
An Agent-based System for Supporting Learning from
Case Studies

Marta C. Rosatell i1, John A. Self2, and Tulio V. D. Christofoletti3

1 Graduate Program in Informatics, Catholic University of Santos
R. Dr. Carvalho de Mendonça, 144, Santos-SP, 11070-906, Brazil, Tel: +55 13 32055555

rosatelli@unisantos.br

2 Computer Based Learning Unit, University of Leeds
Leeds, LS2 9JT, UK, Tel: +44 113 2334626

jas@cbl.leeds.ac.uk

3 Department of Informatics and Statistics, Federal University of Santa Catarina
Cx.P. 476, Florianópolis-SC, 88040-900, Brazil, Tel: +55 48 3317111

tulio@inf.ufsc.br

Abstract. A main issue in collaborative learning is providing support and
monitoring both the individual learners and the group activities. In this sense,
there is a variety of functions that might be accomplished by a collaborative
learning support system. Some examples are: knowledge diagnosis and
evaluation, group and individual feedback, student and group modelling, and so
on. LeCS (Learning from Case Studies) is a collaborative case study system
that provides a set of tools and accomplishes some functions that together
support learners during the development of a case study solution. This paper
gives an overview of LeCS, focusing on the system design and architecture.
The LeCS design is based on our model of supporting the learning from case
studies method in a computer-based environment and in a distance learning
context. The LeCS architecture is agent-based and includes three kinds of
agents.

Keywords. Artificial intelligence in education, agent-based system,
collaborative learning, intelligent distance learning, learning from case studies.

Type of submission. Paper Track.

Conference topic. Artificial intelli gence in education and intell igent tutoring
systems.



An Agent-based System for Supporting Learning from
Case Studies

Abstract. A main issue in collaborative learning is providing support and
monitoring both the individual learners and the group activities. In this sense,
there is a variety of functions that might be accomplished by a collaborative
learning support system. Some examples are: knowledge diagnosis and
evaluation, group and individual feedback, student and group modelling, and so
on. LeCS (Learning from Case Studies) is a collaborative case study system
that provides a set of tools and accomplishes some functions that together
support learners during the development of a case study solution. This paper
gives an overview of LeCS, focusing on the system design and architecture.
The LeCS design is based on our model of supporting the learning from case
studies method in a computer-based environment and in a distance learning
context. The LeCS architecture is agent-based and includes three kinds of
agents.

1 Introduction

A main issue in collaborative learning is providing support and monitoring both the
individual learners and the group activities. In this sense, there is a variety of
functions that might be accomplished by a collaborative learning support system.
Some examples are: knowledge diagnosis and evaluation, group and individual
feedback, student and group modelling, simulated students, and so on. The usual
problem in most Intelligent Tutoring Systems (ITS) of generating appropriate
feedback and determining the contents of this feedback is also present in this kind of
systems. This is specially critical in a distance learning context.

LeCS (Learning from Case Studies) [1] is a collaborative case study system for
distance learning that provides a set of tools and accomplishes some functions that
together support learners during the development of a case study solution. This paper
gives an overview of LeCS, focusing on the system design and architecture. The
design of LeCS is based on our model [1] of supporting the learning from case studies
method in a computer-based environment and in a distance learning context. The
LeCS architecture is agent-based and includes three kinds of agents.

The paper is organised as follows. In the next section we outline some related
work. In the section thereafter, we present LeCS: first, we give an overview about the
learning from case studies method and a methodology to develop the case study
solution; then, we describe LeCS and its graphical user interface with the student;
next, the LeCS architecture and functions accomplished by each kind of agent are
detailed. Finally, we present the conclusions and directions for future work.



2 Related Work

The work presented in this paper introduces the case study element, which is
particularly novel in ITS research. Learning from case studies is well established as
an educational method in the traditional classroom [2]. However, the characteristics of
case studies activities have led to their relative neglect in the ITS and Artificial
Intell igence in Education areas.

