
An Online Coach for RoboCup

Luciano Cavalheiro da Silva1, Daniela D. S. Bagatini1,2, Luis Otávio Alvares1

1Universidade Federal do Rio Grande do Sul
Instituto de Informática

Av. Bento Gonçalves 9500, Porto Alegre, 91501970 – RS – Brazil
Fone: 55(51)33166168 Fax: 55(51)33167308

{lucc, bagatini, alvares}@inf.ufrgs.br

2Universidade de Santa Cruz do Sul
Departamento de Informática

Av. Independência 2293, Santa Cruz do Sul – RS – Brazil
Fone: 55(51)37177393

Abstract. The RoboCup, robot soccer world-wide cup, appeared with the ob-
jective to evaluate the progress of techniques used in the construction of groups
of autonomous agents which collaborate for the solution of a common problem:
to win a soccer game. RoboCup comprises three competition modalities: two
that involve the construction of players in hardware (robots) and another one of
simulation. Recently, the possibility of using an online coach agent during the
games was added to the simulation modality. From the analysis of game data
supplied by the simulator, such agent can, although it can not act directly on the
ball like a player, infer tactical modifications in the behavior of the team and
suggest them to its players. This paper presents a proposal of an online coach
agent for RoboCup agent teams. A set of metrics, designed for team behavior
evaluation, is then described, followed by a characterization of its use in the
optimization of the agent team behavior. Keywords: artificial intelligence,
multi-agent systems, Soccerserver, RoboCup.

1 Introduction

The study of multi-agent systems (MAS) is a wide developing field in Artificial In-
telligence. In order to evaluate the progress and the innovations of techniques used in
the construction of groups of collaborative autonomous agents, came out the Robo-
Cup [1]: a robot soccer world-wide cup. RoboCup comprises three competition mo-
dalities: two that involve the construction of players in hardware (robots), specific for
the tournament, and another of simulation, which is the main interest of this paper.

In the simulation modality, participants construct teams of autonomous agents in
software, where each agent corresponds to a player, that are confronted with other
teams with the aid of a simulator called Soccerserver [2]. The simulator is responsible
for applying physical restrictions, like wind and ball friction onto the ground, and also

controls the energy that is expended by the players in response to their actions such as
running and kicking. Besides, a Soccerserver module is in charge of applying soccer
rules to the matches (throw-in, corner kick, offside, goal, etc). The interaction be-
tween agents and simulator happens via messages, previously defined in the protocol
used by the simulator and exchanged through UDP.

Recently, the possibility of using an online coach agent for players during the
games was added to the Soccerserver. Such an agent has a set of restrictions in order
not to break the main rule that says the players are autonomous. Thus, during the
game, it has only the permission to receive visual information about both teams’
players and ball positions, besides “hearing” messages sent by the referee or by play-
ers using the say command. From the analysis of data supplied by the simulator, the
coach can make tactical decisions about the behavior of the team as a whole, and
notify the players through the say command. The players will “listen” to the coach’s
suggestions during the match and will be able to optimize their internal behavior
heuristics. Respecting the autonomy principle, it is not possible for the coach agent to
interfere in the very behavior of the players or even to oblige them to follow its sug-
gestions.

This paper presents a proposal of an online coach agent for RoboCup agent teams.
At first, issues related to the interaction between the coach agent and the Soccerserver
are pointed out. In the agent modeling section, the heuristics for team behavior
evaluation are then described, followed by a brief characterization of their use, and so
are the details about agent codification in the implementation section. Finally, the
conclusions are presented.

2 Online Coach x Soccerserver

The commands made available by the Soccerserver to the coach agent are [3]:
<eye [on/off]>: Enables/disables automatic sending of visual information by

the server.
<look>: Request of visual information to the server.
<say “message”>: The coach screams the message at the field. All the players

can potentially hear the message. As a restriction, every two cycles of simulation a
player may hear at most one message of each team. In other words, if a player decides
to speak in the same cycle as the coach, one of the messages will get lost. Moreover,
in official games, the coach can send at most 128 messages during one game. Each
message may have 512 bytes, with the possibility of using letters, digits and the sym-
bols () . + * / ? < > _.

