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Abstract. This paper presents a symbolic model for handling nuanced infor-
mation expressed in the affirmative form "x is mq A". In this model, nuanced
information are represented in a qualitative way within a symbolic context. For
that purpose, vague terms and linguistic modifiers that operate on them are de-
fined. The model presented is based on a symbolic M-valued predicate logic and
provides a new deduction rule generalizing the classical Modus Ponens Rule.

Keyword: Knowledge representation and reasoning, Imprecision, Vagueness, Multisets
theory, Many-valued logic.

1 Introduction

In this paper, we present a model dealing with nuanced information expressed in an
affirmative form as they may appear in knowledge bases including, rules like "if the
tomato is red then it’s ripe" and facts like, "the tomato is very red". The model has been
conceived in such a way that the user can deal with statements expressed in natural
language, that is to say, referring to a graduation scale containing a finite number of
nuances. The nuanced statements, like "Jo is rather tall” or "Jo is really very young",
can be represented more formally under the form "x is my, A" where m, and A are
labels denoting respectively a nuance and a vague term. There are two formalisms for
handling with nuanced information.

The first one refers to fuzzy logic introduced by Zadeh [14, 15] and which is used when
the imprecise information is evaluated in a numericel way. In this formalism, each
vague term, like "red" and "young", is represented by a fuzzy set. This one is defined
by a membership function that characterizes the gradual membership to the fuzzy set
and indicates some properties of the term like precision, imprecision and fuzziness.
Zadeh [15] uses a fuzzy modifier m,, for representing, from the fuzzy set A, the fuzzy
set "my A". So, "x is m, A" is interpreted by Zadeh as "x is (m, A)" and regarded
as many-valued statement. The fuzzy modifiers [3,4,11,12] are defined in such a way
that operate on fuzzy sets by modifying some of their properties.

The second formalism refers to a symbolic many-valued logic [9,12] which is used
when the imprecise information is evaluated in a symbolic way. This logic is the logical
counterpart of multiset theory introduced by De Glas [9]. In this theory, the term m,
linguistically expresses the degree to which the object x satisfies the term A. So, "x is
mq A" is interpreted by De Glas [9] as "x (is my) A", and then regarded as boolean
statement. Agreeing on this idea, Pacholczyk [12] considers nevertheless that some
nuances of natural language can not be interpreted as satisfaction degrees and must be
instead defined such as linguistic modifiers. The modifiers have not been studied within
a multiset context. The introduction of linguistic modifiers constitutes the main idea
of our work. As we noticed previously, the modifiers operate on the term by modifying
its meaning. Within a multiset context, there are not concepts used to represent the
properties of a term. So, before defining linguistic modifiers we have to propose a



new representation model based on multiset theory and in which we can describe
concretely a vague term. This will be our first contribution in this paper. The new
model generalizes the results of fuzzy sets theory, namely when the domains are not
necessarily numerical scales. Our basic idea has been to associate with each vague
term a new symbolic concept called "rule". This symbolic concept is equivalent to the
membership function within a fuzzy context. In other words, its geometry (1) modelizes
the gradual membership to the multiset representing the term, and (2) indicates the
precision, imprecision and the fuzziness of this term. This new concept allows us to
define the linguistic modifiers within a multiset context.
Our second contribution in this paper is to propose a deduction rule dealing with
nuanced information. For that purpose, we propose a deduction rule generalizing the
classical Modus Ponens rule in a many-valued logic proposed by Pacholczyk [12]. Note
that the first version of this rule has been proposed in a fuzzy context by Zadeh [15]
and has been studied later by various authors [1, 3, 5,10]:

Rule :if "X is A" then "Y is B"

Fact "X s A"

Conclusion : "Y is B'"

Where X and Y are variables and A, B, A" and B’ are fuzzy concepts.

This paper is organized as follows. In section 2, we present briefly the basic concepts of
the M-valued logic which forms the backbone of our work. Section 3 introduces our new
approach for the symbolic representation of vague terms. In section 4, we define new
linguistic modifiers in a purely symbolic way. In section 5, we propose a new Generalized
Modus Ponens rule. Section 6 is devoted to some concluding remarks and to further
works.

