, temporal correlation is viewed as causality.
•  In Qualitative Models, causality is compiled as algebraic expressions ..



•  In Discrete Models, ordering is viewed as causality.

6  Conclusions
If we take into account the Technical Level described on Section 5, we have the
following:

a) Logic techniques
a1) Monotonic
a2) Non-monotonic

b) Pattern Matching Techniques
b1)  Temporal Constraint Propagation
b2) Automata

b21) DEVS
b22) Petri Nets

c)  Qualitative Calculus
On the other hand, if we review the Functional Level, we also find 3 kind of models:

a) Causality Models
a1) Associative Models
a2) Logic Models

b) Temporal Correlation Models
b1) Temporal Models
b2) Discrete Models

c) Algebraic Models
c1) Qualitative Models

It may be noticed that there are 3 levels of correlation, both at the Technical and
Functional levels.

Causality Models ↔ Logic Techniques
Temporal Correlation Models ↔ Pattern Matching Techniques

Algebraic Models ↔ Qualitative Calculus
At this moment, we are working on the Conceptual Level to try and find the "3-level"
correlation we already found at the other two levels.
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