The coach receives information from the server through two kinds of messages:
<hear time_of_game origin “message”>: Aural information. Origin

equal to referee indicates message sent by the referee.

<see time_of_game list_of_objects>: Visual information about the
positions of the ball and players.

3 Modeling

The main functions designed for the coach are the detection of playing system pat-
terns and the collection of statistics about each player’s efficiency, both constructed
upon the kicking and passing detection heuristics. Besides these, a team positioning
assessment mechanism evaluates congestion and marking coverage. An important
characteristic of the system is its high factor in recovering lost messages, a constant
risk when the chosen communication protocol is based on UDP datagrams.

3.1 Kicking detection heuristic

Since the coach does not have knowledge about the exact internal state of its players
and neither of its opponents, in order to find out when the “kick” command was exe-
cuted, such information needs to be constructed using the visual information made
available by the Soccerserver. It was used a kicking detection heuristic based on the
ball velocity variation.

First of all, the use of the gradient velocity notion was tried, and so to define a kick
as a variation in the direction of this gradient or its growth in module. In tests this
approach has proved to be ineffective and that is related to the noise model the Soc-
cerserver uses. Fig. 3.1 illustrates the effect of this noise on velocity components (Vx,
Vy, tangent, module) and on the derivatives of these components and their modules
(dVx, dVy, dVxm, dVym, dModule).

Fig. 3.1. Effect of error injection on the velocity components, modules and deriva-
tives.

A different heuristic (Fig. 3.2) had then to be used. The main idea of this heuristic
is: using the same ball deceleration model (including noise) employed by the server,
to calculate value intervals for the velocity’s components (vx, vy) starting from the

-6,00

-5,00

-4,00

-3,00

-2,00

-1,00

0,00

1,00

2,00

1 3 5 7 9 11 13 15 17 19 21 23 25
Vx

Vy

tg/20

modulo

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

1 3 5 7 9 11 13 15 17 19 21 23 25

dVx

dVy

dVxm

dVym

dModulo

kick

kick

ball’s velocity in the previous cycle. Thus, if any of the velocity’s components shows
a higher variation than expected, it’s deduced that the ball was kicked. In tests carried
out during a real game, this heuristic was able to detect more than 95% of the kicks,
or even a 100% if not taken into account the weakest kicks. This heuristic may lead to
false detections when the ball hits a player, though such case has proved to be very
uncommon in the tests. Anyway, it’s virtually impossible to detect the difference
between such a case and a regular kick just with the visual information supplied by
the server. The heuristic also filters jumps in the visual information, caused by the
loss of messages, decreasing even more the number of false detections.

Fig. 3.2. Kicking detection heuristic at work. The gray area in the graphic indicates
the maximum expected error, the other two lines represent the actual measured error
for the components Vx and Vy.

3.2 Passing detection heuristic

3.2.1 Active player
After detecting that the ball was kicked, the problem is to find out who kicked it. For
that, the active_player heuristic was defined. The active player is simply the one
that:

1) can kick the ball, that means, the ball is within its kickable area
2) is the nearest to the ball

The active player information is used in the passing detection heuristic. Since gen-
erally the kicking detection occurs one cycle late, as the effect (change of ball veloc-
ity) cannot be perceived before the cause (kick), the active player of the cycle previ-
ous to the kicking detection is the one that kicked the ball. This rule has not been
verified valid in dead-ball situations, in which the active player of the present cycle is
used as the source of the kick.

3.2.2 Passing detection
In general, a pass is a change of the player that possesses the ball. It is quite difficult
to define ball possession. In this work it has been adopted that one player possesses
the ball since the moment he kicks it. Therefore, pass detection is done by the assess-
ment of two consecutive kicks. The algorithm used is presented in Fig. 3.3.

