
A Knowledge Model for Dynamic Systems

Monitoring

Jos�e A. Maestro, C�esar Llamas and Carlos J. Alonso

Grupo de Sistemas Inteligentes

Dpto. de Inform�atica

Universidad de Valladolid

fjose,cllamas,calonsog@infor.uva.es

Abstract A most common requirement in the development of Knowl-

edge Based Systems in dynamic environments is the capability of ex-

pressing time. This paper presents how it is possible to express time

related requirements on kbs tasks and to include time explicitly in rules.

Such kind of facilities is attained using Uml diagrams embedded in the

usual CommonKADS notation preserving the methodology. A signi�-

cant set of tasks concerning monitoring is analyzed. Some speci�c lacks,

in CommonKADS, for the accurate analysis of these tasks in the time

domain are identi�ed; and the corresponding adaptations are presented.

Finally, in order to express temporal elicited knowledge, a notation to

include time in rules, focused on instants and intervals, is added.

Keywords: knowledge based system, real-time system, CommonKADS,

monitoring.

1 Introduction

The ability of expressing time in Knowledge Based Systems (kbs) is an essential

feature when treating with applications devised to monitoring and diagnosing

of continuous processes in manufacturing plants. Actually, several applications

with these requirements have been developed in our workgroup to be applied in

a beet sugar factory (Aerolid, Turbolid, Teknolid) [3,2,4,1], some of them

operating at this time.

In order to implement such kind of systems, a real time expert systems plat-

form like G2 (Gensym) has been employed. This toolkit o�ers facilities to ex-

press knowledge in the form of frames, rules, procedures and so on. Also, as

it is expected, this tool permits dealing explicitly with time, timed parameters

and time triggered rules. In contrast, usual knowledge based methodologies do

not include speci�cations for dynamic behaviours. Consequently, these method-

ologies only allow obtaining a static description of the system. As an example,

CommonKADS being a popular methodology, does not o�ers the adequate time

notation facilities required in order to the problem solving methods be expressed

in a temporal situation.

2 Maestro, Llamas and Alonso

Figure 1. Location of the monitoring module in the application system.

It is not our opinion, that CommonKADSmust change substantially to be a

usable methodology in Soft Real-Time Knowledge Based Systems (Soft rt-kbs),

although some attempts has been made to adapt the process to be able to deal

with Hard rt-kbs [11,10].

Nowadays, it seems to be that Uml should be an integral part of every mod-

ern speci�cation. Therefore, special attention to software engineering methodolo-

gies that try to integrateUml and rt Systems [15,16,7] must be taken. Moreover,

the integration with Uml seems to be the course of action taken in the kads

methodology [13].

In this work, a knowledge based model for a monitoring task is presented.

This task leans on a set temporal relations, and includes tasks that must be

scheduled periodically. In its analysis,CommonKADS, some extensions for real-

time [10] and Uml are employed. The task is a model driven monitoring and

the problem is expressed in terms not related with temporal reasoning, although

some notation to include time in the rules is added. Moreover, the problems

concerning the real time platform requirements and schedulability are not taken

into account.

In the next section, a �rst approximation to the monitoring task is considered,

in the framework described in [14,5,13]. In Section 3 the speci�cation of the task

in terms of CommonKADS augmented with the additional notation required

is introduced. In the Section 4, a simple notation adequate for expressing time

into rule is presented and employed into a rule type generalized to be used in

the monitoring task.

2 The monitoring task

The monitoring task plays an important role in diagnosis and supervision sys-

tems [8]. Even more, it has a special status in the OLID generation of supervisory

systems [1]. The main responsibility of a monitoring task is: observes the system

evolution, in order determine whether exists an abnormal behaviour; Figure 1

shows the monitoring task location, as an isolated module previous to visualiza-

tion and diagnosis modules.

