
A Non-Standard Genetic Algorithm Approach to Solve 
Constrained School Timetabling Problems 

Cristina Fernández Bedoya1, Matilde Santos2 

1Lab. Electrónica y Automática. CIEMAT 
Avda. Complutense, 22. 28040. Madrid – Spain 

Cristina.fernández@ciemat.es 
 

2Dto. Arquitectura de Computadores y Automática 
Facultad de CC. Físicas – UCM. 28040. Madrid – Spain. 

 

Abstract. In this paper a non-standard constructive approach is described to 
solve problems of timetabling, so necessary in every school and university. 
Genetic Algorithms have been used, but adapting them to the characteristics of 
the problem under consideration. Hard constrains, feasible timetables, have 
been considered in the problem formulation, forcing us to define a particular 
population generation and a new guided mutation operator. It has been proved 
that modified genetic algorithms can be very useful in this kind of problems for 
the easiness of including constrains and the effectiveness of its resolution, 
reaching optimum values in few iterations. 

1. Introduction 

Timetabling is one of the most common problems in every educational Institution. 
Every School, College or University throughout the world has to design every year 
feasible timetables that fulfill many  required constrains. Most of the times this task is 
carried out manually or with the help of administration systems. In any case it is a 
tedious and time consuming task, while it is repetitive, routine and arduous. So it 
seems to be much more adequate for a computer. 

 
On the other hand, form the Artificial Intelligence point of view, there has been a 

large concentration of efforts on university timetabling problems, in contrast with 
school courses and exams scheduling, where there is no currently no evolutionary 
school timetable software available [1].t This is despite the fact that there are several 
non-evolutionary school timetabling software available, as this problem has been 
tackled with operation research, linear programming, network flow, etc. 

 
One of the main problem that appears when tackling of this task is how to 

introduce many constrains in an algorithm and how to assign to them the appropriate 
weights. Both hard and soft restrictions must be fulfilled but in a different level. In 
addition, computation time is usually very high. Evolutionary computing lends itself 



to multi-constrained problems, due to the facility of incorporating constraint 
violations into a single fitness function. These intelligent strategies can provide 
optimal solutions exploring a narrower search space, saving computational time.  

 
Course timetabling is a multi-dimensional NP-Complete problem [2, 3] as it cannot 

be solved in polynomial time by the exhaustive evaluation of every timetable. Course 
timetabling is basically a combinatorial problem like the Traveler Salesman [5], with 
a set of items that have to be sorted to obtain the best configuration. Nevertheless the 
fitness function in the timetabling problem is more complicated, needing to take into 
account many restrictions with different priority. 

 
Genetic Algorithms, as well as other heuristic methods, have been found to be very 

powerful as optimization tools for NP-complete problems. GA are based in the 
principles of evolution [4], and they explore the solution space moving towards the 
most promising areas of the search space. At the same time, it keeps different 
solutions, avoiding local minimums or cyclings. 

 
The variables involved in a configuration are restricted to a discrete and finite set, 

and the kindness of a specific solution is measured by the order of these variables, 
which are strongly interdependent. This interrelationship is the main restriction that 
the solution has to meet, otherwise it is absolutely a non feasible timetable. This 
important characteristic forces to implement the resolution method so it is adjusted to 
this constraint. Therefore, GA can be an useful strategy for solving these problems but 
they are more efficient if they are adapted to the application. 

 
The main objective of this work is to help administrative staff of public schools in 

Spain, where this task is usually performed manually and requires several days. 
 
The paper is organised as follows. Section 2 describes the specific timetabling 

problem we are dealing with. In Section 3, the modifications applied to the Genetic 
Algorithms are explained. The simulation results are presented and analysed in 
Section 4. Finally, conclusions are summarised in the last section. 

2. The Weekly Timetabling Problem 

The timetabling problem consists of fixing a sequence of meetings between 
teachers and students in a prefixed period of time, typically a week. For the purpose 
of this paper, a simple problem of finding the optimal timetable for one academic year 
is considered. It works with a certain number Ng of classes, each one representing a 
group of students taking an identical set of subjects and, typically, staying together all 
the week long. There will be certain number of subjects, Na, that will be the same for 
every class, and each subject will have a different number of hours per week. The size 
of the search space is given by (Na!)Ng. 