2 M-valued predicate logic

Consider the statement "the tomato is v, red" where v, is a nuance of natural language.
According to De Glas [9], "x is v, A" means "x (is v,) A". Within a multiset context,
to a vague term A and a nuance v, are associated respectively a multiset A and a
symbolic degree 7,. So, the statement "x is v, A" means that x belongs to multiset
A with a degree 7,'. The M-valued predicate logic [12] is the logical counterpart of
the multiset theory. In this logic, to each multiset A and a membership degree 7, are
associated a M-valued predicate A and a truth degree 7, —true (some basic elements
of this logic are given in appendix B). In this context, the following equivalence holds:

XiSvg A€y A "xisv, A" is true & "xis A" is 7,—true.

2.1 Algebraic structures

One supposes that the membership degrees are symbolic degrees which form an ordered
set Ly = {7q,a € [1,M]}. This set is provided with the relation of a total order:
Toa < 73 © a < 3, and whose smallest element is 7 and the largest element is 7p7. We
can then define in £, two operators A and V and a decreasing involution ~ as follows:
Ta VT8 = Tmaz(a,8)> Ta N T8 = Tmin(a,8) a0d ~ To = Ta+1-o- One obtains then a chain
{Lm,V, A, <} having the structure of De Morgan lattice [12]. On this set, an implication
— and a T-norm T can be defined respectively as follows: 7, = 75 = Tiin(3—atM,M)
and T(TOHTB) = Tmaz(B+a—M,1)-

! In the multiset theory, z €, A < x belongs to multiset A with a 7, degree. It corresponds

to pa(z) = 7o within a fuzzy context[14].



Ezample 1. For example, by choosing M=9, we can introduce: Lo={not at all, little,
enough, fairly, moderately, quite, almost, nearly, completely}.

Remark 1. We use the notation v, to designate a nuance that must be interpreted
as membership degree. From now, we focus to study the statements nuanced with
linguistic modifiers which will be denoted as mg.

In [12], Pacholczyk noticed that some nuances like "very" and "really", can not be in-
terpreted as membership degrees and they must be defined such as linguistic modifiers.
In fact, "m, A" represent new multisets result from the multiset A. In section 4, we
will define these modifiers in multiset theory. They generalize some fuzzy modifiers [3,
4,15] within a purely symbolic context.

In the following section, we propose a symbolic model for vague terms while inspiring
by the representation method within a fuzzy context. More precisely, we associate with
each multiset a symbolic concept which has the same role as the membership function
associated with a fuzzy set?.

3 Representation of vague terms

Let us suppose that our knowledge base is characterized by a finite number of concepts
Ci. A set of terms P;; is associated with each concept C;, whose respective domain is
denoted as X;. The terms P; are said to be the basic terms connected with the concept
C;. As an example, basic terms such as "small”, "moderate” and "tall" are associated
with the particular concept "size of men". A finite set of linguistic modifiers m allows
us to define nuanced terms, denoted as "mqP;".

Linguists distinguish [6] three signed terms: a negative term like "small", a positive
term like "tall" and a neutral term like "moderate". This distinction is important since
we define the linguistic modifiers. We suppose that the set of basic terms covers the
domain X; and that each one of these terms is signed. Given that each term Pj is
represented by a multiset denoted as Pj, we can propose the following axiom:
Axiom 1. For each concept C;, defined on o domain X;, is associated a family of
multisets, denoted as C; = {Pj, ..., PN}, which covers the domain X;. In other words,
for all x € X; there exists a multiset Py, € C; and o > 1 such as x €4 Py.

3.1 Representation with "rules”

In the following, we propose a symbolic representation to modelize the vague terms
which define a "concept". We suppose that a domain of a vague term, denoted by X, is
not necessarily a numerical scale. It can for example be "set of men", "set of animals",
etc. This domain is simulated by a "rule” (cf. Figure 1) representing an arbitrary set

of objects. Thus, the set {small, moderate, tall} can be represented as follows:

small moderate tall

Fig. 1: Representation with "rule” of a domain X

2 A short review on the representation of vague terms within a fuzzy context is presented in
appendix A.



The basic idea is to associate with each multiset a object which represents a symbolic
equivalent to the membership function in the fuzzy set theory. In our work, we focus
only on vague terms which can be represented by a membership L-R function. The
new object, called "rule", has a geometry similar to a membership L-R function and
its role is to illustrate the membership graduality to the multisets. In order to define the
geometry of this "rule", we use concepts similar to those defined within a fuzzy context
like the core, the support and the fuzzy part of a fuzzy set [15]. The core represents
the typical elements of the term, the support contains the elements satisfying at least a
little the term, and the fuzzy part represents the atypical elements satisfying partially
the term. For example, for the term "tall", the core of the associated multiset represents
the perfectly tall men, its support represents the men qualified in the class of tall people,
and its fuzzy part represents the more or less tall men.