On the other hand, this work shares characteristics with other approaches used in
these area: agent-based ITS (e.g., [3]), work on collaboration (e.g., [4]), and work on
supporting the problem solving process at a distance (e.g., [5]).

In particular, the system described in this paper has features that are quite similar
to the ones encountered in other collaborative and intell igent distance learning
systems. For instance, COLER [6, 7], which is a web-based collaborative learning
environment in the domain of database design using the Entity-Relationship
modelling formalism. COLER also focuses on both individual and collaborative
learning, and on an agreement by the group on a joint solution for a collaborative task.
Similarly as LeCS, it monitors the students’ participation and encourages them to
discuss their differences. Finally, COLER also generates advice to the students,
concerning issues such as group participation, group discussion, feedback, reflection,
checking the students own discrepancies, and the ER modelling. Some of these issues
are also subject of the generation of interventions in LeCS.

3 LeCS: Learning from Case Studies

3.1 The Learning from Case Studies Method

Learning from case studies [2] is typically used in the business schools to train the
students in disciplines that contain open-ended problems. Such kind of problems
usually present complex, reali stic situations, and demand cognitive flexibili ty to cope
with them. The case method is used when the situated nature of cognition in the
learning process and/or learning in ill -structured domains is required [8].

The case method has been widely used for years in a variety of disciplines. Among
them we may cite law, engineering, business, and management. The common
characteristic between such disciplines is that they introduce the kinds of problem that
no analytical technique or approach is suitable to solve, with no “correct” or clear-cut
solution.

A central issue in learning from case studies is the case discussion. It is so
important that the case method is often referred to as the process of teaching by
holding discussions, as opposed to lectures or labs. The case discussion process is
often described as fluid and collaborative and is intrinsicall y related to the instructor’s
role in the case method. The case study text basically furnishes raw material for the
case discussion.



The case instructor role - different from the teacher in the traditional classroom - is
to lead the process by which the individual students and the group explore the
complexity of a case study and develop the case solution. He or she maximises the
opportunities for learning by asking the appropriate questions during the discussion,
rather than having a substantive knowledge of the field or case problem.

The method application in the traditional classroom consists roughly of presenting
a case study that introduces a problem situation to a group of learners who are
supposed to discuss the case and find a solution to it.

The Seven Steps approach [9] is a methodology used to carry out the case solution
development. It proposes that the case study solution be developed step-by-step. Each
step of the approach has its own goal and suggests an activity to be carried out by the
learners in order to achieve such goal. It guides the case solution development,
spli tting it into parts.

3.2 LeCS Description

LeCS provides a set of tools and accomplishes some functions that together support
the learners during the development of the case solution. The tools are a browser, a
chat, a text editor, and a representational tool. The support LeCS provides consists of
representing the solution path taken by the learners and making interventions
concerning the following aspects of the case solution development:
- the time that the learners spend on each step of the Seven Steps approach [9];
- the learners’ degree of participation in the case discussion;
- the misunderstandings that the learners might have about the case study, and
- the coordination of the group work.

LeCS was implemented in the Delphi language and has a client-server architecture.
The server hosts sessions and the client interacts with sessions. A session is associated
with a group of students working collaboratively on the solution of a case study. The
clients run on the students’ machines. The server can run on one of the student’s
machine or alternatively on a different machine.

Graphical User Interface: Student.
The LeCS graphical user interface with the student displays the following components
shown in Fig. 1: a pull down menu, a participants li st, a browser, a solution graphical
representation, a text editor, a chat, and a system intervention area.

The pull -down menu includes among others: (1) a case studies library containing
the set of case studies available; and (2) the forms, where the learners fill out the
agreed group answer to each step question. There is a form to each step. The forms
are numbered and each entry corresponds to a component sentence of the step answer.

The participants list shows all the group participants that are working on a case
study. The participants who are on-line at a particular moment - logged on a certain
session - have their names annotated with the green colour whereas the ones that are
logged off are annotated in red. The participants can carry out tasks directly with
another participant (send a message or see the information available about him or her)
just by clicking on the button corresponding to his or her name (cf. Fig. 1). Also, a
timer is included in this area.