The monitoring task, as is presented in Alonso et al. [4,12] could be described

as in Figure 2. This task comprises two subtasks: normal monitoring and inten-

sive monitoring, being, the former, a simple model driven monitoring, as men-

tioned by Breuker et al. [5, ch. 4]. The latter is a more speci�c model driven

A Temporal Monitoring 3

Figure 2. High level inference structure for the monitoring task.

monitoring task, more time consuming, and subtle to be triggered to con�rm

the existence of a discrepancy (see Alonso et al. [4]). Furthermore, each subtask

has a speci�c execution period. The overall monitoring process integrates both

modes; Figure 2 illustrates the monitoring task as can be seen by the rest of the

system.

The notion of trajectory deviation considered is described in terms of knowl-

edge representation involving the role di�erence and temporal constraints. Rules

in both tasks, normal and intensive monitoring, contain references to thresholds

and time deadlines on each parameter.

Either of these tasks is scheduled in a regular basis and its behaviour is de-

scribed appropriately in terms of time intervals. Several situations could change

the steady execution state of them: (i) a change of operation protocol, that con-

vey a transient situation that require the monitoring be suspended, and possibly

a di�erent schedule rate when the normal operation is resumed, and (ii) a change

of task scheduling from normal to intensive monitoring, and vice versa.

The monitoring, described in [4],relies on the concept of monitored variable

that will be employed in the domain layer. A monitored variable could present

three states: normal, vigilance and critical ; its current state depends on roles

di�erence and discrepancy and some temporal considerations.

The intensive monitoring begins to be scheduled in case the monitoring vari-

able changes from the normal state. The e�ective distinction between normal

and intensive monitoring makes possible to operate at di�erent rates under each

operation protocol. Intensive monitoring needs a higher scheduling rate; hence,

in this way it is possible to invoke this task only when it is strictly necessary [12].

In addition, this task behaves in a way rather di�erent from normal monitoring.

Intensive monitoring has a di�erent set of relations from the normal monitoring

and interleaves, in some sense, with the diagnosis subsystem [3].

In Alonso et al. [4] a knowledge level description for the supervision and diag-

nosis, using CommonKADS [13], is presented. The monitoring model appears

embedded, partially, within the supervision and diagnosis task.

In this description, the independence of the tasks from the speci�c elements

of the application environment has been preserved (e. g. from time constraint).

However, the representation obtained is far from being satisfactory, and presents

4 Maestro, Llamas and Alonso

some lacks: (i) the
ow control is very complex, (ii) some constructors disrupt

the sequential execution (fork, wait until and break if), and (iii) the inference struc-

ture becomes complex, possibly as a consequence of the previous reasons.

3 Analysis of the monitoring subtasks, with time

In a non-static domain, most of the knowledge involved has a dynamic
avour.

There will exists some timing restrictions and dynamic and temporal relations,

which are elicited knowledge and, therefore, must be included in a suitable man-

ner in the knowledge model. The task description for the monitoring could be

task monitoring ;

goal : \Analyze an ongoing process to �nd an abnormal behaviour." ;

roles :

input :

protocol: \Current system operation point." ;

output :

discrepancy : \Indication of deviant system behavior." ;

specification : \Watch the system evolution to discover whether any parameter

behaves not according to system expectations." ;

end task

task-method two-step-monitoring ;

realizes : monitoring ;

decomposition :

inferences : specify ;

tasks :

normal-monitoring, intensive-monitoring ;

roles :

intermediate :

active-parameters : \Set of parameters to observe the system evolution." ;

parameter : \A parameter to be monitored." ;

normal-period : \Period to monitor a parameter showing normal behavior." ;

intensive-period : \Period to monitor a parameter showing abnormal behavior." ;

control-structure :

specify (protocol ! active-parameters) ;

FOR-EACH parameter IN active-parameters DO

specify (parameter ! normal-period + intensive-period) ;

ACTIVITIES one-parameter-monitoring DO

normal-monitoring (normal-period , parameter ! di�erence) ;

intensive-monitoring (intensive-period , parameter ! discrepancy) ;

END ACTIVITIES

END FOR-EACH

end task-method

Figure 3. Task and method description for the monitoring task.

