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Abstract

Real Time expert systems design presents problems
concerning both, knowledge and time constraint rep-
resentation. COMMONKADS has become one of the
most successful approach to knowledge based sys-
tems construction. So much effort has been devoted
to employ this methodology for the domain knowl-
edge description of monitoring and diagnosis in a
dynamic domain. In a time-dependent domain, the
time is an important variable itself which has to be
taken into account. Therefore, this kind of system re-
quires an intelligible representation of time in order
to be able to write rules in which time is an important
issue.

In this paper we focus on how to include the time
into part of the the domain system knowledge de-
scription. The necessary constructors for our do-
main problem have been included and made some
simple enhancements to represent time in the usual
rules with the CoMMONKADS notation, cML2. We
present some examples to illustrate their use.

1 Motivation

Real-Time domains represent a challenging environ-
ment using the knowledge-based approach. Never-
theless, it is well known that classical Al techniques
are not suitable for addressing environments with
time constraints. There exists some situations where
it makes sense to use this classical techniques. Spe-
cially when all other techniques are not suitable or
as has been stated by Laffey et al. [8] “The principal
reason for using a Real-Time expert system is to re-
duce the cognitive load on users or to enable them to
increase their productivity without the cognitive load
on them increasing”. In [8] it is also proposed the
features which would be expected in a Real-Time ex-
pert system. These features include a “temporal rea-
soning facility” which allows the “representation of

temporal relationships™ and the capability for “main-
taining, accessing and statistical evaluating histori-
cal data”.

Perhaps, one of the most important contributions
to knowledge engineering is the COMMONKADS
methodology by Schreiber et al. [11]. In this
methodology, the knowledge involved in a reasoning
process is represented by different ways, including
procedures, rules, object oriented techniques, and so
on. The methodology split off the knowledge in-
volved in a system in domain knowledge, inference
knowledge and task knowledge. Each one of these is
referred to a different level of knowledge existing in
the environment.

For some years ago, it has been developed several
software applications based on knowledge for mon-
itoring and diagnosing industrial on-line processes
at the University of Valladolid. The knowledge ap-
proach has been applied to a medium-size factory
about 400 control loops. Controlling the processes
was not desired, but monitoring the plant processes
in order to assist failure detection and identification.

Such kind of systems, which have a time-
dependent behaviour and can include several models
of normal and abnormal behaviour, could fall better
within the class of Monitoring & Diagnosis Assis-
tant as it is called by Bredeweg in [4, p. 123], rather
than Monitoring & Control System, and therefore the
knowledge approach fits well on them.

Despite in COMMONKANDS time is not consid-
ered, it is still a suitable methodology for knowledge
representation and knowledge engineering. The
knowledge engineering is a young discipline which
is still evolving. Several attempts for modifying
and/or extending KADS have appeared in the liter-
ature, COMMONKADS-RT [7] is a valid example,
and we would like to contribute with a slightly, par-
tial change in the CoMMONKADS notation to deal
with the problem of time representation in the rule
specification stage.



First we present the necessity of including time
in the knowledge representation, in this case: the
rules. In the next section a time representation model
is argued. The time model selected is applied to
two case studies that presents a relevant importance:
rules with an explicit reference to past and then rules
which reference future. In the last section some ad-
ditions to the standard CML2 notation are proposed,
enough, in our opinion, to tackle with the problems
we have found in modeling knowledge related with
time.

2 Statement of the Problem

We have applied the knowledge based approach to
the supervision of a beet-sugar factory (Alonso et al.
in [1] and [2]). This kind of system is character-
ized by its complexity and relays heavily on human
supervision mainly as a consequence of being a con-
tinuous system, not a batch system. The plant be-
haves in several ways depending on some production
optimization constraints. Apart from this, the plant
supervisor and operator posses an implicit model of
the plant in relation to the possible failures and mal-
function candidates, in the case of troubles appear.

Finally, the dynamic nature of the knowledge in-
volved in the control and supervision of the plant
adds a temporal dimension to the usual static knowl-
edge approach.

In our opinion, in this problem, the complete solu-
tion representation leads to the explicitly inclusion of
time in the knowledge description involved. Despite
the time is not usually desirable to be included in the
representation, in some problems is almost unavoid-
able, as it is closely related to both the environment
and the solution expertise model.

Our principal issue, in this paper, is to present an
easy and comprehensive time representation in the
rules that represents the applicable knowledge in the
domain.