Fig. 1. LeCS graphical user interface.

The browser is used to access the web pages that display the teaching and learning
materials and that guide the learners through the system use. The browser window is
the only one that can be drag and dropped and customised by the user.

The solution graphical representation area displays the tree that is generated by the
system during the case solution development. The representation is displayed
graphically as a directory tree. The nodes of the tree are numbered with the forms
correspondent numbers, which are followed by the correspondent textual answer.

The text editor is an individual space where the learners can edit their individual
answers. It is used to answer individually the questions posed by the system, i.e.,
during the part of the solution process when individual learning takes place. The
individual answers edited with this tool are supposed to be used when the learners
participate in the case discussion (when collaborative learning takes place).

The chat tool is quite similar to the traditional programs of this kind and is where
the case study discussion takes place. The participant can, besides writing free text,
(1) express his or her emotional state; (2) direct his or her message to the whole group
or to a particular participant (although this message is visible by all the group); and
(3) make use of sentence openers [10, 11] to scaffold conversation and facilitate the
process of reaching an agreement in the case discussion.

The intervention area includes an interface agent (a Microsoft-based agent) that
can be characterised as an animated pedagogical agent [12]. All the interventions that
LeCS makes are presented through this agent.



3.3 Architecture

The LeCS agent-based [13] architecture (Fig. 2) is organised in a federated system.
The LeCS agents can be classified either as interface, reactive, and/or hybrid agents
[14]. The agents communication is based on an Agent Communication Language
[15]. The messages exchanged between the agents use the KQML (Knowledge Query
and Manipulation Language) format [16]. The communications structure establi shes
that the communication does not happen directly between agents, but rather through a
facil itator. The facil itator is a special program - implemented as an agent - that keeps
the information about each agent in the system, and is responsible for routing the
messages, working as a broker. In addition, two databases were implemented: in the
first one, the facilitator stores all the necessary information in order to route the
messages; in the second one, it logs all the exchanged messages. The LeCS
architecture includes three classes of agents: interface agent, information agent, and
advising agent. There is one information agent and one advising agent running during
a session, but as many interface agents as there are participants logged on.

Interface Agent.
The interface agent (cf. Fig. 1) can be characterised as an animated pedagogical agent
[12]. It resides on the participant machine and all the system interventions are
presented through it. A resources database contains the agent address, the name by
which it is known, and its network mapping. A history database is implemented to log
everything the interface agent does, including the communications with the user and
the other agents. The information agent and the advising agent also have these same
kinds of databases.

In addition, the interface agent stores information about the individual users: what
is typed in the text editor, the number of contributions in the chat, the current step he
or she is working on, the answer to each step question, and the time spent on each step
(these last two functions are accomplished just by the interface agent of the group
coordinator). Based on this information, the interface agent generates the
interventions about timing and participation.

Timing Intervention.
The timing interventions consist of warning the learners when they exceed the time
limit establi shed for on-line collaborative work. The time limit is a function of both
the total time estimated for the solution of a given case study and the time to respond
to the particular step they are working on. The interface agent stores the time limit for
the case studies that are modelled in LeCS. In order to generate a timing intervention
it monitors the time spent by the learners in each step. An example of a timing
intervention is “You are taking too long to complete this step” .

Participation Intervention.
The interface agent is also responsible for identifying and intervening regarding a low
degree of participation of the individual learners in the case solution development.
This is denoted by a small percentage of contributions during the case discussion. To



accomplish this, the interface agent monitors the learners’ contributions in the chat
per step. If a learner remains silent for more than 50% of the estimated time for
working on a particular step the interface agent generates an intervention inviting the
learner to participate. An example of a participation intervention is “Would you li ke
to contribute to the discussion?”.

Fig. 2. The LeCS agent-based architecture.

