
A three-stage statistical method for nonlinear
regression model selection

Andrés Yáñez Escolano1, Joaquín Pizarro Junquera1,
Elisa Guerrero Vazquez1, and Pedro L. Galindo Riaño1

1 Grupo Sistemas Inteligentes de Computación-TIC 145
Dpto. Lenguajes y Sistemas Informáticos

Universidad de Cádiz
11510 Puerto Real, Spain

{andres.yaniez, joaquin.pizarro, elisa.guerrero, pedro.galindo}@uca.es
http://www2.uca.es/grup-invest/sic/

Abstract. The goal of inductive learning is to build models based on a set of
examples. The resulting model is then used to make predictions on previosly
unseen examples. Model selection is an important issue in machine learning
algorithms, in particular when the sample size is small, in order to find the right
trade-off between overfitting and underfitting. If the model is too complex for
the sample size, there will be risk of overfitting the training data, while a too
restricted model can prevent us from obtaining good predictions. In this paper
we propose a three-stage statistical method based on bootstrapping techniques
and multiple comparison procedures in order to determine the optimal
complexity of a model.

1 Introduction

Given a number of examples of the form <xi,yi>, our goal is to find function models
y=f(x). The goal of these models is not to learn an exact representation of training
data itself (memorization), but rather to get the ability to understand the hidden
structure of the data, to predict the behaviour of novel data after training on a dataset
(generalization).

There are three conditions which are necessary for good generalization:
representative and sufficiently large training sets, smooth functions to learn and
models with a suitable complexity.

In order to achieve the first condition, methods for selecting good training sets are
discussed in statistical textbooks on sample surveys and experimental design, but it is
not the goal of this paper.

The second condition, function shape, depends on the problem. In any case, it is
unknown and we only have a small set of examples to learn most of the time.

The third condition is the goal of this paper. We try to estimate the suitable
complexity of the model. If the model is not sufficiently complex, it will give poor
predictions for new data, because it has too little flexibility (bias error). But if the
model is too complex, it may fit too much to training data (variance error). The best

generalization is obtained when the trade-off between poor aproximation and
overfitting is achieved. Statisticians refer to this problem as the bias/variance
dilemma [4].

In order to achieve our goal, we propose a three-stage statitistical method based on
bootstrapping techniques [3] and multiple comparison procedures (M.C.P.) [6].

This paper is structured as follows. We first outline the underlying idea of the
proposed statistical method (section 2). After that, in section 3, the algorithm is
described in detail. In section 4, we report on some model selection experiments,
comparing our method with other resampling-based techniques. Finally (section 5),
the experimental results are analyzed and future works are proposed.

2 Underlying idea

In this section we outline the methodology of our method as follows (fig. 1):
− First stage: resampled data set are obtained from the original data set by

bootstrapping techniques.
− Second stage: create a set of models which are not significantly different from the

model with minimum test error median.
− Third stage: select the best model from the previous set.

Fig. 1. The model with minimum test error may not be the model with minimum generalization
error. Any model of the set of models with similar errors are possible candidates.

2.1 Bootstrapping data set generation

The bootstrap family was introduced by Efron and is fully described in [3]. Given a
data set of size n, a bootstrap sample, with the same size than the whole training set, is
created by sampling n instances uniformly from the data with replacement.

test
error

model with minimum test
error median

-
- +

+
models with similar errors

test error medians

complexity

We apply many bootstrapped data sets (ranging from 25 to 200), which are
obtained from the whole data set, on models with an increasing complexity and obtain
many test error measures per model.

2.2 Models which are not significantly different

We select the model with minimum test error median. We propose to use error
medians instead of error means to reduce outlier problems. In any case, as training
sample size increases, error medians and error means tend to approach each other.

Then, we estimate the set of models whose errors are similar to the model with
minimum test error median. We consider two or more models to make similar errors
when they are not significantly different.

In our method two groups of statistical tests are applied: omnibus tests and
multiple comparison procedures. The first group of tests evaluates several hyphothesis
simultaneously and shows us whether several models are o not significantly different.
The second one shows us what models are significantly different.

Not all statistical tests are useful for our experiment. We must take into account
that we apply the same resampled sets on all models. Given that error measures are
not independent, statistical tests for related samples should be applied.