3 TimeRepresentation

The sort of monitoring and diagnosis approach cho-
sen needs some kind system model to work properly,
as a model-based approach to monitoring and diag-
nosis is taken. In a time-dependent domain like this,
it could be interesting to represent the time explic-
itly inside the model specification, since the involved

knowledge is time-dependent. In this way, the anal-
ysis would reflect same essential temporal aspects.
For example, a typical (pattern) rule might look like
this:

“the signal is going wrong if it is over the
threshold during the last three minutes.”

In this example, the data is time-dependent. Even
more, the signal data must be looked at for the last
three minutes at least. This kind of time reference
requires two types of concepts; the concept of in-
stant of time and the concept of interval of time. The
former appears in this rule as “three minutes” which
states a fixed point of time. The last is the lapse from
three minutes ago to now. It is due that “the last three
minutes” is referred to now implicitly.

Then, both intervals and instants have to be in-
cluded in order to manage the time consequently.
Even more, we need jointly, the concept of “now”
and the notions of bounded “past” and “future”.
Also, a time model is needed, which states the type
of time that we ought to represent.

3.1 TimeModd

The computational treatment of the time is an at-
tractive problem for mathematical and computer sci-
ence communities for many years. Some important
efforts has been done for modeling the time itself
and its properties using logic, resulting in powerful
formal systems. The COMMONKADS rules are a
sort of simply logic rules describing the knowledge
needed to resolve the problem. So, using logic is not
a choice but almost a kind of imposition. In this way,
it would be a good idea to maintain the notation as
simpler as possible.

The time model must allow us to refer to the past,
the present and the future. As the previous rule
shows, it is necessary at least make references to past
and present. This is a rule pattern for monitoring. A
simple sort of diagnosis is also possible to be mod-
eled with this template. However, a complex diag-
nosis process should convey references to future.

It is also necessary both relative and static time
references. It could be possible to refer a fix instant
of time in the past or to the future and, of course, it
must be exists the concept of the present instant of
time (now).

Furthermore, references to intervals must be pos-
sible. Even more, references to all the points of an
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Figure 1: A linear time model.

interval and to a specific point in an interval must be
desirable. And, maybe, it is also desirable, to state
relationships between intervals, and between an in-
terval and an instant. Then, the definition of a rela-
tionship set is almost unavoidable.

In recent years, a mathematical basis for a com-
putational logic treatment of time has been proposed
by several authors. Torsun in [12] proposes a linear,
discrete, bounded past and future and interval based
time model for the computational tractability of UsF
logic. This kind of time model fits very well our ne-
cessities. It has bounded past and future, and it is
linear too.

Barber et al. in [3] present an environment,
REAKT, that allows past, present and future time
references. This environment is designed to con-
struct knowledge based control systems. Predictive
control is supported, so that the environment can
manage multiple predictions at one instant in the fu-
ture. This kind of system is based on a branching
time model. In this model, one past and present and
several futures are possible, so that the system can
deal with uncertainty in future events.

Our software applications are not going to control,
but only diagnosing the industrial plant. 1t means
that no predictive control is needed and, therefore,
no actions are going to be taken in advance, not even
judgements about which component(s) is malfunc-
tioning are going to be done beforehand. So that a
time model that allows prediction representations, is
not needed in our models. The model of time we
are using allows the sense of a unique timeline as is
shown in the figure 1.

4 A Case Study

First of all, a common first order logic alike nota-
tion has been chosen to write out the knowledge in-
volved in the problem. This representation is not
a strict logical formalism, but mostly a natural and
intuitive representation of the system logic as it is
stated in [11, ch. 13]

The diagnosis system exploits rules that make ref-
erence to future events, whereas the monitoring sub-

system usually employs facts that rely on the past.
Then we decided first to focus on this type of rules,
trying to preserve this simplicity on the rules that
refers to future.

4.1 Past Events

The implemented monitoring (and diagnosis) task
is the model-based approach. The monitoring task
only refers to data and events in the past and present.
A logic rule template for monitoring is shown below:

V't € (NOW — period, NOW):
value (t) > threshold
— state = BAD

This rule is refereed to an observed signal. It assigns
a state to the signal. This state depends on a thresh-
old. If the rule is over the threshold during at least
certain period of time, the state is consigned BAD.
This means that something could be going wrong.
The value of the signal at a precise instant of time
is denoted by value (t) where t is a dummy variable
that takes values in the interval stated, at it is shown
in figure 2.

- >
< period >
signal.value >
threshold
begins here

NOW

Figure 2: Sample timeline related to the monitoring
rule.