 



The timetable is split in time slots, for example, an hour or fifty minutes. The 
teaching of each subject has to be fitted to that slot, and the arrangement of these 
items will define each configuration. The number of items per day can be specified 
for each particular situation, as this will affect the fitness value. The number of 
available teachers per subject is also needed to be defined. If this number, Np, is more 
than one, each of the available teachers will be assigned to each class. 

 
There is a basic constraint that directs the searching toward reaching a solution, the 

feasibility of the timetable. There can not be more neither less hours of each subject 
than required, the same for teachers, etc. In addition, two other requirements are 
established: 

 
1. Avoiding teachers meeting two classes in the same time, and vice versa. This 

constraint is more restrictive as the number of groups increases, leading to a non-
feasible solution of the problem when the number of teachers is too low. 

 
2. It is not allowed to have a timetable with the same course twice in the same day. 

The item size is considered as the maximum time that one course can be imparted 
per day. 
 
Other soft constraints can be added, for example, allowing to have a particular 

subject at a specific hour or weekday; if two courses need the same resource, they 
should no be at the same time, etc. 

3. The Genetic Algorithms Approach 

In this section, a modified version of the standard GA is described, to be applied to 
the timetabling problem. 

3.1. Codification of the problem 

Each individual of the population contains all the information relative to a feasible 
timetable. The chromosome structure is a matrix in which the rows identify the class 
and the columns represent each time item (gen), arranged in increasingly order from 
first hour Monday morning (Fig. 1). 

 
Each subject of the set [1..Na] is codified with a number. If there is more than one 

teacher qualified for that subject, a different code will be used to show that is the 
same subject although it can not be overlapped. 

Fig. 1. Direct representation of a timetable in a chromosome 
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3.2. Population generation 

A particular generation function has been defined to guarantee the feasibility of the 
generated chromosomes. The method is similar to that of an innocent hand extracting 
balls from a bag. In that “bag” the assigned codes of every subject are stored, but they 
can be repeated as many times as hours this course is going to be taught in a week. 
Choosing randomly each of these genes, it is possible to find different timetables for 
each class and each individual. 

3.3. Fitness function 

The aim is to maximize the fitness function described before, with each restriction 
Ri weighted by a value. This weight will influence the evolution of the population 
with respect to each constraint. 

Fobj = Σ wi Ri . (1) 

Each unfulfilled constraint is represented with a negative amount, so the optimal 
solution has a fitness value of zero.  

3.4. Parents choice 

This task is performed by the roulette method. Accordingly to the value of the 
fitness function, each individual is assigned to a proportional sector size, which 
represents the probability of being selected as a progenitor of the next generation. In 
consequence, the best individual has the higher probability of being selected but other 
individuals can also be selected. This will allow to achieve better solutions from 
individuals that have not been considered at that moment as the best configuration. 

 
Once the parents have been selected, the program creates the next generation, but 

somehow they will have to be repaired to constitute feasible timetables. With the 
common crossover operator, as the chromosomes would be split and exchanged, there 
is an almost absolutely certainty that the resulting chromosome will not be feasible. In 
some papers, a crossover mechanism that respects this hard condition is explained [6] 
or a strategy that repairs the obtained chromosomes is described[5, 7], although this is 
quite time consuming. In this implementation the algorithm is always searching the 
space of the feasible solutions. 

3.5. Mutation 

The drawback of the crossover operator: it can violate some of the hard constraints, 
the necessity of repairing the springs, time consuming, …) does not appear in the 
mutation operation. Intrinsically, a timetable has all the necessary information to be 
an optimal solution. It needs just to be properly sorted. Hence, mixing information 
from different individuals is not going to improve any of those solutions, as each of 



them fulfills the constraints according to the disposition of the whole group of their 
genes. 

 
Therefore, a parthenogenesis-like operator has been used. Each individual can 

produce a spring with a modified chromosome, generated by the reorganization of the 
parental genes. This reorganization can be performed in a random way or with certain 
guidance. Given a particular timetable, those genes that are penalizing the fitness 
function can be stored and then they can be randomly selected to establish the 
swapping point. 

 
There are two swapping points that define the chromosome slice that is going to be 

exchanged. The depth of this slice (how many rows will be exchanged) is also a 
random parameter. One of these points is selected with a certain probability (Pr) from 
the set of conflictive genes: 

If (code_repeated_same_day = true) then 

 Fitness_f = Fitness_f - W; 

 Conf_gen = [Conf_gen repeated_gen]; 

end 

...... 