A Temporal Monitoring 5

Figure 4. Activity diagram for one-parameter-monitoring.

enhanced noticeably if the schedule, for the normal and intensive monitoring of

the set of parameters, could be expressed appropriately. Also, a more adequate

representation for the control structure is required { in this case, an activity

diagram in Uml is enough.

In practice, good methodology for use in real-time systems design would con-

template the use of diagrams and other textual ways of expressing the tempo-

task normal-monitoring ;

goal : \Analyze an ongoing process to �nd an abnormal behaviour." ;

type : periodic ;

relative-time : Yes ;

period : period ;

roles :

input :

parameter : \A signal which behavior is been analyzed." ;

period : \Period which the task is realized." ;

output :

di�erence : \Indication of deviant parameter behavior." ;

specification : \Watch the parameter evolution to discover whether it behaves

not according to system expectations." ;

end task

task-method system-driven-monitoring ;

realizes : normal-monitoring ;

decomposition :

inferences : compare, specify ;

transfer-functions : obtain ;

roles :

intermediate :

norm : \Expected normal value for the parameter." ;

parameter-value : \Current value for the parameter." ;

control-structure :

specify (parameter ! norm) ;

obtain (parameter ! parameter-value) ;

compare (parameter-value + norm ! di�erence) ;

end task-method

Figure 5. Task description for the normal monitoring.

6 Maestro, Llamas and Alonso

Figure 6. Inference structure for the normal monitoring task.

rization of the tasks, events and state changes in the system [6]. In the Figure 3,

a task method speci�cation for the monitoring task is presented. It employes

a new primitive, ACTIVITIES, bounded to the activity diagram, one-parameter-

monitoring that appears in Figure 4. This diagram permits us represent the

activity states of the monitoring task, without tangling the control structure of

the monitoring task.

The part of the control structure that can not be described appropriately

using pseudocode has been replaced with an activity diagram. A more rigorous

approach could be taken considering an additional task for one parameter.

Task timing constraints can be expressed with little changes in the task

description presented in Figures 5 and 10 (see Appendix A). Tree additional

�elds {type, period, relative-time{ are added to the standard notation of the task

description, following the notation proposed by Henao et al. in [10,11].

4 Rule time notation

The special nature of the time knowledge relations makes diÆcult to grasp them

into the usual CommonKADS rule notation. In our domain, there are tempo-

ral relations that must be expressed in the knowledge base { for example, in

Figure 7 a complex state diagram is presented, which includes conditional and

temporal transitions. Maybe, the usual state diagram is the most powerful tool

Figure 7. State diagram for a monitored variable.

A Temporal Monitoring 7

rule-type monitoring-rule ;

antecedent: monitored-variable ;

cardinality: 1 ;

consequent: monitored-variable ;

cardinality: 1 ;

connection symbol: detect ;

end rule-type

Figure 8. The rule type declaration for monitoring rules.

for describing this kind of systems [15], being intuitive and permitting being

formalist.

This state diagram represents all the necessary knowledge to identify a dis-

crepancy and to recover from it. As can be seen, a monitored variable has three

main states and two auxiliary wait states.

As CommonKADS stands a textual description for rules rather than a

graphical one, it would be necessary to translate the temporal transitions into

the standard rule notation.

For describing the rule content a kind of �rst order logic alike notation is

proposed by Schreiber et al. in [13]. Whilst CommonKADS includes an almost

entire Bnf notation de�nition of Cml2 (Concept Modelling Language), it does

not include a speci�c de�nition for rule content (see [13, ch. 14]). It could be

used as a way to extend the methodology to those kinds of problems that are

not taken into account, such as dynamic domains.