As it has been noted, the diagnosis may involve
past, present and future data and events. The de-
signed diagnosis is divided into two types named
fast diagnosis and delayed diagnosis. The former
takes into account the recent past (just now and a
short period of time after) and intends to find out
what component would be malfunctioning, and what
is the reason (which in CoMmMONKADS s called, a
causal-dependency based diagnosis [4]). This sort of
diagnosis is the fast diagnosis, which tries to identify
the faults at the moment, so that the rules are simi-
lar to the monitoring rules. However, there exists a



significant difference between monitoring and diag-
nosis, the diagnosis rules may, usually have to refer
more than one signal. A pattern for a rule for fast
diagnosis could be like this one:

vVt € (NOW - signall.beforePeriod, NOW):
signal2.value (t) > threshold A
signal3.state # BAD
— fault = signall.component + “is going wrong”

The usual dotted notation has been used to tackle
with more than one signal. It is possible to have
more than one interval (in the example above there
is only one interval) and it is possible to have rela-
tionships between intervals and instants.

[ <— beforePeriod —»

i t
signal2.value >
threshold
begins here

Figure 3: Sample timeline related to the diagnosis
rule.

This rule means the state of signall depends on
the value of signal2 over an interval and the state of
signal3. If the antecedent is evaluated to be true then
the consequent is a string that points to the compo-
nent that is malfunctioning as it is shown in figure 3.
Of course, an output string is not obligatory.

4.2 Future Events

When it is known a signal is getting wrong, some-
times remains a strong uncertainty about what com-
ponent is failing, doing necessary to wait for enough
symptoms to appear and be able to diagnose the
problem. In other words, there would appear other
kind of rules that refers to a future instant. These
rules are embraced by the delayed diagnosis. Now
here arises the problem of tackling with the future in
the rule.

We would like to maintain the declarative form of
the rules about knowledge used in COMMONKADS,
so we have extended the standard set of constructors
described in CML2.

The knowledge involved in this kind of diagnosis
adopts the following aspect:

“If the signal2 has been over the thresh-
old in any instant 3 minutes before now
and the signal3 state is not BAD during
2 minutes after now then the component

malfunctioning is the one related to sig-
nall”

A possible template for a time-dependent rule of this
kind of diagnosis may be the one shown below:

3t e (NOW - signall.beforePeriod, NOW):
signal2.value (t) > signal2.threshold A
vVt € (NOW, NOW + signall.afterPeriod):
signal3.state (t) # BAD
— fault = signall.component + “is going wrong”

beforePeriod afterPeriod

signal2.value > NOW signal3.state
threshold here = BAD here
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Figure 4: Sample timeline related to the delayed di-
agnosis.

In this rule the time is relative to NOW and hence
the interval (NOW - signall.beforePeriod, NOW)
refers to the past (every period is supposed to be
positive) as NOW - signall.beforePeriod is before
NOW. Likewise, the interval (NOW, NOW + sig-
nall.afterPeriod) refers to a future instant since NOW
+ signall.afterPeriod is after NOW. In the figure 4 is
shown a time line for a possible scenario for this kind
of rule.

It is possible, of course, to rewrite this type of
rules to be similar to other “usual” rules in the
knowledge base. If the point NOW is moved to the
instant in which the rule is completed then a rule
only focused on the past is obtained (similar in the
form that they are written, since both forms are go-
ing to be conceptually equivalent).

This way of express knowledge with time in-
volved, allow us to preserve a declarative representa-
tion of the system knowledge. Otherwise it must be
necessary to take an operational point of view. Rao
et al. [5] and Myers [10], for example, take the oper-
ational approach. In [10], even is stated a set of con-
structors that includes primitives such as WAIT-FOR.
However, COMMONKADS enforces a declarative
point of view in rules. CoMMONKADS states a pro-
cedural description for the task method description,
but it could be seen that including all the time related
knowledge at this level has some drawbacks: it could
complicate the description (Alonso et al. [2]); could
force the use of another new primitives like FORK,
and so on.



5 Some Design Issues

This kind of rule is though to be evaluated by parts.
Just right now, it could be evaluated the past part of
the rule, and at some instant of the future, the rest
of the rule will (eventually) be evaluated, and maybe
completed.

TURBOLID [2] uses this approach to supervis-
ing and diagnosing a industrial plant. The figure 5
shows the sequential steps in the diagnosing process
in TURBOLID.

+

Fast Diagnosis

no fault found
A

A

Wait stage

fault

found I no fault found

A

Delayed Diagnosis

no fault found
A

P Explanation

Figure 5: Sequential step chaining in Turbolid.

