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Abstract. Decision tree learning is a machine learning technique that

allows to generate accurate and comprehensible models. Accuracy can

be improved by ensemble methods which combine the predictions of a

set of di�erent trees. However, a large amount of resources is necessary

to generate the ensemble. In this paper we introduce a new ensemble

method that minimise the usage of resources by sharing the common

parts of the components of the ensemble. For this purpose we learn a

decision multi-tree instead of a decision tree. We call this new approach

shared ensembles. The use of a multi-tree produces an exponential num-

ber of hypotheses to be combined, which allow better results than boost-

ing/bagging. We perform several experiments, showing that the technique

allows to obtain accurate models improving the use of resources with re-

spect to classical ensemble methods.

Keywords: Decision-tree learning, Decision support systems, Boosting,

Machine Learning, Hypothesis Combination, Randomisation.

1 Introduction

From the di�erent machine learning approaches that are widely applied currently

with successful results, decision tree learning [16] is considered a paradigm with

an optimal trade-o� between the quality and the comprehensibility of the models

learned.

A method that has been recently exploited to improve the accuracy of simple

classi�ers consists in the combination of a set of hypotheses (or ensemble) [3].

Well-known techniques for generating and combining hypotheses are boosting

[8, 18], bagging [1, 18], randomisation [4], stacking [19] and windowing [17]. Al-

though accuracy is signi�cantly increased, \the large amount of memory required

to store the hypotheses can make ensemble methods hard to deploy in applica-

tions"[12]. One way to overcome partially this limitation could be to share the

common parts of the components of the ensemble.

In previous work [5], we have presented an algorithm for the induction of

decision trees which is able to obtain more than one solution. To do this, once

a node has been selected to be split, the other possible splits at this point are

suspended and stored until a new solution is required. In this way, the search
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space is a multi-tree rather than a tree which is traversed producing an increasing

number of solutions for increasing provided time. Since each new solution is built

following a suspended node at an arbitrary place in the multi-tree, our method

di�ers from other approaches such as the boosting or bagging method [1, 8, 18]

which induce a new decision tree for each solution. Therefore, a multi-tree is

not a forest [10] because a multi-tree shares the common parts of di�erent trees

(shared ensemble), whereas a forest is just a collection of trees.

Other works have tried to generate a forest of `di�erent' trees, either seman-

tically/vertically (by changing the weights of examples, e.g. boosting [8, 18], or

the sample, e.g. bagging [1]) or syntactically/horizontally (by selecting attribute

samples for each tree). In particular, this latter approach has been presented

independently by [9, 10], under the name pseudo-randomly selected feature sub-

spaces, and by [20], under the name stochastic attribute selection committees.

In both cases the idea is to select pseudo-randomly a subset of attributes, learn

a �rst classi�er, then select other subset of attributes, learn a second classi�er,

and so on. Next, the elements from the set of decision tree classi�ers (the forest)

are combined. A related technique has been presented by Breiman in [2].

The main aim of both the horizontal and vertical approaches is to obtain

a better accuracy in the combination. There have also been attempts to com-

bine horizontal and vertical approaches, such as the work from [21]. In [4] a

randomised method have been introduced in the construction of the tree (ran-

dom split criterion), and has been shown to be competitive w.r.t. boosting and

bagging.

In this paper, we focus on the combination of hypotheses from the multi-tree

approach in order to obtain accurate models. The use of this structure allow

to combine more hypotheses than in other combination methods by using the

same resources. Several hypotheses fusion strategies are de�ned and evaluated

experimentally. We also include a comparison between our approach and some

well-known ensemble methods.

The paper is organised as follows. In Section 2, we introduce the multi-

tree structure. Section 3 discusses di�erent ways to combine the components

of a shared ensemble. Section 4 presents several experiments showing that the

approach e�ectively generates accurate models. Finally, Section 5 summarises

and presents some future work.

2 Multi-tree structure

In this section we present the multi-tree structure, and we discuss about the

di�erent criteria required to construct it.