In Figures 8 and 9 a rule-type and abstract rule instances are proposed. These

rules re
ect the state diagram shows in the Figure 7 into a CommonKADS rule

MV.state = normal AND MV.value > MV.trigger-threshold

DETECT

MV.state = vigilance

MV.state = vigilance AND ALWAYS t IN [NOW - MV.t-con�rmation, NOW]

MV.historical(t) > MV.con�rmation-threshold

DETECT

MV.state = critical

MV.state = critical AND MV.value < MV.con�rmation-threshold

DETECT

MV.state = vigilance

MV.state = vigilance AND ALWAYS t IN [NOW - MV.t-recuperation, NOW]

MV.historical (t) < MV.recovery-threshold

DETECT

MV.state = normal

Figure 9. The rule set for the monitoring tasks. MV stands for \monitored variable".

8 Maestro, Llamas and Alonso

description alike. A kind of temporal �rst order logic has been employed. This

logic is inspired in the work of Allen and others compiled by Galton in [9].

Monitoring has only references to past and present time so that a linear time

model is proposed. Instants and intervals are necessary to express our monitoring

model. The usual FORALL quanti�er has been replaced with a more expressive

ALWAYS. This is an interval quanti�er so that an interval must be provided.

In [12] another quanti�er, SOMETIME, and a set of predicates to deal with in-

tervals and instants are provided . Additionally, it is supposed each monitored

variable has an historical that maintains past data.

5 Conclusions

A model for a real-time task of a knowledge-based system has been presented. In

this model CommonKADS and Uml have been employed in order to represent

suitably the knowledge involved and the dynamic behaviour of the task. This in-

tegration has been made following Schreiber (et al.) latest CommonKADS [13]

methodology book recommendations, and a monitoring task, that is a general-

ization of those used in the OLID generation, has been described.

It has been made clear that, if the system to be analyzed has a temporal

description, the usual notation to describe the task method could not be the

best choice. Furthermore, Real-Time systems demands its own concepts and

notation, usually a graphical one, which is diÆcult to describe in pseudocode

without yielding a procedural program.

Hence, an alternative to the method speci�cation of the monitoring task has

been used, in this case, the activity diagram. This alternative, founded in the

Uml set of diagrams, has just been justi�ed in the framework of the Com-

monKADS methodology. This kind of diagram allow us to describe sequences

of tasks and the possible paralelism among them without having to write con-

structions as the usual fork-join couple.

State diagrams have been employed in wherever situations the expressivity

could be enhanced. In this paper, apart from the activity diagram, a state dia-

gram has been presented for the monitored variable. This diagram, also, solves

partially the problem of expressing time relations in contrast to the pseudocode

form.

The rule notation has been augmented to express time dependencies. This has

permitted to simplify the task description. Although the time model is simple,

covers a broad range of applications.

References

1. G. Acosta, C. Alonso, and B. Pulido. Basic Tasks for Knowledge Based Supervision

in Process Control. Engineering Applications of Arti�cial Intelligence, 14:441{455,

2002.
2. C. Alonso, G. Acosta, J. Mira, and C. de Prada. Knoledge based process control

supervision and diagnosis: the AEROLID approach. Expert Systems with Applica-

tions, 14:371{383, 1998.

A Temporal Monitoring 9

3. C. Alonso, B. Pulido, and G. Acosta. On Line Industrial Diagnosis: an attempt

to apply Arti�cial Intelligence techniques to process control. In 11th International

Conference on Industrial and Engineering Applications of Arti�cial Intelligence

and Expert Systems, IEA/AIE-98. LNAI, volume 1415, pages 804{813. Springer-

Verlag, 1998.

4. C. Alonso, B. Pulido, G. Acosta, and C. Llamas. On-line Industrial supervision and

diagnosis, knowledge level description and experimental results. Expert Systems

with Applications, 20(2):117{132, February 2001.

5. J. Breuker and W. Van de Velde, editors. CommonKADS Library for Expertise

Modelling. Reusable problem solving components, volume 21 of Frontiers in Arti�-

cial Intelligence and Applications. IOS Press, Amsterdam, 1994.