These tests can be classified in two groups: parametric and nonparamentric [1].
The first ones are more powerful and should be used if possible, but they are based on
certain assumptions about the population from which the data are drawn.

Table 1 shows the statistical tests which are used in our method ([1], [5], [9]).

Table 1. : Statistical tests for related samples.

Test Brief description Assumptions

Friedman test
High power. Omnibus.
Nonparametric. Used to compare
k > 2 samples.

None

Nemenyi test
Medium power. All pairwise test.
Used to compare k > 2 samples.

None

Repeated mesaures
ANOVA

High power. Omnibus. Parametric.
Used to compare k > 2 samples.

Normality, compound
symmetry / sphericity

t paired test
High power. Parametric. Used to
compare k = 2 samples.

Normality

Wilcoxon matched
pairs test

High power. Nonparametric. Used to
compare k = 2 samples.

None

2.3 The selection criterion

After applying multiple comparison procedures, we have to select the best model
from the set of models that are not significantly different from the model with
mimimum test error median.

In an earlier version of this method [8], the selection criterion was based on
Occam’s razor [2] (if several models make similar errors, choose the simplest model),
but our method exhibited a slight underfitting with small sample sets. Now we
propose the following more powerful selection criterion in order to estimate the
generalization error of the models:

Estimated Generalization Error = Estimated Bias Error+Estimated Variance Error =
Data Set Resubstitution Error + median(Bootstrapped Set Test Error - Bootstrapped

Set Resubstitution Error)
(1)

The model with minimum estimated generalization error is selected.

3 Methodology description

The steps of the proposed statistical method, which was described briefly in section 2,
may be outlined as follows:
1. Take the whole data set and create m (25 ≤ m ≤ 200) bootstrapped data sets.
2. For each resampled set:

2.1. Train k models whose complexity goes from 1 to k
2.2. Test these models and obtain k test error measures

3. Select the model with minimum test error median.
4. Apply Nemenyi test to obtain the models wich are not significantly different from

the model with minimum test error median.
5. Apply omnibus tests: Repeated Measures ANOVA test, if its assumptions are met

or Friedman test in different case.
6. If the global null hypothesis were true (that is, all models of this set make similar

errors), go to step 8.
7. If the global null hypothesis were false, apply more powerful multiple

comparison procedures (t or Wilcoxon paired tests with step-up Hochberg
method for p-values adjustment [7]) and obtain a subset with the models which
are not significantly different from the model with minimum test error median.

8. Apply a selection criterion to obtain the best model.

All tests have been applied using α = 5%.

4 Experimental results

In our experiments we study the efficiency of our method with differents functions to
learn, sample sizes (15, 25, 50, 100 y 500 examples, respectivily) and models (RBF
networks, MLP networks and polynomial functions).

The experimental functions are the following:

y =- 0.2x4 + 1.5x3 - 6x + 3 + ξ, x ∈ (-2,+2) (2)
 y = 10 sin (2x + 6) + ξ, x ∈ (-2,+2) (3)

where ξ is gaussian noise with zero mean and low variance (2% of generalization
sample standard deviation).

In order to explore the behaviour of our method, it was compared with different
resampling techniques (.632 bootstrapping, 10-fold cross-validation, leaving one out,
random subsampling [3]) applied on several model selection tasks.

4.1 An efficiency measure

We need an efficiency measure that indicates the goodness-of-fit of a model. Given a
model j, we propose the next efficiency measure:

)jel(modtionErrorGeneraliza

)errortiongeneralizaminimumwithel(modErrortionGeneraliza
efficiency j = (4)

Small values (near to zero) indicate a poor fit, while values near one correspond to
models with a good generalization power.

In order to compute the generalization error, we use a large sample set with ten
thousand samples.

4.2 Simulation results

RBF, MLP neural networks and polynomial fuctions are used as models.
We create one thousand data sets per experimental function to apply RBF networks

and polynomials functions, and one hundred data sets to MLP networks. Each data set
with 15, 25, 50, 100 and 500 examples, respectively.

From each data set we create fifty resampled sets to apply our statistical method.
Fifty learning plus testing iterations are performed to obtain random subsampling and
bootstrap estimates.

From tables 2 through 7 we can see the means, medians, and standard deviations of
efficiency measures obtanied after applying traditional ressampling techniques and
both versions of our statistical method (the first uses Occam's razor criterion, while
the second one applies eq. 1) on the previous data sets.

