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Abstract. In this paper the capability of using self-organising neural
maps (SOM) as music style classifiers from symbolic specifications of
musical fragments is studied. From MIDI file sources, the monophonic
melody track is extracted and cut into fragments of equal length. From
these sequences, melodic and harmonic numerical descriptors are com-
puted and presented to the SOM. The performance is analysed in terms
of separability in different music classes from the activations of the map,
obtaining different degrees of succeed. This scheme has a number of ap-
plications like indexing and selecting musical databases or the evaluation
of style-specific automatic composition systems.

1 INTRODUCTION

There are a number of applications in computer music to the possibility of
melodic fragment comparison. Two main representations of music can be found:
sounds (recorded from human or computer interpretation of a music score) and
symbols (representation codes independent of the sonic outcome of an inter-
pretation). The automatic machine learning and pattern recognition techniques
available, successfully employed in other fields, can be also applied in music anal-
ysis. Immediate applications are the classification, indexation and content-based
search of digital musical libraries, where digitized (MP3), sequenced (MIDI) or
structurally represented (XML) music can be found.

One of the tasks that can be posed is the modelisation of the music style. This
means to provide the computer with the capability of discrimination between
musical styles or sub-styles, or even between different composers. Even more,
the computer could be trained in a given user musical taste in order to look for
that kind of music over large musical databases. Such a model could be used
in cooperation with automatic composition procedures to guide this process
according to some stylistic profile provided by the user.

The aim of this work is to develope a system able to distinguish among a set
of musical styles from a symbolic representation of a melody. We have chosen
random, jazz and classical melodies for our experiments. We will investigate
whether those symbols by themselves have enough information to achieve this
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goal or, on the contrary, there is also timbric information that has to be included
for that purpose.

In this paper the input to the system are melodic lines represented symbol-
ically in MIDI file tracks. This can be extended to feed the system with XML
representations of music, in addition to MIDI files.

The key point of this work is to test the ability of self-organizing maps
(SOM) [1], to automatically perform this task. SOM are neural methods able to
obtain approximate projections of high-dimensional data distributions in low-
dimensional spaces, usually bidimensional. With the map, different clusters in
the input data can be located. These clusters can be semantically labelled to
characterize the training data and also hopefully future new inputs.

1.1 Related works

In arecent paper, Rauber and Frithwirth [2] pose the problem of organising music
digital libraries according to the sound features of each musical piece, in such a
way that similar themes can be located clustered. This would permit the user to
locate sections within the library according to stylistic similarities. The authors
utilize a SOM in order to create a map of the digital library, where similar music
themes can be found in zones close to one another. After finding a given music in
the map, others related can be found with an exploration of the surroundings of
that point, permitting an intuitive exploration of the library. This is, therefore,
a content-based classification of the data (sounds in that case).

Other related work is that of Whitman and Flake [3] in which they present a
system named Minnonwatch, based on neural nets and support vector machines,
able to classify a sound musical fragment into a given source or artist. The system
achieves a success rate of 91% with 5 different artists or sources, of 70% with 10
artists and of 46% with 21 artists.

In a similar work [4], the authors describe a system to recognize music types
using an explicit-time modelling neural net that codes an abstraction of acoustic
events in the hidden layer of the net representing temporal structures of the
musical parts. This abstractions are then used to discriminate among different
types of music. The experiments show that the system improves the recognition
rate of other methods like recurrent neural nets or hidden Markov models.

In [5] the authors present a hierarchical SOM able to analyze time series
of musical events. The model can recognize instances of a reference sequence (a
fugue by J.S. Bach) in presence of noise, and even discriminate those instances in
a different musical context. In this work, the SOM are used as sequence recogniz-
ers, using a time integration mechanism in the input layer of two SOM, arranged
one on top of the other, to represent the reference monophonic melodic sequence
in order to provide the SOM with the ability of processing time sequences.

In the work by Thom [6] pitch histograms (measured in semitones relative
to the central pitch of the tonality and independent of the octave) are used to
describe blues fragments. The pitch frequencies are used to train a SOM.

