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Abstract. We present in this paper a formal approach to the verifi-
cation of a family of propositional SAT provers. For that purpose we
use the ACL2 system, a theorem prover for reasoning about programs
written in an applicative subset of Common Lisp. We developed a frame-
work where we define a generic transformation based SAT–prover, and
we show how this generic framework can be formalized in the ACL2 logic,
making a formal proof of its termination, soundness and completeness.
This generic framework can be instantiated to obtain a number of ver-
ified and executable SAT–provers in ACL2, and this can be done in an
automated way. In particular, this approach is applied to the formal veri-
fication of Common Lisp implementations of propositional provers based
on tableaux, sequents and the Davis–Putnam procedure, respectively.

1 Introduction

Determining whether a propositional theory is satisfiable (known as the SAT
problem) is very important in many fields of Artificial Intelligence: many prob-
lems that occur in planning, knowledge representation, learning, and other areas
of AI are essentially satisfiability problems [2]. Thus, formal verification of al-
gorithms solving SAT is interesting as a way to provide a certification of the
correctness of the computations performed.

In this paper, we describe the application of the ACL2 system [3] to reason
about a family of propositional SAT provers. ACL2 is both a programming lan-
guage and a logic that allows formal reasoning about programs in that language.
It is also a theorem prover giving mechanized support for proving theorems in the
logic. Thus, it provides a single framework where both proving and computing
are possible.

One of the main features of our approach is that the formal verification is
carried out with a high level of abstraction. For that purpose, we define a generic
transformation based SAT–prover, a common abstract pattern for a family of
well–known SAT algorithms. We show how this generic framework can be for-
malized in the ACL2 logic, making a formal proof of its termination, soundness
and completeness. This generic framework can then be instantiated to obtain a
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number of verified and executable SAT–provers in ACL2, and this can be done
in an automated way. In particular, we have applied this technique to auto-
matically obtain the formal verification of Common Lisp implementations for
three well–known satisfiability algorithms based on tableaux, sequents and the
Davis–Putnam procedure, respectively.

Due to the lack of space we will skip details of the mechanical proofs. The
interested reader is urged to obtain the complete files with definitions and theo-
rems, available on the web in http://www.cs.us.es/~fmartin/acl2-gen-sat,
where also an extended version of this paper can be found.

2 A generic framework to develop propositional
SAT–provers

We will assume that the reader has familiarity with the basic concepts and
results of propositional logic (see [1], for example). We consider an infinite set
of symbols Σ and a set of truth values, B = {t, f}, where t denotes true and
f denotes false. The set of propositional formulas on Σ is denoted as P(Σ),
where the basic connectives are ¬, ∧, ∨, → and ↔. A valuation is a function
σ : Σ −→ B. The valuations are extended to P(Σ) in the usual way. We denote
σ |= F when σ(F ) = t (and we say that σ is a model of F ). The propositional
satisfiability problem can formulated as follows: given a propositional formula F ,
check whether there exists a model σ of F . A SAT prover is a program that finds
such σ, whenever it exists.

In this section, we describe a generic framework where a family of well–known
propositional SAT provers can be fit. The main idea is that we can consider all
these methods as the iterative application of a set of transformation rules that are
applied to some kind of objects built from formulas. To illustrate this, consider
the example in Figure 1–left where the semantic tableaux method is applied to
find a model of the formula (p → q)∧p. Initially, a tree with a single node is built.
In a first step the formula is expanded obtaining one extension with two formulas
p → q and p. In a second step the formula p → q is expanded obtaining two
extensions, the first with the formula ¬p and the second with the formula q.
The left branch becomes closed (with complementary literals) and the right one
provides a model σ.