4.2.1 Simulation results with RBF networks
RBF are designed as having one hidden layer for which the combination function is
the Euclidean distance between the input vector and the weight vector. Gaussian
Radial Basis Functions have been used. The placement of the kernel functions has
been accomplished using the k-means algorithm. The width of the basis functions has
been set to

nxxmax ji 2)(− (5)
where n is the number of kernels, which goes from 1 to k = 14. The second layer is a
linear mapping from the RBF activations to the output nodes. Tables 2 and 3 show
efficiency results.

Table 2. : Efficiency measures of RBF networks trained with samples generated from (2).

.632
Bootstrap

10-fold
cross-val.

leave
one out

10%
hold out

statistical
method

(v.1)

statistical
method

(v.2)

mean 0.6268 0.7160 0.7123 0.7005 0.5938 0.7380
median 0.6620 0.7967 0.7995 0.7840 0.6011 0.798015
std 0.2701 0.2776 0.2847 0.2885 0.2862 0.2434
mean 0.7696 0.8083 0.7902 0.8016 0.7171 0.8246
median 0.8081 0.8847 0.8761 0.8704 0.7894 0.878025
std 0.1986 0.2233 0.2416 0.2236 0.2424 0.1927
mean 0.9322 0.9079 0.9030 0.9148 0.8931 0.9223
median 0.9822 0.9696 0.9697 0.9729 0.9487 0.971250
std 0.1026 0.1475 0.1620 0.1380 0.1236 0.1098
mean 0.9748 0.9633 0.9534 0.9655 0.9701 0.9734
median 0.9891 0.9856 0.9849 0.9873 0.9894 0.9895100
std 0.0452 0.0708 0.0962 0.0709 0.0583 0.0520
mean 0.9946 0.9948 0.9941 0.9940 0.9919 0.9939
median 0.9983 0.9982 0.9979 0.9969 0.9920 0.9960500
std 0.0069 0.0066 0.0079 0.0073 0.0070 0.0066

Table 3. : Efficiency measures of RBF networks trained with samples generated from (3).

.632
Bootstrap

10-fold
cross-val.

leave
one out

10%
hold out

statistical
method

(v.1)

statistical
method

(v.2)

mean 0.7567 0.8349 0.8219 0.8263 0.8836 0.9089
median 1.0000 0.9942 0.9891 0.9903 1.0000 1.000015
std 0.3838 0.2780 0.2883 0.2850 0.2673 0.2061
mean 0.9690 0.8813 0.8649 0.8832 0.9677 0.9185
median 1.0000 0.9886 0.9870 0.9922 1.0000 1.000025
std 0.0913 0.2083 0.2283 0.2103 0.1042 0.1750
mean 0.9708 0.9387 0.9278 0.9435 0.9830 0.9675
median 1.0000 0.9929 0.9924 0.9941 1.0000 1.000050
std 0.0781 0.1267 0.1467 0.1205 0.0646 0.0932
mean 0.9786 0.9704 0.9637 0.9725 0.9944 0.9889
median 0.9984 0.9963 0.9969 0.9973 1.0000 1.0000100
std 0.0433 0.0621 0.0813 0.0578 0.0166 0.0266
mean 0.9940 0.9949 0.9945 0.9950 0.9984 0.9972
median 0.9982 0.9986 0.9987 0.9986 1.0000 1.0000500
std 0.0086 0.0077 0.0085 0.0076 0.0037 0.0050

Our method (v.2) shows a good mean efficiency, which is higher than the others
methods for small sample sets (15, 25 examples) and similar when the sample set size
grows up. The first version of this method produces the best results when the function
to learn is (3), but the worst ones when the sample sets come from (2).

4.2.2 Simulation results with MLP neural networks
Multilayer perceptrons networks are designed as having hyperbolic tangent sigmoid
transfer function in the hidden layer and linear transfer function in the output layer.
They are trained using Levenberg-Marquardt algorithm and no regularization
technique has been applied. The number of hidden units ranges from 1 to 12.

Tables 4 and 5 show the simulation results. We can notice that our method (v. 2)
offers better performance with medium sample size (25 and 50 examples).

Table 4. : Efficiency measures of MLP networks trained with samples generated from (2).