All these works pose the same problem that we face here, and most of them
use digital sounds as input. Only the latter two use symbolic representations for



recognizing musical parts, not styles. The approach we propose here is to use
the symbolic representation of music as the input to self-organizing maps for
classification of musical fragments into a initially small set of styles. The success
of this approach would permit to extend it to other styles and to apply this
methodology to the huge amount of symbolic data stored in music databases all
over the Internet.

2 METHODOLOGY

The monophonic melodies are extracted from the rest of the musical content in
the MIDI files and preprocessed to extract melodic and harmonic descriptors.
This way we have a sequence of note events. Other kind of MIDI events are
filtered out. Each note can take a value from 0 to 127 (the pitch) and the duration
is the distance from the event that onsets the sound of a note to the event
that finishes it (there is no limit to this in theory). Note that this symbolic
representation implies the lack of timbre information. It is just like a music
score, containing information about music events but not about the instrument
that is playing. This way, the situation is like an expert trying to classify scores.

Even dealing with monophonic melodies the search space is very vast. Nev-
ertheless, the hypothesis is that melodies from a same musical genre may share
some common features that make possible that a experienced listener is able to
assign a musical style to them.

In order to have more restricted data, only with melodies written in 4/4 have
been considered. A window 8 bars wide has been defined for analysis (enough
to get a good sense of the melodic line), and for each window position a vector
of musical descriptors is computed from the notes in the window. These vectors
contain melodic and harmonic information from the melody in each window and
will be the inputs for training and testing the SOM.

For the experiments we have considered, along with real melodies, other
randomly-generated melodies in order to test the ability to separate well struc-
tured melodies from other non-sense musical constructions. For generating this
kind of melodies each bar was divided into @ pulses (quantization) and the
melody was considered as formed by three kinds of events that can appear at
each pulse: note onsets, silences and continuation of the previous event.

We have restricted the note pitches to a range of [45,82], heuristically deter-
mined after an analysis of a large number of real melodies. In 8 bars we will have
8 x ) events. Each melody was generated with a proportion of notes / silences
/ continuations among this possibilities:

[-T-1[1-1-2[1-2-1[1-2-3[2-1-1[2-1-3[2-3-1]3-1-2[3-2-1]

where N-S-C indicates the probability of generating a note onset (IV), a silence
(S) or a continuation event (C'), according to the expression X/(N+S+C) where
X can be N, S or C. Therefore a melody generated according to the pattern 2-
3-1 will have nearly a 33% of note onset events, a 50% of silence events and a
17% of continuation events.



In the next experiments we have initially considered this set of descriptors:

— Opverall descriptors:
e Number of notes and number of silences in the melody.

Pitch descriptors:

e Lowest, highest (these values provide information about the pitch range
of the melody), average, standard deviation (provide information about
how the notes are distributed in the score).

— Note duration descriptors (these descriptors are measured in pulses):
e Minimum, maximum, average, and standard deviation.

— Silence duration descriptors (in pulses):
e Minimum, maximum, average, and standard deviation.

Interval descriptors (distance in pitch between two consecutive notes, mea-
sured in semitones):

e Minimum, maximum, average, and standard deviation.

These 18 features are melodic descriptors. This number will be increased in
further experiments in order to evaluate harmonic aspects of the melodies.

3 EXPERIMENTS AND RESULTS

The experiments are divided into two phases: first, a set of random melodies
with different proportions of notes, silences and continuation events are gener-
ated, and a set of real melodies, extracted from jazz standards, is built. We put
the capability of SOM for this task to a test with an, a priori, easy task: to
separate random musical sequences from melodies with real musical feeling. The
second phase consists of substituting music of other type different from jazz for
the random melodies in order to test the ability for style discrimination. Clas-
sical music was chosen and melodic samples were taken from works by Mozart,
Bach, Schubert, Chopin, Grieg, Vivaldi, Schumann, Brahms, Beethoven, Dvorak,
Haendel, Pagannini and Mendhelson.