Including this kind of rules in the real knowledge
base is straightforward as it can be split up in the past
part and in the future part. At least two rules have to
be written down, maybe more, in the expert system
and must be properly chained in the normal way it is
done in an expert system.

The last rule could be rewritten as it is shown here:

3t e (NOW - signall.beforePeriod, NOW):
signal2.value(t) > signal2.threshold
— (r = NOW) [
V't e (1, 7 + signall.afterPeriod):
signal3.state (t) # BAD
— fault = signall.component +
“is going wrong” |

Note that, the rule has been split off into two parts.
The first part is referred to the past and/or the present
instant. This part is included, as a rule in its own
in the fast diagnosis stage in figure 5. This stage
contains those rules that depends only on past and
present time.

If the fault is not found out, the system goes to a
wait stage. This wait stage is looking for new the
data to appear. The system waits until any rule, con-
taining future references, can be completed. Those
rules that can not be completed at time are dropped

out the working memory. Whenever a rule is com-
pleted the explanation stage is reached. If no rule is
completed a default explanation is provided.

The part of the rule that relies on the future, a rule
in its own, concerns a new environment (a closure)
in that the rule is evaluated referring to a future and
static interval. This part is included as a rule in its
own in the delayed diagnosis stage and a maximum
wait lapse is programmed into the wait stage.

In our study cases, finding out the component that
is malfunctioning is concerned with the rules de-
scribed up to here. However, there are other rules
which explains why a component would be malfunc-
tioning. These rules are scanned when the fault is
identified. They have to associate a explanation to
the fault found.

6 Notation

Intervals, instants and relationships between them
have been studied by Allen & Koomen and Vilain.
They have defined relations that appears in [6, p.
205] and we have adopted them as these are enough
to express every relation useful to the proposals we
have.

A CoMMONKADS alike notation [11, appendix
A] is defined so that this kind of rules can be in-
cluded in the expert system documentation. The
complete set of primitives are shown in the table 1.

Two new range types are defined, INSTANT and
INTERVAL which are defined to refer time. The in-
terval can be defined by two instants but it is a new
type in its own. The two logical operators FORALL
and EXISTS are redefined to be the interval opera-
tors ALWAYS and SOMETIME respectively and also
it is included a new set of relationships between in-
tervals and between a interval and a instant. The
last logic pattern rule is now again translated into the
new CML2 notation in the following example.

SOMETIME t IN (NOW—signall.beforePeriod, NOW):
signal2.value(t) > signal2.treshold AND
ALWAYS t IN (NOW, NOW + signall.afterPeriod):
signal3.state (t) ! = BAD

IMPLIES

fault = signall.component + "is going wrong”;
The usual rule definition notation is not modified.



Syntax Description

INSTANT concept of “time instant”

INTERVAL concept of “convex set of instants”

(r—"0)irVi2(T—7) interval, made up of two instants i; and i with iy j i>

NOwW constant instant that identify the actual instant of time

ALWAYS var IN interval temporal universal quantifier; the dummy variable var allows references to
expression each value in the interval and the expression must be verified for each of

those values.
SOMETIME var IN interval

temporal exists quantifier; the dummy variable var allows references to each

expression value in the interval and the expression must be verified for at least one of
those values.
interval predicates (A, B)
A BEFOREB A occurs strictly before than B
A MEETS B A finishes in the same instant that B begins
A OVERLAPS B A shares its final instans with B, and one is not included in the other
A BEGINS B A and B begin at the same instant and A is included in B
A FALLS-WITHIN B A is strictly included in B, both begin in the same instant and A is included
in B
A FINISHES B A and B finishes at the same instant, and A is included in B
A EQUALS B A and B both has the same initial and final instants
instant predicates (i ) and interval (1)
i PRECEDES | i occurs strictly before than |
i STARTS | i is the initial instant of |
i DIVIDES | i is after the | initial instant and is before the | final instant
i ENDS | i is the final instant of |
i FOLLOWS I i occurs strictly after of |

Table 1: New primitives for the temporal rules.

7 Conclusion

It has been shown that cML2 is easily extensible, and
the time can be naturally integrated into rules, with
slightly notation changes.

Also, some discussion has been made about how
to include direct references to past, present and fu-
ture in rules. It is included a useful notation to de-
scribe the temporal relations in the domain knowl-
edge. It has been made some consideration about
those rules that involves the constant NOW, which
refers to the present instant, and how to improve the
manageability of those rules including past and fu-
ture instants and intervals.
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