Representing a branch in the tree as the sequence of its formulas, and a tree
as the sequence of its branches, we can alternatively describe this example by a
sequence transformation rules that are applied to the branches of the tree (we
use the notation 〈e1, ..., ek〉 to represent finite sequences):

〈〈(p → q) ∧ p〉〉 7−→ 〈〈p → q, p〉〉 7−→
7−→ 〈〈p,¬p〉, 〈p, q〉〉 7−→ 〈〈p, q〉〉 7−→ 〈〈p, q〉〉

Note that in every step, a branch is selected and a transformation rule is
applied to it, obtaining a list of new branches that replace the selected branch.
As a particular case, if a closed branch is selected, the empty list of branches is
obtained, having the effect of deleting the selected branch. The transformation
steps are applied until the simple branch 〈p, q〉 is selected. From this kind of
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Fig. 1. An example of tableaux and sequents methods

simple branches (non–closed and without complementary literals) we can easily
obtain a model, that turns out to be a model of the initial formula.

Other propositional methods can be seen in the same way. For example, in
figure 1–right we can see how the sequent method behaves in a similar way, where
objects are now sequents instead of branches of a tree. In fact, analyzing some
well–known methods of proving propositional satisfiability (such as sequents,
tableaux or Davis–Putnam), we can observe this common behavior. They do
not work directly on formulas but on objects built from formulas. The objects
are repeatedly modified using transformation rules reducing their complexity in
such a way that their meaning is preserved. Eventually, from some kind of simple
objects, one can obtain a valuation proving satisfiability of the original formula
(which we will call a distinguished valuation). If no such object is found, then
unsatisfiability of the original formula is proved. Based on this intuitive idea, we
describe in the following subsection a formal description of a generic SAT–prover
in ACL2.

2.1 Formalization in the ACL2 logic

ACL2 [3] stands for A Computational Logic for Applicative Common Lisp. ACL2
is a system that comprises a programming language (an applicative subset of
Common Lisp), a logic that allows to formulate and prove properties about pro-
grams written in the language, and a theorem prover supporting mechanized
reasoning in the logic. The ACL2 logic is a subset of the first-order logic with
equality, without quantifiers. The syntax of its formulas is that of Common Lisp
[7] (we will assume the reader familiar with this language). The logic includes
axioms for propositional logic and for a number of standard Common Lisp func-
tions and data types, describing their behavior. The propositional connectives
are implemented by the functions not, and, or, implies and iff. Rules of infer-
ence includes those for propositional calculus, equality, and instantiation. By the
principle of definition, new function definitions can be introduced in the logic.
Thus, defining a function in ACL2 (by means of defun) has a double effect.
First, a program is defined as usual in Common Lisp; second, the definition of
the function is introduced as an axiom in the logic and then formal mechanized
reasoning about it is possible.
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Let us now deal with the ACL2 formalization of the generic SAT prover
sketched at the beginning of this section. Recall that we can view this generic
SAT prover as the iterative application of transformation rules to some kind of
objects built from formulas. To obtain a formal definition of this process, assume
for the moment that we have defined two functions gen-repr and gen-comp-
-rule. We will explain below how we introduce these functions in the logic. The
intuitive idea is that (gen-comp-rule obj) is the list of objects obtained by
applying one step of transformation rule to the object obj, and that (gen-repr
F) builds the initial object from an initial input formula F. With this auxiliary
functions, we can define the following function generic-sat that defines our
generic SAT prover:

(defun generic-sat-lst (obj-lst)

(if (endp obj-lst)

nil

(let* ((obj (gen-select obj-lst))

(rest (remove-one (gen-select obj-lst) obj-lst))

(expansion (gen-comp-rule obj)))

(cond ((equal expansion t)

(list obj))

(t (generic-sat-lst (append expansion rest)))))))

(defun generic-sat (F)

(generic-sat-lst (list (gen-repr F))))

The main function of this algorithm is given by the recursive function ge-
neric-sat-lst, acting on a list of objects to be expanded. In every step, an
object from the list is selected and a transformation rule is applied, obtaining
a new list of objects that is appended to the remaining list of objects to be
expanded (the selection of an object of the list is implemented by a function
gen-select). Note that there are some objects such that the application of
a transformation step to them returns t, called simple objects. This is a way
to recognize those objects that provide a valuation proving satisfiability of the
original formula. The transformation rules are applied until there are no more
objects to be expanded or until a simple object is selected. As we will see, the
first case indicates unsatisfiability of the input formula and in the second case
we can obtain a model of the input formula.