For SOM implementation and graphic representations the SOMPAK software
[7] has been used. For the experiments a hexagonal geometry for unit connections
and a bubble neighbourhood for training have been selected. In this paper, two
main kinds of map representations are shown: the Sammon projection, as a way
to display in 2D the organization of the weight vectors in the weight space, and
the U-map representation, where the units are represented by hexagons with a
dot or label in their center. The grey level of unlabelled hexagons represents
the distance between neighbour units (the clearer the closer they are). The grey
level of labelled units is an average of those distances. This way, clear zones are
clusters of units in the SOM, sharing similar weight vectors. The labels are a
result of calibrating the map with a series of test samples and indicate the class
of the sample that activates that unit more times.



3.1 Random versus jazz melodies

400 random samples have been generated and 430 jazz samples have been ex-
tracted from 54 MIDI sequences of jazz standards, all of them made up of 8 bars
with a quantization of ) = 8 pulses per bar (64 events per melody). From them,
the 18 descriptors listed above were computed. Using these sets a SOM of 16
neurons for the OX axis and 8 for the OY axis was trained. The training con-
sisted of two stages: a coarse one of 1,000 iterations with wide neighbourhoods
(12 units) and a high learning rate (0.1) and then a fine one of 10,000 iterations
with smaller neighbourhood ratio (4 units) and learning rate (0.05).

Fig. 1. Sammon projection of the 16 x 8 map of figure 2: random versus real melodies.
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Fig. 2. SOM map for the same weights as in figure 1.

In figures 1 and 2 the Sammon projection and the SOM map are displayed
after training. Note that there exists a clear gap between two zones in the map.



The small cluster on the right in Fig. 1 corresponds to the real melodies and that
of the left to the random melodies. In the map, the same can be observed for
the two areas clearly separated: random samples on the right and real samples
on the left. The dark strip represents the separation between both zones. The
SOM has been labelled using the training samples. The “REAL” cluster has
less extension than that of random samples (labelled according to the event
proportions), because the latter have more variability. There was an almost total
lack of overlapping (units labelled with both styles) between the zones.

It is clear that the distinction between both zones in the map corresponds to
real differences between the random and jazz melodies, and the SOM has been
able to capture those differences.

3.2 Jazz versus classical music

So far we have shown that the SOM can easily discriminate between melodies
with musical feeling and random ones, using quantitative melodic descriptors.
Now we will step forward and subtitute real melodies for the random samples.
The new set is composed of monophonic fragments of classical music and a
number of changes in the experimental setup are going to be made.

522 classical music melody fragments of eight bars of length were extracted
from MIDI files for the training set along with the previous 430 jazz samples,
now quantized to () = 48 pulses by bar in order to have more resolution. Initial
experiments showed that the overlapping degree for the SOM unit labels of both
musical styles was rather high (39.0% of the units were activated by samples from
both music styles). This fact suggests that differences were detected between
both styles but maybe there is a lack of information to take decisions. For this,
harmonic features were added to the set of 18 descriptors already considered.

Addition of harmonic descriptors Most of western music is based on a
number of scales (sets of notes ordered by pitch), and melodies can be formed
taking notes from those sets. A diatonic melody is made up of the natural notes,
without sharp or flat notes (named accidentals). In western music most of the
melodies belong to one of two main scale types: major or minor. The first note
of a scale determines its ‘tonality’ or ‘key’ and in any melody diatonic and
accidental notes can appear.

If the overall key and kind of scale (major or minor) of a melody are known,
the set of diatonic pitches is also known and any note event can be classified
into diatonic or accidental, and some harmonic information can be evaluated,
like the proportion of diatonic notes with respect to the total. If the proportion
is high then it is an indication of small key changes or modulations, if any. On
the other hand, a low proportion indicates that there are a lot of key changes.

The detection of the key and the definition of the diatonic scale utilized is
based on musicological criteria outside the scope of this paper.

We number the accidental notes of a given scale from 1 to 5 according to their
distance in pitch from the key note of the scale. We will call this the accidental
degree. According to this criterion, three harmonic descriptors are defined:



— Number of accidental notes. An indication of frequent excursions outside
tonality or modulations.

— Average degree of accidental notes. Describes the kind of excursions.

— Standard deviation of degrees of accidental notes. Indicates a higher variety
in the modulations.

From each MIDI file the key is extracted and then, the harmonic descriptors
are computed. A new experiment is designed using the new set of 21 descriptors.
The same training set of melodies has been used.