0,25

0,2

0,15

0,1

0,05

0
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89

Kick

error

|vx-nvx|

|vy-nvy|

Some important points to be considered:
- To define a pass, the consecutive kicks must be near in time, indicating that

there was a playing sequence, an intention of passing. In the algorithm this is indi-
cated by the clause “if tracking pass”. In practice it is implemented
with a timeout counter;
- There is a difference between two situations in case of error in passing the ball:

the interception and the bad pass. If the time between the original kick and an op-
ponent taking the ball is short, it is said there was an interception, which means a
high-risk pass was tried and failed. In the other case, the ball was kicked but it did
not reach its destiny properly due to an error in force or in directing it. This situa-
tion was simply called a bad pass;
- In case the timeout for tracking is reached, characterizing that the ball was

kicked away (e.g. cleared without control), two situations are predicted: the ball is
retrieved by a teammate or an opponent retrieves it.

-- if ball kicked
 -- if tracking pass
 -- if same team (previous kick)
 -- if same player
 <! controlling the ball !>
 -- if different player
 <! pass !>
 -- if different team
 -- if tracking interception
 <! ball intercepted !>
 -- if not tracking interception
 <! bad pass !>
 -- if not tracking pass
 -- if ball out of play (kick-off, throw-in, free kick,...)
 <! ignore, there is no previous kick !>
 -- if same team (previous kick)
 <! lost ball retrieved !>
 -- if different team
 <! bad long pass (bad lead pass) !>

Fig. 3.3. Passing detection algorithm.

Some external events influence the detection causing the algorithm to restart, espe-
cially messages sent by the referee such as goal, offside, half-time, corner kick, etc. It
is clearly noticed that in these situations, ball movement, e.g. from the goal area to the
midfield, is not a regular kick, neither a potential pass, justifying the need for restart-
ing.

3.3 Passing detection heuristic

From the analysis of the most meaningful events of a RoboCup match, a set of met-
rics was selected as a basis for assessing the effectiveness of the team and the specific
characteristics of each player agent. Counters for the following events are maintained
for each player:

- well-succeeded pass;
- bad pass;
- received pass;
- ball controlling;
- lost ball (away kick);
- ball interceptions;
- goals.

Most of the time the update of such statistics comes from the passing detection
mechanism, except for the number of goals, which is updated through the messages
sent by the referee.

Observing the possibility that player behavior may vary during the game, in a cer-
tain way invalidating the previously accumulated statistics, it is expected that the set
of statistics also reflect this alteration over time, “forgetting” past data. This effect is
got via the periodic decrement of all of the player’s statistics, working as a periodical
partial resetting of data.

3.4 Play patterns detection mechanism

As an attempt to learn the opponents’ play pattern, it was included in the coach a
mechanism for the detection of playing system patterns, that is, of patterns in the
passing sequence made by the opponent which frequently constitute risky plays. A
risky play is known as a shot that ends up scoring a goal or that leads the opponent
team to a position near to the goal area, for instance, allowing a player to enter the
area with the ball.

This technique presents greater efficacy the higher the behavioral organization
level of the opponent team is, i.e. more scattered positioning along the field and play-
ers that value the pass rather than controlling the ball, performing well defined roles
as forward, defender, etc.

There are two approaches for the detection of this kind of play pattern: one based
on the identification of each player (number of the shirt) and another one based on its
position. The former’s advantage is in its simplicity, although it does not meet the
case in which the players constantly switch roles in the game, in other words: players
that in a moment play the role of defender, in another moment are attacking. In order
to overcome this deficiency, the technique based on positions was designed. This
technique records passes in the form:

“pass region x ⇒ region y”
The question is to define adequately these regions inside the field, and how to treat

cases in which the pass is made from the position next to the border of the region, for
which a slight variation in the position of the player may invalidate the pattern detec-
tion in later steps. The choice used in this work divides the field with a matrix NxM,
being a region defined by four adjacent rectangles overlap naturally, solving the
problem of passing in the borders. Fig. 3.4 illustrates this idea.

Fig. 3.4. Detection of play patterns per region.

Yet, this second approach inserts a high processing overhead, because for a unique
pass, 4 regions of origin and 4 of destiny must be taken into consideration, leading to
a total of 16 possibilities. For a play consisting in a sequence of 2 passes this number
rises to 64, and for a sequence of 3 passes to 256 potential patterns to be analyzed. So
there is an exponential increase with the length of the sequence to be analyzed. Due to
the difficulty in dealing with this case in an acceptable computational time, this op-
tion of detection was not implemented.