Information agent.
This agent stores information that is divided into two different categories: didactic
material and knowledge bases. Didactic material consists of HTML pages, images,
and text. The knowledge bases refer to the domain and the pedagogical knowledge:
the interventions about case-specific utterances and the representation of the case
solution developed by the group of students. The information agent also stores the
chat interactions. Both the interface and the advising agents access the information
agent.

Case-Specific Intervention.
The interventions that LeCS makes about the learners’ case-specific utterances are
based on what is modelled in the domain knowledge base concerning the case study.
In order to represent this knowledge we have adapted the idea of constraint-based
modelling [17]. Constraint-based modelling (CBM) proposes that a domain be
represented as constraints on correct solutions. As such, it is appropriate to the
identification of case-specific utterance patterns that characterise a learner
misunderstanding the case study contents.

In CBM [17] the unit of knowledge is called a state constraint and is defined as an
ordered pair <Cr, Cs>, where (1) Cr is the relevance condition that identifies the class



of problem states for which the constraint is relevant, and (2) Cs is the satisfaction
condition that identifies the class of relevant states in which the constraint is satisfied.
For our purposes, Cr is a pattern that indicates that a particular sentence is a case-
specific utterance and Cs is the correct case-specific utterance. The semantics of a
constraint is: if the properties Cr hold, then the properties Cs have to hold also (or else
something is wrong). In LeCS when “something is wrong” it means that there is a
learner misunderstanding about this particular sentence. As a consequence the system
should initiate an intervention.

In order to initiate the intervention LeCS checks for any violations of what is
modelled. Hence, if the satisfaction pattern of a relevant constraint is not satisfied,
then that state violates the constraint. In LeCS the problem states are the input
sentences, that is, the sentences that compose the group answers to each step question,
which are entered by the group coordinator in the forms. The intervention consists of
stating the correct sentence.

Graphical User Interface: Case Instructor.
The LeCS graphical user interface for the case instructor allows modelling a case
study to be worked on with the system. The case editor is used to edit the case study
text. The constraints editor is used to edit the set of constraints for the case study.
Thus, prior to run time, besides editing the case study text, the case instructor edits the
constraints regarding each particular case study using the forms provided by the
constraints editor (see Fig. 3). The system interventions concerning case-specific
utterance patterns are generated based on these constraints. It is important to note that
in the current implementation the order in which the words are used by the learners
does not make any difference to the system response. Also, the constraints editor
allows the case instructor to edit as many constraints as he or she deems necessary or
appropriate for a given case study. In addition, it allows the modelling of more than
one word to each constraint, through the use of the logic operators and and or, when
the case instructor intends to contemplate different words that the students might use.

Fig. 3. LeCS graphical user interface for the case instructor.

Advising Agent.
The advising agent has engines to reason about the user actions, and to recognise
situations in which some support is needed. It executes an algorithm to generate the
solution tree representation with the information provided by the interface agent, and
returns this representation to this agent. It identifies the case-specific utterance
patterns that denotes a learners’ misunderstanding of the case study with the
information provided by the information agent. When applicable, it generates an



intervention about the misunderstanding, and sends the request of an intervention to
the interface agent. It also generates and requests interventions to the interface agent
concerning the coordination of the group work and the jumping of a step.

Solution Development Representation.
LeCS dynamically generates a knowledge representation, a tree data structure [18]
that represents the case solution development according to the Seven Steps approach
[9]. The tree represents the solution path taken by the group to solve the case study
and is referred to as the solution tree. The solution tree is presented to the learners on
the user interface. This means that what is displayed represents the case solution
developed so far by the group (cf. Fig. 1). The objective of this representation is to
help the learners choose the best envisaged solution. All the group participants see the
same representation.

In order to generate this representation the connections between the tree nodes (the
arcs) have to be obtained. To accomplish this the system has to make a link between a
node in a given level to its parent node in the previous level through some kind of
reasoning. A set of if-then rules define our heuristics to make these connections [19].
Such rules were derived from an empirical study [20] and an algorithm implements
those rules.