The size of the map has been also increased according to the higher dimen-
sionality of the input vectors. The number of units is now 30 x 12. The neigh-
bourhood radius has also been adapted to the new dimensions. After training
and labelling, the maps in figure 3 have been obtained. The labelling process has
located the “JAZZ” labels mainly in the right and upper zone, and those cor-
responding to classical composers mainly in the lower left zone. The percentage
of overlapping was in this case very low: 11.1%. Now a clear distinction of styles
has been achieved. In the Sammon projection of figure 4 a knot separates both
zones in the map.
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Fig. 3. SOM map after being labelled with jazz (top) and classical (down) melodies.



Fig. 4. Sommon projection of the SOM map in figure 3.

3.3 Classification results

The results of classifying new melodic fragments, not contained in the training
sets, using the different SOM described above are presented in table 1. These
data are obtained with two different maps but both trained with melodic and
harmonic descriptors. One label success indicates the proportion of melodies to
which the map has assigned a unit containing just one label and it was the right
one. First label success percentage is related to melodies assigned to units with
two labels but being the first the right one. Therefore, we are considering as
favourable decisions these two criteria: just one correct label or two labels but
the first is the correct one (class success row). Second label success is if the
second was the right one for the assigned unit. Error means that the map has
assigned a unit not containing the right label. These two answers define class
error. Unclassified melodies were those assigned to a unit not containing any
label.

The best performance was obtained with the smaller map, with a success
classification rate of 82.9% for jazz melodies and of 60.1% for classical melodies.
On the other hand the error rates are lower for the second map, and the difference
is due to the higher unclassified rates for this second map. These results are
probably due to the fact that in the second map the class clusters were more
defined, leaving more space to unlabelled units. If we devise a way to assign this
unlabelled units a class (based, for example, in taking into account the distances
in the weight space for the trained map for assigning a label also to unlabelled
units), probably the results would improve.



Table 1. Classification results (percentages) using melodic and harmonic descriptors

| | Jazz | CLASSICAL |

| Map dimensions = 16 x 8 |

Class success| 82.9 60.1
Class error 17.1 34.6
Unclassified | 0.0 5.3
One label 52.9 43.7
First label 30.0 16.4
Second label | 12.9 18.9
Error 4.2 15.7
| Map dimensions = 30 x 12 ]
Class success| 72.9 51.2
Class error 10.0 23.6
Unclassified | 17.1 25.2
One label 64.3 41.8
First label 8.6 9.4
Second label | 2.9 5.0
Error 7.1 18.6

4 CONCLUSIONS AND FUTURE WORKS

We have shown the ability of SOM to map symbolic representations of melodies
into a set of musical styles using their description in terms of melodic and har-
monic features. The best recognition rate has been found with 21 descriptors
that describe melodic and harmonic features of the melodies. The best recogni-
tion rate has not been achieved when the overlap was minimum, so the overlap
ratio does not seem to be a key point when assessing the quality of a map.

Some of the misclassifications can be caused by the lack of a smart method
for melody segmentation. The music samples have been arbitrarily restricted to
8 bars, getting just fragments with no relation to musical motives. This fact can
introduce artifacts in the descriptors leading to less quality mappings. The main
goal was to test the feasibility of the approach, dealing even with incomplete
data. Nevertheless a best average recognition rate of 71.5% has been achieved,
that is very encouraging keeping in mind these limitations and others like the
lack of valuable information for this task, like timbre.

A number of possibilities are yet to be explored, like the development and
study of new descriptors. A statistical multifactorial study of the whole set of
descriptors can aid in the selection of a model that can achieve better results with
a minimum subset of them. It is very likely that this subset is highly dependent
on the styles to be discriminated.

To achieve this goal a large music database has to be compiled and put it
to the test using our system. Different styles and more melodies are needed to
draw significative conclusions.



Other future lines are based in the integration of time in the description

process to capture the evolution of the whole melody. The map activations for a
series of fragments of the same melody could be the input to other recognition
algorithms in order to increase the classification power of the system, even with
a higher number of music styles at the same time. Works in that direction are
currently being developed.
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