6. Alan Burns and Andy Wellings. Real-Time Systems and Their Programming Lan-

guajes. Addison-Wesley, 3 edition, 2001.

7. Bruce Powel Douglass. Real-Time Uml: developing eÆcient objects for embedded

systems. Addison Wesley Logman, 3 edition, May 1998.

8. O. Dressler and P. Struss. Principles of knowledge representation, chapter The

consistency based approach to automated diagnosis of devices., pages 269{314.

CSLI publications, 1996.

9. Anthony Galton. Epistemic and Temporal Reasoning, volume 4 of Handbook of

Logic in Arti�cial Intelligence and Logic Programming, chapter Time and Change

for AI, pages 175{240. Oxford Science Publications, 1995.

10. M. Henao, J. Soler, and V. Botti. Developing a Mobile Robot Control Application

with CommonKADS-RT. In Engineering of Intelligent Systems. LNAI, volume

2070, pages 651{660. Springer, June 2001.

11. M�onica Henao. CommonKADS-RT: Una Metodolog��a para el Desarrollo de Sis-

temas Basados en el Conocimiento de Tiempo Real. PhD thesis, Universidad

Polit�ecnica de Valencia, June 2001.

12. J. A. Maestro, C. Llamas, and C. Alonso. Anotaci�on de aspectos temporales en la

especi�caci�on de la tarea en CommonKADS: Aplicaci�on a la monitorizaci�on. In IX

Conferencia de la Asociaci�on Espa~nola para la Inteligencia Arti�cial (CAEPIA-

TTIA'01), pages 449{458, Gij�on, Espa~na, 2001.

13. G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. Van de

Velde, and B. Wielinga. Knowledge Engineering and Management, The Com-

monKADS Methodology. The MIT Press, 1999.

14. G. Schreiber, B. Wielinga, and J. Breuker. KADS. A Principled Approach to

Knowledge-Based System Development. Academic Press, 1993.

15. Bran Selic, Garth Bullekson, and Paul T. Ward. Real Time Object-Oriented Mod-

eling. Software Engineering Practice Series. John Wiley & Sons, New York, 1994.

16. Bran Selic and James Rumbaugh. Using UML for Modeling Com-

plex Real-Time Systems. Whitepaper, ObjecTime Limited, March 1998.

http://www.objectime.com/otl/technical/umlrt.html.

A Analysis of the intensive monitoring

In this appendix, the corresponding analysis for the intensive monitoring task

is described. It presents a task with similar time constraints speci�cation as the

normal monitoring.

10 Maestro, Llamas and Alonso

task intensive-monitoring ;

goal : \Analyze an ongoing process to �nd an abnormal behaviour." ;

type : periodic ;

relative-time : Yes ;

period : period ;

roles :

input :

parameter : \A signal which behavior is been analyzed." ;

period : \Period which the task is realized." ;

output :

discrepancy : \Any classi�cation of abnormal behavior of the system being

monitored." ;

specification : \Watch the parameter evolution to con�rm whether it behaves

not according to system expectations." ;

end task

task-method temporal-abstraction-monitoring ;

realizes : intensive-monitoring ;

decomposition :

inferences : abstract, compare, match, specify ;

transfer-functions : obtain ;

roles :

intermediate :

norm : \Expected normal value for the parameter." ;

abstract-value : \Some kind of abstracted result from historical data." ;

historical-data : \Collection of past values for the parameter." ;

norm-value : \Truth value that indicate whether a norm is ful�lled." ;

norm-values : \Set of norm values." ;

control-structure :

obtain (parameter ! historical-data) ;

WHILE HAS-SOLUTION abstract (historical-data! abstract-value) DO

specify (parameter + abstract-value ! norm) ;

compare (abstract-value + norm ! norm-value) ;

norm-values = norm-values ADD norm-value ;

END WHILE

match (norm-values ! discrepancy) ;

end task-method

Figure 10. Inference structure and task description for the intensive monitoring.