In this algorithm the tree nodes are labelled by the sentences and the arcs are
labelled by the rules. Inputs are the outcomes of each step, namely the sentences that
compose the learner’s joint answers to each step question, which are entered in the
forms. The root of the tree corresponds to the question or dilemma posed by the case
study. The levels of the tree represent each of the Seven Steps [9]. Each node, in a
given level, refers to a component sentence of the learners’ joint answer to that step
question. The algorithm has a procedure to compare the answers of two subsequent
levels (steps). This comparison aims to find out which sentence in the previous level
is related to the sentence that is being analysed in the current level.

The procedure to compare the sentences verifies if a set of keywords in a sentence
of a given level is also included in a sentence of the previous level. This set of
keywords is defined in every step when the group coordinator fill s out the form with
the group answer to the step question. Thus, the set of keywords of a level n sentence
is compared with the words of a level n-1 sentence, word by word, until either one of
the keywords is found, or the set of keywords is finished. In the former case (that is, if
a keyword is found) the link between the nodes is made. The expansion of the nodes
in a given level then is represented precisely when the nodes in that level are linked
with the parent node in the previous level.

Next, provided that the interface agent informs the advising agent about which step
the learners are currently working on, one level is added to the tree, and the procedure
to compare the sentences is executed again. The final state of the tree represents all
(ideally) alternative solutions that can be generated through the Seven Steps approach.

Group Coordination Intervention.
LeCS coordinates the group through the Seven Steps. In order to accomplish this,
when starting a session the group should define a coordinator: a member of the group
who is responsible for filli ng out the forms with the group’s joint answers to the step
questions. In this way the contributions gleaned from the various participants
regarding the step answers are integrated into the joint answers. This means that the



forms are disabled to all the other members of the group except the coordinator and
the coordination function is accomplished by LeCS based on the group coordinator
actions. He or she in a certain sense defines to the system the pace at which the group
proceeds in the solution development. Thus, once the coordinator fill s out the forms
of a particular step question and then moves on to the next step the system “knows”
which step the group should be working on. If any of the learners, for instance,
accesses a web page different from the one referring to that step, the system wil l
prompt him or her a notification, warning that the group is working on a different
step. An example of an intervention about the group coordination is “The group is
working on step x” . At any time during the solution process the group can decide to
change its coordinator.

Missing Step Intervention.
LeCS does not constrain the learners by requiring them to complete all the steps of the
approach. We believe this behaviour is avoided by the solution tree representation
included in the graphical user interface and the forms that the group is supposed to fill
out with their answers in every step. However, if the learners still jump a step, LeCS
intervenes notifying the group. An example of a intervention about a missing step is
“You have just jumped step x”.

4. Conclusion and Future Work

In this paper we have presented LeCS, an agent-based system for supporting learning
from case studies. We provided a theoretical background about the learning from case
studies method and gave an overview of the system, describing its graphical user
interface, agent-based architecture, and agents’ functions.

As future work we plan to test LeCS with pairs of subjects in an experiment along
the same lines as the empirical study described in [20]. In LeCS next version we
intend to make the adjustments indicated by these experimental results and to tackle
issues such as the recognition of many solution paths and student modelling.

References

1. Rosatelli, M. C., Self, J. A., Thiry, M.: LeCS: A Collaborative Case Study System. In:
Frasson, C., Gauthier, G., VanLenh, K. (eds.): Intell igent Tutoring Systems. Springer-
Verlag, Berlin (2000) 242-251

2. Christensen, C.R., Hansen, A.J.: Teaching with Cases at the Harvard Business School. In:
Christensen, C.R., Hansen, A.J. (eds.): Teaching and the Case Method: Text, Cases, and
Readings. Harvard Business School, Boston, MA (1987) 16-49

3. Shaw, E., Ganeshan, R., Johnson, W.L., Millar, D.: Building a Case for Agent-Assisted
Learning as a Catalyst for Curriculum Reform in Medical Education. In: Lajoie, S.P, Vivet,
M. (eds.): Artificial Intelligence in Education. IOS Press, Amsterdam (1999) 509-516