The auxiliary functions used by generic-sat (i.e. gen-comp-rule, gen-repr
and gen-select) are not introduced in the ACL2 logic using the principle of def-
inition. Since the algorithm described is an abstract pattern for different classes
of SAT provers, the auxiliary functions are not defined completely. Instead, we
only assume that they have certain “minimal” properties that ensure sound-
ness and completeness of the algorithm described by generic-sat. This can be
done in ACL2 by means of the encapsulation mechanism that allows the user
to introduce new function symbols by axioms constraining them to have cer-
tain properties (to ensure consistency, a witness local function having the same
properties has to be exhibited).
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Thus, we used encapsulation to assume the following properties about the
auxiliary functions used (see the web page for a detailed description):

• In every transformation step, satisfiability of the set of involved formulas is
preserved.

• When applying a transformation step to an object, every member of the list
of objects obtained is smaller with respect to some well–founded measure.

• There exists a function gen-model such that when given as input a simple
object it returns a model of the object.

2.2 Formal properties of the generic SAT prover

The following are the main theorems we proved in the ACL2 theorem prover,
about the function generic-sat:

(defthm soundness-generic-sat

(implies (and (propositional-p F) (generic-sat F))

(models (generic-mod F) F)))

(defthm completeness-generic-sat

(implies (and (propositional-p F) (models sigma F))

(generic-sat F)))

The above theorems establish that (generic-sat F) is not nil if and only
if there exists a model of F (in that case, the model of F is returned by the
function generic-mod1). That is, the theorems formally establish the soundness
and completeness of the generic procedure described by generic-sat.

The functions propositional-p and models used in the statement of these
theorems, formalize the notions of propositional formula and model of a formula,
respectively. They are part of a formalization we carried out in ACL2 of the
syntax and semantic of propositional logic.

The above properties are proved by means of a typical interaction with the
ACL2 theorem prover. It must be noted that the theorem prover is automatic
in the sense that once defthm is invoked, the user can no longer interact with
the system. However, in a deeper sense, the system is interactive. Very often,
non-trivial proofs are not found by the system in the first attempt. We had to
guide the prover by adding lemmas and definitions, used in subsequent proofs as
rules, thus helping the prover to find a preconceived proof by means of a suitable
set of rules. It is also remarkable that a considerable part of the total proof effort
was invested to prove termination of the function generic-sat-lst, which is
not trivial. See the web page for details.

1 The function generic-mod is defined as gen-model acting on the single object re-
turned by (generic-mod F).
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3 Instantiating the generic framework

In the previous section, we have described the definition and formal verification
of a generic SAT–prover in ACL2. This generic prover is defined in terms of
some auxiliary functions partially defined, assuming about them the minimal
properties needed to prove soundness and completeness. Therefore the generic
SAT–prover is not executable, but it can be seen as a pattern for some concrete
and Common Lisp executable SAT–provers based on transformation rules.

The functions partially defined by encapsulation can be seen as second or-
der variables, representing functions with those properties. A derived rule of
inference in ACL2, functional instantiation, allows some kind of second–order
reasoning: theorems about (partially) defined functions can be instantiated with
function symbols known to have the same properties. In this case, if the assumed
properties about the generic functions are verified by the concrete functions, then
by functional instantiation we can easily conclude termination, soundness and
completeness of the concrete SAT–prover, having as a result an executable and
formally verified Common Lisp implementation. This process can be automa-
tized to some extent, as we will see. In the following we illustrate this method
describing the definition and verification of a tableaux based SAT–prover.

To obtain a Common Lisp definition of the propositional tableaux method,
together with its formal verification, we first define concrete executable versions
of the generic auxiliary functions used in the definition and verification of the
generic prover. For example, in this case we define (using defun) the functions
tableaux-repr, tableaux-comp-rule, and tableaux-select, concrete imple-
mentations for the tableaux method, corresponding to the generic functions gen-
-repr, gen-comp-rule, and gen-select, respectively. The only requirement for
these definitions is that the assumed properties in the generic case have to be
met by the concrete functions in the tableaux case.