It was used a detection mechanism that employs a tree structure like that one used
in mining of association rules by the well-known Apriori algorithm [4]. In this struc-
ture, each node represents a player, and its sons, the potential pass receivers. At each
detected play pattern, the counting of the frequency of nodes identified in that pattern
is updated from the root node. Thus, following the branch {1, 4, 7, 9} in node (9) we
will have an idea of the frequency in which the play 1 ⇒ 4 ⇒ 7 ⇒ 9 was used. In
practice, the stored value consists in an absolute counting of the number of times this
pattern has been repeated throughout the game, and not by a measure of frequency in
itself (i.e. related to a repetition period).

The integration of this mechanism with the coach is made by a history coupled to
the passing detection mechanism. For each consecutive pass inside the same team, the
detection mechanism updates the pass history. External events like referee’s messages
indicating foul or ball out of play cause the restarting of the history. Besides, loss of
the ball to the other team or too big leaps in visual information also produce the same
effect. For every simulation cycle, the position of the ball is reevaluated and if it has
reached a region considered critical (next to the goal area) the passes pattern stored in
the history is used to update the pattern tree. Fig. 3.5 illustrates the structure used by
the play patterns detection mechanism.

Fig. 3.5. Structure used by the mechanism for detection of play patterns.

3 5 7 9

Level 0

Level 1

Level 2

Level 3

1 2 3 4 5 ...

... ... 4 5

3 7

3

Kick to goal

Again, as in the case of statistics collecting, the behavior of each player, and con-
sequently of the whole opponent team, may vary during the game. It is necessary that
the detection of patterns incorporate this characteristic, getting adapted to the latest
play pattern of the opposing team and “forgetting” previous behavior. This effect is
reached through the periodical decrement of the players’ statistics in the counting of
tree nodes. Nodes whose counting stay below a chosen minimum are removed, as
well as their sub-trees. However, in order to prevent more recent patterns of being
eliminated right after having been inserted in the tree, an adaptation in the counting
method had to be done: the nodes which are present in a pattern are incremented by k
units, assuring that they will remain in the tree for the next (k- re-
moval_threshold) cycles. In this way, older patterns will gradually lose their
weight until being eliminated.

The coach can extract the patterns stored in the tree or select the most frequent
ones in pre-defined periods of the game (e.g. in every two minutes or when the ball is
out of play) and then make tactical decisions about the positioning of its team, alter-
ing offensive or marking characteristics. More details about its utilization will be
presented in the following sections.

3.5 Congestion and marking efficiency detection mechanism

The latest designed mechanism is the detection of congestion and marking efficiency
(positioning). It is based on the idea of a thermal sensor and that the players “heat”
the closest areas.

The basis of this mechanism is the construction of the game’s thermal photograph
at each cycle. This photograph can be instantaneous or accumulative, providing a
history effect. Furthermore, with the inclusion of a “cooling” model, this mechanism
with temperature history starts to reflect the state of a specific moment of the game,
what can be more interesting due to the potential behavioral variations during the
course of the match. This mechanism is the only one for which it was projected a
graphic interface. Fig. 3.6 illustrates this thermal photography technique.

Fig. 3.6. Thermal Photograph.

In a variation of this mechanism, different temperatures can be associated to each
team (e.g. a hot team and a cold team). The joining (sum) of thermal photos of each

team can lead to an identification of hot regions and cold regions of the field by the
coach. In other words, regions controlled by its team or by the opposite team.

Moreover, an accumulated thermal coefficient per region can provide information
about marking efficiency. This coefficient is built upon the sum of all the positions (a
discrete model for the soccer field is used) of the region. If this value is negative,
there is a predominance of players from the opposite team in that region. Another
variation would be to sum only the cold positions (or the hot ones), which would
provide an idea, in case of defense, of potential unmarked adversary players, indicat-
ing a need for repositioning if this condition persists for a significant number of cy-
cles. Yet, in case of attack, a great factor of unmarking is strongly desired.