If (random(0..1) < Pr) then 

 Swap_point = random(Conf_gen); 

else 

 Swap_point = random(1..number_genes); 

end 

 
This method helps to search better solutions, resulting in a guided influence on the 

generation of new solutions. The obtained chromosome will be quite similar to its 
parent, and most of the times, better, although some times it is possible to notice some 
oscillations (Fig. 2). 

 
The algorithm has been implemented with Matlab, and a graphical user interface 

has been defined (Fig. 3). That allows to configure the genetic algorithms parameters, 
such as number of substitutions, population size, Pr, etc, and also school features as 
number of classes, number of hours per day, number of subjects, teachers assigned to 
each course, etc. 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Evolution of the fitness functions for the best individual in each generation. Both 
constraints: overlapping of subject in different classes (<), and same subject in the same day (o) 
are represented, as well as the total fitness value (*). The fitness subfunction oscillation is 
remarked. 

 

Fig. 3. Graphical User Interface developed for the application 

The maximum number of generations can be bounded, and when the program finds 
an optimal solution it shows the results as in Fig 4. 
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Fig. 4. Optimum timetables obtained using the modified GA. 

4. Analysis of simulation results 

Dealing with the problem of four classes, with 32 hours per week each, 10 different 
subjects and 19 teachers, the algorithm has used 10 individuals, 30% substitutions 
each generation, and Pr = 1, requiring less than 500 iterations to obtain the optimum. 

 



We have studied the increase in time when the size of the problem is on the rise. 
When increasing the number of classes, the number of iterations does not increase so 
quickly as the problem dimension. In Fig. 5 the logarithm of the number of iterations 
and the logarithm of the feasible search space dimension are represented. 

 

Fig. 5. Number of iterations related to the problem dimension. 

The fitted curve gives the following relationship, with D = (Na!)Ng: 

Nº iterations = 1.1334 D0.2965 . (2) 

Fig. 6 shows how the time increment varies linearly with the number of iterations, 
as it could be expected. So, that means that the penalization due to the increment of 
the dimension is very low working with this algorithm. 

Fig. 6. Algorithm computation time vs. number of generations 

The time penalization when increasing the population size is very high, about 1 
second per additional individual. Table 1 shows how the population increase does not 
lead to a better solution in less generations, when the population is more than 10 or 20 
individuals. In no case it is going to be faster, but it may be a softer penalization if a 
parallel processor computer can be used to run the algorithm. Anyway, the increment 
of resources is not justified by the time saving. 
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Table 1. Iterations needed to reach the optimum according to population size. 

Population size Nº iterations to optimum 
2 May not find solution 
4 May not find solution (>1000 iterations) 

10 ~500 
15 ~400 
20 ~250 
30 ~250 
50 ~250 

 
One of the main keys to design the algorithm for a particular problem is the 

definition of the weights associated to each constraint in the fitness function. It is 
important to consider not only the priority of a constraint but also to remark that if a 
timetable violates many of the same type of soft constraints, it will have worst fitness 
value that another that violates a very critical one. Adjusting these weights is a critical 
task for each particular problem. Comparing Fig. 7 and Fig. 2, it is worth noting how 
the constraint with the highest weight is the one that improves faster, while the lowest 
one can move to worst values, so it will take longer to be fulfilled. The weights used 
here were -100 and –20, and when the lowest value is used for the constrain of 
repeated subject in the same day, the algorithm finds sooner the optimum. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. Fitness function evolution with exchanged weights in fitness subfunctions. 

5. Conclusions 

A genetic algorithm has been adapted to a particular combinatorial problem with 
hard constrains. Some of the usual concepts of genetic algorithm have been modified 
to increase its effectiveness in this particular application. For example, in this case the 
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crossover operator has not been used, and the mutation operation is less random than 
usual. That is, providing some intelligence, the solution can improve. 

 
This strategy of using a guided mutation operator can reach optimal solutions in 

fewer iterations. These iterations are lower time consuming and less demanding, as no 
repairs need to be made in the new generated timetables.  

 
In addition, it has been shown how this method reaches optimal solutions in a 

pretty fast way, requiring polynomial time when the dimension of the problem 
increases. 

 
The main problem is the commissioning of the weights in the fitness function, 

because although including as many constrains as desired is very simple, giving them 
the appropriate influence in the global evaluation is a delicate task that affects the 
problem resolution. 

 
It is important to notice that when a hard constrain has been included, despite it has 

a big influence in the algorithm, it helps to reduce the search space. So, although the 
design requires more efforts, the computational time is reduced and the effectiveness 
of the algorithm is improved. 
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