For example, the definition of the function tableaux-comp-rule, which im-
plements the computation rule is the following:

(defun tableaux-comp-rule (branch)

(if (closed-tableau branch)

nil

(let ((F (one-formula branch)))

(cond ((doubly-neg-p F)

(list (add (neg-neg-component F) (remove-one F branch))))

((alfa-formula-p F)

(list (add (component-1 F)

(add (component-2 F) (remove-one F branch)))))

((beta-formula-p F)

(list (add (component-1 F) (remove-one F branch))

(add (component-2 F) (remove-one F branch))))

(t t)))))

Here the function closed-tableau checks if a branch has complementary
formulas. In this case, the branch is expanded to the empty list. Otherwise, a
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formula is selected using a function one-formula, and the branch is expanded
according to whether the formula is of type α or of type β (see [1] for a precise
description of these concepts and the tableaux method). Note that this compu-
tation rule implements a strategy for applying the tableaux expansion rules in
a preference order, given by a function one-formula. Any other strategy could
have been defined, provided that the properties assumed for gen-comp-rule can
be proved for this concrete counterpart.

Once the assumed properties in the generic framework has been proved for
the tableaux case, we can instantiate the generic SAT–prover algorithm, and
prove analogue theorems of termination, soundness and completeness, but now
using functional instantiation. The same procedure has to be done for every
concrete instantiation of the generic framework, so it makes sense to use a tool
to mechanize this process to some extent.

In [4], we described a user tool we developed to instantiate generic ACL2
theories. This tool turns out to be a valuable help in this context, where we have
developed a generic theory about SAT–provers and we want to instantiate the
theory to obtain concrete, formally verified and executable SAT–provers.

We now briefly describe this generic instantiation tool (see [4] for a more
detailed description). We defined a macro named make-generic-theory, which
receives as argument a list of ACL2 events (definitions and theorems) that can
be functionally instantiated. When an ACL2 book2 developing a generic theory
is created, we include a call to this macro in its last line. For example, in the
book that formalizes the generic framework for SAT–provers (as described in the
previous section), we include the following last call:

(make-generic-theory *generic-sat*)

Here *generic-sat* is a constant containing the events corresponding to the
generic definitions and theorems that can be instantiated by other ACL2 books.
For example, the definition of generic-sat and the theorems establishing its
properties. When this macro call is executed, it defines a new macro that recei-
ving as input a functional substitution, generates the corresponding functional
instantiation of the instantiable events.

For example, once defined the functions implementing the tableaux coun-
terparts of the generic functions, when we include the book with the generic
SAT–prover formalization, a macro definstance-*generic-sat* is automati-
cally defined, and we can use this macro to automatically generate instantiated
events for the tableux based SAT–prover, as follows:

(definstance-*sat-generico*

((gen-repr tableaux-repr)

(gen-comp-rule tableaux-comp-rule)

(gen-select tableaux-select)

...)

"-tableaux")

2 A collection of ACL2 definitions and proved theorems is usually stored in a certified
file of events (a book in the ACL2 terminology), that can be included in other books.
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Note that this macro receives as input a functional substitution, relating
every function of the generic framework with its tableaux counterpart. It also
receives a string, used to name the new events generated, by appending it to the
name of the original event.

The result of this macro call is the automatic generation of the events that
define and verify in ACL2 a tableaux based propositional SAT–prover. That is,
the definition of a function named generic-sat-tableaux is generated in an
analogue way to generic-sat (using the tableaux auxiliary functions). And
also the following theorems, establishing the soundness and completeness of
generic-sat-tableaux are automatically generated and proved:

(defthm soundness-generic-sat-tableaux

(implies (and (propositional-p F) (generic-sat-tableaux F))

(models (generic-mod-tableaux F) F)))

(defthm completeness-generic-sat-tableaux

(implies (and (propositional-p F) (models sigma F))

(generic-sat-tableaux F)))

Note that, once proved that the tableaux counterparts of the generic functions
verify the properties assumed in the generic case, no additional proof effort is
needed to define and verify the tableaux–based SAT–prover.

We have applied the same procedure as described above to the definition and
verification of other propositional SAT–provers that can be fit in this transfor-
mation based paradigm. Namely, procedures based on the sequent calculus and
on the Davis–Putnam procedure (see [1] for a description of these procedures).
In both cases, we only have to define concrete versions for the auxiliary functions
and prove that these concrete implementations satisfy the properties assumed in
the generic case. Then we simply use our generic instantiation tool to automat-
ically obtain executable Common Lisp implementations of these methods, with
their corresponding theorems of soundness and completeness.