The construction of decision trees is performed in two di�erent steps [17]:

{ Tree Construction: In this phase, the whole decision tree is constructed.

The process is driven by a splitting criterion that selects the best pair split.

The selected split is applied to generate new branches, and the rest of splits

are discarded. The algorithm stops when the examples that fall into a branch

belong to the same class.
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{ Pruning. This phase consists in the removal of not useful parts of the tree.

There are two options: pre-pruning, when the process is performed during

the construction of the tree, or post-pruning, when the pruning is performed

by analysing the leaves once the tree has been built.

Thus, decision trees are built in a eager way, which allows the quick construc-

tion of a model. However, it may produce bad models because of bad decisions.

In [5] we have de�ned a new structure in which the rejected splits are not

removed, but stored as suspended nodes. The further exploration of these nodes

after the �rst solution has been built allows the extraction of new models from

this structure. For this reason we call it decision multi-tree, rather than decision

tree. Since each new model is obtained by continuing the construction of the

multi-tree, these models share their common parts. A decision multi-tree can

also be seen as an AND/OR tree [13, 15], if one consider the split nodes as

OR-nodes, and the nodes generated by an OR-node exploited as AND-nodes.

To populate a multi-tree, we need to specify a criterion that selects one of the

suspend nodes. In [6] we presented and evaluated some possible criteria, such as

topmost, bottom, or random. Our experimental results showed that random is

a trade-o� between speed and quality.

Once the multi-tree has been built, we can use it for two di�erent purposes: to

select one or n comprehensible models (decision trees) according to a selection

criterion (Occam, MDL, : : :), or to use the multi-tree as an ensemble whose

components can be combined. In this paper, we address the latter.

Figure 1 shows a decision multi-tree. OR-nodes are represented with an arc

and leaves are represented by rectangles. Three di�erent models are exhibited

in this multi-tree since two suspended nodes have been exploited.

X<6

Y=b

Y=a Y=b

X>3 X<3 X>9 X<9Y=a

X>6

Fig. 1. Selection of a single decision tree from the multi-tree structure.

The decision multi-tree approach presents some interesting features. First,

the number of solutions grows exponentially w.r.t. the number of suspended OR-
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nodes exploited. Secondly, the solutions share some of their parts. The percentage

of the shared quantity depends on the depth of the suspended OR-node exploited.

Exploring deep suspended nodes in the bottom areas of the multi-tree causes the

generation of models that share many of their conditions, therefore they could

be very similar. However, the exploration of OR-nodes in the top positions of

the multi-tree produces solutions which are di�erent enough between them.

3 Shared Ensemble Combination

In this section we address how to combine di�erent solutions in a multi-tree.

Given several classi�ers that assign a probability to each prediction (also known

as soft classi�ers) there are several combination methods or fusion strategies.

Let us denote by pk(cj jx) an estimate of the posterior probability that classi�er

k assigns class cj for example x. In decision tree learning, the pk(cj jx) depend
on the leaf node where each x falls. More precisely, these probabilities depend

on the proportion of training examples of each class that have fallen into each

leaf node during training. The reliability of each leaf usually depends on the

cardinality of the leaf.

Let us de�ne a class vector vk;j(x) as the vector of training cases that fall in

each node k for each class j. For leaf nodes the values would be the training cases

of each class that have fallen into the leaf. To propagate upwards these vectors to

internal nodes, we must clarify how to propagate through AND and OR nodes.

This is done for each new unlabelled example we want to make a prediction for.