4. Mühlenbrock, M., Hoppe, H.U.: A Collaboration Monitor for Shared Workspaces. In:
Moore, J.D., Redfield, C.L. Johnson, W.L. (eds.): Artificial Intell igence for Education. IOS
Press, Amsterdam (2001) 154-165



5. Greer, J., McCalla, G., Cooke, J., Collins, J., Kumar, V., Bishop, A., Vassileva, J.: The
Intelligent Helpdesk: Supporting Peer-Help in a University Course. In: Goettl, B.P., Halff,
H.M., Redfield, C.L., Shute, V.J. (eds.): Intelli gent Tutoring Systems. Springer-Verlag,
Berlin (1998) 494-503

6. Constantino-González, M.A., Suthers, D.D.: A Coached Collaborative Learning
Environment For Entity-Relationship Modeling. In: Frasson, C., Gauthier, G., VanLenh, K.
(eds.): Intelligent Tutoring Systems. Springer-Verlag, Berlin (2000) 324-333

7. Constantino-González, M.A., Suthers, D.D., Icaza, J.I.: Designing and Evaluating a
Collaboration Coach: Knowledge and Reasoning. In: Moore, J.D., Redfield, C.L. Johnson,
W.L. (eds.): Artificial Intelligence for Education. IOS Press, Amsterdam (2001) 176-187

8. Shulman, L.S.: Toward a Pedagogy of Cases. In: Shulman, J.H. (ed.): Case Methods in
Teacher Education. Teachers College Press, Columbia University, New York, NY (1992) 1-
30

9. Easton, G.: Learning from Case Studies. Prentice Hall, London (1982)
10.McManus, M.M., Aiken, R.M.: Monitoring Computer-Based Collaborative Problem

Solving. Journal of Artificial Intelligence in Education 6 (4) (1995) 307-336
11.Robertson, J., Good, J., Pain, H.: BetterBlether: The Design and Evaluation of a Discussion

Tool for Education. International Journal of Artificial Intelli gence in Education 9 (1998)
219-236

12.Lester, J.C., Converse, S.A., Stone, B.A., Kahler, S.E., Barlow, S.T: Animated Pedagogical
Agents and Problem-Solving Effectiveness: A Large-Scale Empirical Evaluation. In: du
Boulay, B., Mizoguchi, R. (eds.): Artificial Intelligence in Education. IOS Press,
Amsterdam (1997) 23-30

13.Franklin, S., Graesser, A.: Is It an Agent or Just a Program? A Taxonomy for Autonomous
Agents. In: Müller, J., Wooldridge, M.J., Jennings, N.R. (eds.): Intelligent Agents III.
Springer-Verlag, Berlin (1997) 21- 35

14.Nwana, H.S.: Software Agents: An Overview. The Knowledge Engineering Review 11 (3)
(1996) 205-244

15.Genesereth, M.R., Ketchpel, S.P: Software Agents. Communications of the ACM 147
(1994) 48-53

16.Labrou, Y., Finin, T.: A Proposal for a New KQML Specification. Technical Report CS-97-
03, Computer Science and Electrical Engineering Department, University of Maryland
Baltimore County (1997)

17.Mitrovic, A., Ohlsson, S.: Evaluation of a Constraint-Based Tutor for a Database Language.
International Journal of Artificial Intelligence in Education 10 (1999) 238-256

18.Russell, S.J., Norvig, P.: Artificial Intell igence: A Modern Approach. Prentice Hall,
Englewood Cli ff s, NJ (1995)

19.Rosatelli, M.C., Self, J.A.: A Collaborative Case Study System for Distance Learning.
International Journal of Artificial Intelligence in Education 13 (2002) to appear

20.Rosatelli, M.C., Self, J.A.: Supporting Distance Learning from Case Studies. In: Lajoie,
S.P., Vivet, M. (eds.): Artificial Intelli gence in Education. IOS Press, Amsterdam (1999)
457-564