.632
Bootstrap

10-fold
cross-val.

leave
one out

10%
hold out

statistical
method

(v.1)

statistical
method

(v.2)

mean 0.5725 0.5565 0.5706 0.5427 0.5352 0.5444
median 0.5232 0.5499 0.5434 0.4952 0.4471 0.499315
std 0.2754 0.3348 0.3198 0.3212 0.2675 0.3135
mean 0.5641 0.5534 0.5796 0.6237 0.5057 0.7266
median 0.4387 0.5367 0.5738 0.6858 0.3854 0.874425
std 0.3050 0.3476 0.3286 0.3217 0.3043 0.3172
mean 0.7789 0.7376 0.7553 0.7520 0.7148 0.8849
median 0.8909 0.9049 0.8637 0.9356 0.8706 0.994150
std 0.2798 0.3344 0.2848 0.3368 0.3436 0.2113
mean 0.9018 0.8466 0.8457 0.8461 0.8336 0.9080
median 0.9625 0.9383 0.9322 0.9357 0.9391 0.9778100
std 0.1791 0.2484 0.2392 0.2560 0.2662 0.1853
mean 0.9812 0.9420 0.9270 0.9308 0.9308 0.9504
median 0.9879 0.9856 0.9934 1.0000 1.0000 1.0000500
std 0.0300 0.1503 0.1878 0.1704 0.1704 0.1536

4.2.3 Simulation results with polynomial functions
We consider the problem of finding the degree of a polynomial that better fits a set of
data. Polynomials with degrees ranging from 1 to 15 are used (tables 6 and 7).

The performance of our method (v. 2) is the best with small sample set, and similar
to the other methods when we apply large sample sets. The statistical method (v.1)
only works well when the models belong to the same family that the function to learn
(see table 6).

One of the most striking aspect is the low efficiency mean of .632 bootstrapping
with small sample sets when the function to learn is (3).

Table 5. : Efficiency measures of MLP networks trained with samples generated from (3).

.632
Bootstrap

10-fold
cross-val.

leave
one out

10%
hold out

statistical
method

(v.1)

statistical
method

(v.2)

mean 0.4238 0.4930 0.5192 0.4886 0.4359 0.4666
median 0.3856 0.4140 0.4724 0.4204 0.3854 0.400415
std 0.2781 0.3082 0.3105 0.3313 0.3168 0.3001
mean 0.6841 0.6753 0.6571 0.7516 0.6784 0.8160
median 0.7776 0.8175 0.7567 0.9303 0.9381 0.994425
std 0.3265 0.3438 0.3432 0.3216 0.3695 0.2698
mean 0.8935 0.8648 0.8304 0.8372 0.8573 0.9064
median 0.9997 0.9661 0.9376 0.9355 1.0000 0.999750
std 0.2176 0.2240 0.2495 0.2500 0.3043 0.2058
mean 0.9415 0.8276 0.8462 0.8215 0.8588 0.9348
median 0.9682 0.9661 0.9774 0.9570 1.0000 0.9996100
std 0.0671 0.3033 0.2940 0.3111 0.3178 0.1794
mean 0.9883 0.9028 0.8998 0.8956 0.8983 0.9330
median 0.9935 0.9996 0.9973 0.9999 1.0000 1.0000500
std 0.0145 0.2720 0.3357 0.2822 0.2868 0.2318

Table 6. : Efficiency measures of polynomial functions trained with samples generated from
(2).

.632
Bootstrap

10-fold
cross-val.

leave
one out

10%
hold out

statistical
method

(v.1)

statistical
method

(v.2)

mean 0.7771 0.8108 0.7848 0.7893 0.8089 0.8396
median 0.9031 0.9206 0.9082 0.9109 0.9126 0.924515
std 0.2963 0.2591 0.2817 0.2786 0.2664 0.2242
mean 0.8986 0.8544 0.8419 0.8520 0.8940 0.8865
median 0.9312 0.9331 0.9316 0.9340 0.9250 0.939025
std 0.1354 0.2113 0.2325 0.2201 0.1381 0.1607
mean 0.9588 0.9245 0.9098 0.9279 0.9460 0.9520
median 0.9997 0.9939 0.9927 0.9911 0.9939 0.998850
std 0.0671 0.1466 0.1750 0.1320 0.0690 0.0818
mean 0.9807 0.9653 0.9551 0.9675 0.9820 0.9821
median 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000100
std 0.0461 0.0836 0.1100 0.0746 0.0393 0.0376
mean 0.9950 0.9955 0.9930 0.9954 0.9992 0.9980
median 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000500
std 0.0092 0.0086 0.0249 0.0088 0.0035 0.0056

Table 7. : Efficiency measures of polynomial functions trained with samples generated from
(3).