3.6 Characterization of the mechanisms’ usage in the optimization of team
behavior

Due to a limited interaction between the coach and the team (128 messages per match
at most), a point to be studied is the best moment for the coach to send its messages,
in order to minimize message loss by conflict. The suggested general strategy is to
send messages in the periods when the ball is out of play (this is usually the strategy
adopted by offline training agents). This technique is associated with a timeout
mechanism to limit the maximum amount of time that the coach would wait to send a
message, taking into account that the value of the message is highly contextual, a fact
that makes too long waits impossible. Next are shown examples of the proposed algo-
rithms’ application.

Player statistics allow evaluating the efficiency of the pass decision heuristic used
by the player. A high level of bad passes may suggest that a behavior that privileges
ball controlling over passing would make the player more efficient. The existence of
an adversary player with a great number of received passes makes clear that player
has offensive strategy preparation characteristics, being able to require a specific
marking strategy. On the other hand, a great number of interceptions indicate that the
marking positioning heuristic is being quite efficient. Further, the occurrence of a
high number of lost balls associated with a high number of ball controlling may indi-
cate that a player is holding the ball too much, allowing a quick passing strategy to be
more efficient.

The pattern-detection mechanism enables the identification of key elements in the
opponent’s playing system. As an example, if the pattern 4 ⇒ 5 ⇒ 6 ⇒ GOAL is
frequent, the positioning of a player between 4 and 5 may annul that play.

With thermal photography, validation of the team’s higher level positioning tactics
can be reached. The coach may try to link different pre-defined positioning tech-
niques (or formations, for example 4:5:2, 3:3:3:2, more by the left, more by the right,
etc.) with the thermal history of the game and suggest a positioning that occupies
better the empty regions in an attack or that covers the defense better. Supporting this
decision-making it may even utilize the thermal coefficient of the region to infer, as
an example, if the number of defenders is adequate.

4 Implementation

The prototype has been implemented in Java Language [5], using threads and mes-
sage queues due to the asynchronous nature of the processing performed by the agent
in relation to server’s messages arrival, minimizing the loss of messages inherent to
the use of the UDP protocol. In the implementation it is used a maximum sequence-
length equal to 4 for pattern detection. Total memory occupation is around 10Mbytes,
being half of this used by the pattern tree.

5 Conclusions

The preliminary tests show that the best results in play patterns detection are obtained
as higher the organization level of the analyzed teams is, being inconclusive for teams
of low organization level. But even for such cases, the other two evaluation tech-
niques can be used successfully. In a certain way, the lack of a great variety of teams
with advanced organizational behavior has raised difficulties to the complete valida-
tion of the model. However, it is expected that for future generations of agent teams
the effects obtained from the use of such evaluation metrics, especially the metrics for
pattern detection, will be more significant.

More effective tests on the optimization brought by the use of a coach agent could
not be done because of scope and time issues, since it would be necessary to incorpo-
rate characteristics that do not exist at the moment in players, such as rehearsed posi-
tioning/set plays and the own interpretation and utilization of the intentions provided
by the coach. On the other hand, the description of the proposed model makes it clear
the potential uses of this agent. In future works the implementation of such teams of
players and their integration with the coach will be accomplished.

References

1. KITARO, H. et al. RoboCup: The Robot World Cup Initiative. In: FIRST INT’L
CONFERENCE ON AUTONOMOUS AGENTS (Agents’97). Proceedings. ACM Press,
New York, 1997, p340-347.

2. NODA, Itsuki; MATSUBARA, Hitoshi. Soccer Server and Researches on Multi-Agent
Systems. In: INT’L CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS –
Workshop on RoboCup, IROS, 1996. Proceedings. Osaka, Japan. 1996, p1-7.

3. CORTEN, E. et al. Soccerserver manual. Technical report, RoboCup Federation, 2002.
<http://sserver.sourceforge.net/home/downloads.html#documents>

4. AGRAWAL, Rakesh; SRIKANT, Ramakrishnan. Fast Algorithms for Mining Association
Rules. In: 20th INT’L CONFERENCE ON VERY LARGE DATABASES. Proceedings.
Santiago. 1994.

5. Java Language documentation. <http://java.sun.com>