For the OR-nodes, the answer is clear: an example can only fall through one of

its children. Hence, the vector would be the one of the child where the example

falls. AND-nodes, however, must do a fusion whenever di�erent alternate vectors

occur. This is an important di�erence in shared ensembles: fusion points are

distributed all over the multi-tree structure. Following [11], we have considered

several fusion strategies that convert m class vectors into one combined vector


j :

{ sum: 
j =
Pm

k=1 vk;j

{ arithmetic mean: 
j =
Pm

k=1

vk;j
m

{ product: 
j =
Qm

k=1 vk;j

{ geometric mean: 
j =
m
pQm

k=1 vk;j

{ maximum: 
j = maxk(vk;j)

{ minimum: 
j = mink(vk;j)

There have been some studies to examine which strategy is better. In particular,

[11] concludes that, for two-class problems, minimum and maximum are the best

strategies, followed by average (arithmetic mean).

In addition, we have devised some transformations to be done to the original

vectors at the leaves before its propagation:

{ good loser : v0
k;j(x) =

P
j vk;j(x) if j = argmax(vk;j(x)) and 0 otherwise

{ bad loser: v
0
k;j(x) = vk;j(x) if j = argmax(vk;j(x)) and 0 otherwise.
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{ majority: v
0
k;j(x) = 1 if j= argmax(vk;j(x)) and 0 otherwise.

{ di�erence: v0
k;j(x) = vk;j(x) �

P
i6=j vk;j(x)

For example, the following table shows the results of applying the transforma-

tions to two vectors.

Original Good loser Bad loser Majority Di�erence

f 40, 10, 30 g f 80, 0, 0 g f 40, 0, 0g f 1, 0, 0 g f 0, -60, -20 g
f 7, 2, 10 g f 0, 0, 19 g f 0, 0, 10 g f 0, 0, 1 g f -5, -15, 1 g

In the next section, we show an experimental evaluation of these fusion and

transformation methods for problems with more than two classes.

4 Experiments

In this section we present an experimental evaluation of our approach, as it

is implemented in the SMILES system [7]. SMILES is a multi-purpose machine

learning system which includes, among many other features, the implementation

of a multiple decision tree learner.

For the experiments, we have used GainRatio [17] as splitting criterion and

we have chosen a random method [6] for populating the shared ensemble (after

a solution is found, one suspended OR-node is woken at random). Pruning is

not enabled.

The experiments were performed in a Pentium III-800Mhz with 180MB of

memory running Linux 2.4.2. We have used several datasets from the UCI dataset

repository [14]. Table 1 shows the dataset name, the size in number of examples,

the number of classes and the number of nominal and numerical attributes.

# Dataset Size Classes Nom.Attr. Num.Attr.

1 Balance-scale 625 3 0 4

2 Cars 1728 4 5 0

3 Dermatology 358 6 33 1

4 Ecoli 336 8 0 7

5 Iris 150 3 0 4

6 House-votes 435 2 16 0

7 Monks1 566 2 6 0

8 Monks2 601 2 6 0

9 Monks3 554 2 6 0

10 New-thyroid 215 3 0 5

11 Post-operative 87 3 7 1

12 Soybean-small 35 4 35 0

13 Tae 151 3 2 3

14 Tic-tac 958 2 8 0

15 Wine 178 3 0 13

Table 1. Information about datasets used in the experiments.
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Since there are many sources of randomness, we have performed the exper-

iments by averaging 10 results of a 10-fold cross-validation. This makes a total

of 100 runs for each pair of method and dataset.

4.1 Evaluation of fusion and vector transformation techniques

Arit. Sum. Prod. Max. Min.