4 Execution examples

As we said above, the concrete verified definitions, generated by our generic
instantiation tool from the generic SAT–prover, are executable in any compli-
ant Common Lisp and (in particular) in the ACL2 system. Recall that these
functions are implementations of a tableaux–based, sequent–based and Davis–
Putnam procedures for proving propositional satisfiability. In this section we
show some quantitative information about the execution of these SAT–provers3

In Figure 2 we show the use of the tableaux and sequents procedures to
prove the validity of the formulas of Urquhart [9] for different values of the
parameter N , by the unsatisfiability proof of its negation. In figure 3 we also
present the results of applying the tableaux and sequents procedures to prove the
3 The executions are carried out in double Pentium III - 800 MHz
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satisfiability of a propositional version of the N -queens problem (see [5], chapter
13). We also apply the Davis–Putnam procedure to the same problem. Note that
the Davis–Putnam procedure works with propositional clauses and a previous
translation of propositional formulas into clauses is needed in this example (we
do not include the translation times).

N Tableaux Sequents N Tableaux Sequents N Tableaux Sequents

1 0.000 0.000 6 0.060 0.000 11 6.150 0.660
2 0.000 0.000 7 0.210 0.020 12 14.230 1.470
3 0.010 0.000 8 0.440 0.040 13 32.580 3.450
4 0.000 0.000 9 1.120 0.130 14 73.860 7.760
5 0.030 0.010 10 2.610 0.270 15 166.380 17.480

Fig. 2. Times for Urquhart’s formulas

N Tableaux Sequents Davis-Putnam

2 0.010 0.000 0.000
3 0.060 0.020 0.010
4 0.530 0.180 0.040
5 2.370 0.820 0.140
6 212.070 72.600 0.250
7 750.540 255.640 0.570

Fig. 3. Times for N-queens problem

Although the execution times of these implementations are acceptable, the
efficiency can be improved. In fact, we implemented the DPLL procedure in
ACL2, based on [8], which turns out to be much more efficient (Figure 4). This
procedure, although implemented in ACL2, is not formally verified. But having
its definition in ACL2, this efficient procedure could be formally verified, and it
is our intention to do so. The formal verification of this efficient versions can be
done using the basic versions already verified, by proving equivalence theorems
between both versions, a methodology that we already applied in other problems
[6].

5 Conclusions and further work

We have presented an application of the ACL2 theorem prover to reason about
SAT decision procedures. First, we considered a generic SAT–prover, having the
essential properties of every transformation based SAT–prover. Second, we rea-
soned about the generic algorithm, establishing its main properties. And third,
we obtained verified and executable SAT–provers (namely tableaux, sequent and
Davis–Putnam procedures) using functional instantiation. This last process can
be done in a somewhat automated way.

Applying formal methods to the verification of SAT–provers is an interesting
way to certify the computations performed by different implementations of a
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Problem (Sat/Unsat) DPLL (Total time)

aim-50 (16/8) 0.290
aim-100 (16/8) 69.710

hole (0,5) 1844.090
par-8 (10,0) 0.309
par-16 (10,0) 2281.950
jnh (16,34) 51.580
ii-8 (14,0) 107.340

Fig. 4. Times for some DIMACS problems

very important problem in Artificial Intelligence. We used the ACL2 system for
this task because it provides a system where computation and formal proofs can
be intermixed.

The methodology we have followed turns out to be suitable for mechanical
verification. Reasoning first about the generic algorithm allows us to concen-
trate on the essential aspects of the process, making verification tasks easier.
Functional instantiation allows us to verify concrete instances of the algorithm,
without repeating the main proof effort and allowing some kind of mechanization
of the process.

An additional step in this methodology could be refinement. We could define
more efficient functions and obtain their properties by proving equivalence the-
orems with the less efficient ones. This is a line of future work. Finally, we also
plan to use the same methodology to develop a generic framework for resolution
based theorem provers.
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