.632
Bootstrap

10-fold
cross-val.

leave
one out

10%
hold out

statistical
method

(v.1)

statistical
method

(v.2)

mean 0.3443 0.6152 0.6111 0.6074 0.3463 0.6253
median 0.3202 0.6619 0.6664 0.6582 0.3038 0.659115
std 0.2614 0.3556 0.3621 0.3633 0.2842 0.3525
mean 0.6191 0.7784 0.7722 0.7843 0.7235 0.8420
median 0.4971 0.9379 0.9311 0.9421 0.9300 0.974725
std 0.3271 0.2993 0.3051 0.2922 0.3261 0.2559
mean 0.9459 0.8953 0.8785 0.9115 0.9481 0.9326
median 0.9802 0.9682 0.9670 0.9727 0.9819 0.975650
std 0.1170 0.1911 0.2176 0.1660 0.1214 0.1350
mean 0.9670 0.9536 0.9377 0.9583 0.9723 0.9700
median 0.9805 0.9771 0.9760 0.9783 0.9777 0.9798100
std 0.0590 0.0870 0.1316 0.0755 0.0328 0.0437
mean 0.9953 0.9951 0.9945 0.9952 0.9930 0.9946
median 0.9999 0.9999 1.0000 0.9999 1.0000 0.9999500
std 0.0076 0.0077 0.0096 0.0076 0.0108 0.0090

5 CONCLUSIONS AND FUTURE WORK

In our experiments, we have studied the efficiency of resampling methods in
comparison with a three-stage statistical method.

Cross-validation, leave-one-out and random subsampling techniques give similar
efficiency measures, but they are less prowerful than the proposed method (v. 2). The
best selection among these resampling techniques would be 10-fold cross-validation,
which minimizes the computational cost.

Our experiments show that .632 bootstrapping technique produces the worst
performance with small sample sets (see fig. 2) when RBF networks and polynomial
functions are used, but it improves and is better than other resampling techniques as
the sample set size increases.

Finally, our experiments show that our method (v. 2) appears as preferable,
because its efficiency is similar or higher than the rest of methods most of the time,
especially with small sample sets. When the model provides a good description of the
observed data, our method applied with Occam’s razor as selection criterion produces
a better mean efficiency (see tables 3 and 6).

Future work will be addressed to the application of our method to other models and
the consideration of more powerful M.C.P.s and selection criteria.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Comparison of .632 bootstrapping versus our statistical method (v.2) with small sample
set size (15 examples). Fig. shows the distribution of efficiency in the following simulations:
function (2)-RBF networks (fig. a and d), function (3)-RBF networks (fig. b and e) and function
(3)-polynomials functions (fig. c and d). Fig. a, b and c correspond to .632 bootstrapping
technique.

Acknowledgements

This work has been supported by the Junta de Andalucía (PAI research group TIC-
145).

REFERENCES

 1. Conover, W. J.: Practical Nonparametric Statistics, John Wiley & Son (1999).
 2. Domingos, P.: The role of Occam's razor in knowledge discovery. Data Mining and

Knowledge Discovery, 3(4), 409-425 (1999).
 3. Efron, B., Tibshirani, R.: Introduction to the bootstrap, Chapman & Hall (1993).
 4. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma.

Neural Computation, 4(1), 1-58 (1992).
 5. Girden, E. R.: Anova repeated measures, Sage Publications (1993).
 6. Hsu, Jason C.: Multiple comparisons. Theory and methods. Chapman & Hall (1999)
 7. Lasarev, M. R.: Methods for p-value adjustment, Oregon Health & Science University,

http://medir.ohsu.edu/~geneview/education/dec19_h.pdf (2001).
 8. Yañez, A., Guerrero, E., Galindo, P., Pizarro, J.: A resampling and multiple testing-based

procedure for determining the size of a neural network. Proceedings of 10th European
Symposium on Artificial Neural Networks, pp. 65-70, Bruges, Belgium (2002).

 9. Zar, J. H.: Biostatistical Analysis, Prentice Hall (1996).