# Acc. Dev. Acc. Dev. Acc. Dev. Acc. Dev. Acc. Dev.

1 80.69 5.01 81.24 4.66 76.61 5.04 83.02 4.76 76.61 5.04

2 91.22 2.25 91.25 2.26 83.38 3.65 90.90 2.09 83.38 3.65

3 94.17 4.06 94.34 3.87 89.06 5.19 94.00 4.05 89.06 5.19

4 80.09 6.26 79.91 6.13 76.97 7.14 80.09 6.11 76.97 7.14

5 95.63 3.19 95.77 3.18 93.28 3.71 95.93 2.81 93.28 3.71

6 94.53 5.39 94.20 5.66 94.00 5.34 94.47 5.45 94.40 5.34

7 99.67 1.30 99.71 1.18 81.00 8.60 99.89 0.51 81.00 8.60

8 73.35 5.86 73.73 5.82 74.53 5.25 77.15 5.88 74.53 5.25

9 97.87 2.00 97.91 1.80 97.58 2.45 97.62 1.93 97.58 2.45

10 94.52 4.25 93.76 5.10 92.05 5.71 92.57 5.43 92.05 5.71

11 62.50 16.76 63.25 16.93 61.63 17.61 67.13 14.61 61.63 17.61

12 97.50 8.33 97.50 9.06 97.75 8.02 94.75 11.94 97.75 8.02

13 63.60 12.59 64.33 11.74 62.00 12.26 63.93 12.03 62.00 12.26

14 81.73 3.82 82.04 3.78 78.93 3.73 82.68 3.97 78.93 3.73

15 94.06 6.00 93.88 6.42 91.47 7.11 92.53 6.99 91.47 7.11

Geomean 85.83 4.72 85.99 4.71 82.53 5.93 86.40 4.52 82.55 5.93

Table 2. Comparison between fusion techniques.

Table 2 shows the mean accuracy and the standard deviation using the dif-

ferent fusion techniques introduced in Section 3 for each dataset. We summarise

the results with the geometric means for each technique.

The techniques studied are sum, product, maximum, minimum, and arith-

metic mean, all of them using the original vectors. We do not include in the

table the experiments with geometric mean because they are equivalent to the

results of product. The multi-tree has been generated exploring 100 suspended

OR-nodes, so giving thousands of possible hypotheses (with much less required

memory than 100 non-shared hypotheses). According to the experiments, the

best fusion technique is maximum. Thus, we will use this fusion method to

study the e�ect of applying the transformations on the vector.

Table 3, illustrates the results on accuracy using the original vector and

the good looser, bad looser, majority and di�erence transformations. According

to these experiments, all transformations get very similar results, except from

majority. We will use the combination max + di�erence in the following experi-

ments.
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Max + Orig Max + Good Max + Bad Max + Majo. Max + Di�.

# Acc. Dev Acc. Dev Acc. Dev Acc. Dev Acc. Dev

1 83.02 4.76 83.02 4.76 83.02 4.76 67.84 6.61 83.02 4.76

2 90.90 2.09 90.90 2.09 90.90 2.09 81.48 3.22 90.90 2.09

3 94.00 4.05 94.00 4.05 94.00 4.05 79.97 7.98 94.00 4.05

4 80.09 6.11 80.09 6.11 80.09 6.11 78.21 6.07 80.09 6.11

5 95.93 2.81 95.93 2.81 95.93 2.81 89.44 4.84 95.93 2.81

6 94.47 5.45 94.47 5.45 94.47 5.45 91.47 6.90 94.47 5.45

7 99.89 0.51 99.89 0.51 99.89 0.51 77.58 6.29 99.89 0.51

8 77.15 5.88 77.15 5.88 77.15 5.88 83.42 5.06 77.15 5.88

9 97.62 1.93 97.62 1.93 97.62 1.93 90.40 4.02 97.62 1.93

10 92.57 5.43 92.57 5.43 92.57 5.43 89.14 6.74 92.57 5.43

11 67.13 14.61 67.13 14.61 67.13 14.61 68.25 15.33 67.00 14.60

12 94.75 11.94 94.75 11.94 94.75 11.94 50.75 28.08 94.75 11.94

13 63.93 12.03 63.87 12.14 63.93 12.03 60.93 11.45 65.13 12.53

14 82.68 3.97 82.68 3.97 82.68 3.97 68.26 4.35 82.68 3.97

15 92.53 6.99 92.53 6.99 92.53 6.99 78.41 11.25 92.53 6.99

Gmean 86.40 4.52 86.39 4.53 86.40 4.52 76.11 7.19 86.49 4.54

Table 3. Comparison between vector transformation methods.

4.2 Inuence of the size of the multi-tree

Let us study the inuence of the size of the multi-tree, varying from 1 to 1,000

OR-nodes explored. Table 4 shows the accuracy obtained using the shared en-

sembles depending on the number of OR-nodes opened. The results indicate

that the further population of the multi-tree allows to improve the results of the

combination.

4.3 Comparison with other ensemble methods

Figure 2 presents a comparison of accuracy between our method (multi-tree),

boosting and bagging (all of them without pruning), depending on the number of

iterations. We have employed the Weka1 implementation of these two ensemble

methods.

Although initially our method obtains lower results with few iterations, with

a higher number of iterations it surpasses the other systems. Probably the slow

increase of accuracy in the multi-tree method is due to the random selection of

the OR-nodes to be explored.

Nevertheless, the major advantage of the method is appreciated by looking

at the consumption of resources. Figure 3 shows the average training time de-

pending on the number of iterations (1-300) for the three methods. Note that the

time increase of bagging is linear, as expected. Boosting behaves better with high

values because the algorithm implemented in Weka trickily stops the learning if

it does not detect a signi�cant increase of accuracy. Finally, SMILES presents a

1 http://www.cs.waikato.ac.nz/�ml/weka/
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1 10 100 1000

# Acc. Dev. Acc. Dev. Acc. Dev. Acc. Dev.

1 76.82 4.99 77.89 5.18 83.02 4.76 87.68 4.14

2 89.01 2.02 89.34 2.20 90.90 2.09 91.53 2.08

3 90.00 4.72 91.43 4.67 94.00 4.05 94.00 4.05

4 77.55 6.96 78.58 6.84 80.09 6.11 80.09 6.11

5 93.63 3.57 94.56 3.41 95.93 2.81 95.56 2.83

6 94.67 5.84 94.27 5.69 94.47 5.45 95.00 5.14

7 92.25 6.27 96.45 4.15 99.89 0.51 100.00 0.01

8 74.83 5.17 75.33 5.11 77.15 5.88 82.40 4.52

9 97.55 1.89 97.84 1.86 97.62 1.93 97.75 1.92

10 92.62 5.22 93.43 5.05 92.57 5.43 90.76 5.89

11 60.88 17.91 63.00 15.88 67.00 14.60 68.13 15.11

12 97.25 9.33 96.00 10.49 94.75 11.94 95.50 10.88

13 62.93 12.51 65.00 12.19 65.13 12.53 65.33 12.92

14 78.22 4.25 79.23 4.03 82.68 3.97 84.65 3.34

15 93.12 6.95 93.29 6.31 92.53 6.99 92.99 5.00

Gmean 83.88 5.52 84.91 5.30 86.49 4.54 87.47 4.47

Table 4. Inuence of the size of the multi-tree.

sub-linear increase of required time due to the sharing of common components

of the multi-tree structure.
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Fig. 2. Accuracy comparison between ensemble methods.
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5 Conclusions

This work has presented a novel ensemble method. The main feature of this

technique is the use of a structure called multi-tree that allows to share common

parts of the single components of the ensemble. For this reason we call it shared

ensemble.

Several combination methods or fusion strategies have been presented, as well

as class vector transformation techniques. The e�ectiveness of these methods has

also been examined by an experimental evaluation. We have also investigated the

importance of the size of the multi-tree w.r.t. the quality of the results obtained.

Finally we have compared the new ensemble method with some well-known

ensemble methods, namely boosting and bagging. The accuracy results for the new

method are quite encouraging: although initially, our results are below the two

methods, when the number of iterations is increased, the new approach equals

and even excels the other methods. Nevertheless, it is in the use of resources

where the shared ensembles represent an important advance, as we have shown.

As future work, we propose the study of a new strategy for generating trees

di�erent from the current random technique we have employed to explore OR-

nodes, probably based on the semantic discrepancy of classi�ers. This technique

would provide a way to improve the results of our ensemble method with few

iterations.
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