Definition 1. The core of a multiset P, denoted as Core(P), is defined by: Core(P) =
{reX |zeyu P}

Definition 2. The fuzzy part of a multiset P, denoted as F(P), is defined by: F(P) =
{reX|z€y Pandac2,M—1]}.

Definition 3. The support of a multiset P, denoted as Sp(P), is defined by: Sp(P) =
{zreX |z €y Pand 1y > 11}.

We associate with each multiset a "rule" that contains the elements of its support
(cf. Figure 2). Since for any multiset P;, Sp(P;) = Core(P;)U F(P;) and by supposing
that the fuzzy part is the union of two disjoined subsets, we can say that the "rule"
associated with a multiset is the union of three disjoined subsets: the left fuzzy part,
the right fuzzy part and the core. For a multiset P;, they are denoted respectively by
L;, R; and C;. In order to define formally the concept of directions (left and right)
between subsets, we introduce a relation of strict order whose role is to order classical
subsets in the universe X.
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Fig. 2: Parts of a "rule” Fig. 3: Graduality in a "rule”

Definition 4. Let A and B be two disjoined subsets of X. A is said to be on the left
compared to B, denoted as A < B, if and only if, by traversing the "rule" X of left on
the right, one meets A before meeting B.

We use the relation which has been just introduced to define the fuzzy parts L; and R;.
We want to say by the left fuzzy part of a multiset the subset of F/(P;) located on the
left of the core of this multiset. This part is maximal in the meaning of it contains all
elements of F'(P;) which are on the left of C;. In other words, it represents the largest
subset of F(F;) located on the left of C;. In the same way, we can define the right fuzzy
part of P; as the largest subset of F'(P;) located on the right of C;. We can thus define
them formally as follows.



Definition 5. Let L; be a subset of F(P;). Then, L; is called left fuzzy part of P; if
and only if: VA, A C F(F;), if A < C; then A C L;.

Definition 6. Let R; be a subset of F(P;). Then, R; is called right fuzzy part of P; if
and only if: VA, AC F(F;), if C; < A then A C R;.

We recall that each fuzzy part contains the elements belonging to P; with degrees
varying from 75 to 75, 1. We thus suppose that each fuzzy part L; and R; is the union
of M-2 subsets which partition it and of which each one contains the elements belonging
to P; with the same degree (cf. Figure 3). These subsets are defined in the following
way:

Definition 7. The set of elements of L; belonging to P; with a 1, degree, denoted as
[Li]a, s defined as follows: [Lilo = {z € L; | x €4 P;}.

Definition 8. The set of elements of R; belonging to P; with a 1o, degree, denoted as
[Ri)a, is defined as follows: [Rilo = {x € R; | z €, P;}.

In order to keep a similarity with the fuzzy sets of type L-R, we choose to place, in a
"rule" associated with a multiset, the subsets [L;], and [R;], so that the larger « is,
the closer the [L;], subsets and [R;]q are to the core C; (cf. Figure 3). That can be
interpreted as follows: the elements of the core of a term represent the typical elements
of this term, and the more one object moves away from the core, the less it satisfies
the term. Finally, we can propose the definition of a multiset represented by a "rule".

Definition 9. A multiset P; is defined by (L;, C;, R;), denoted as P; = (L;, C;, R;),such
that:

- {L;,C;, R;} is totally ordered by the relation < and partitions Sp(P;),

- {[Li]2, -+ [Li]am—1} is totally ordered by the relation < and partitions L;,
-{[Rilpm=-1, ---, [Ri]2} is totally ordered by the relation < and partitions R;.

One supposes that the "rules" associated with multisets have the same geometry but
the position of each "rule" and the sizes (or the cardinalities) of its parts depend on the
semantics of the term with which it is associated. In the paragraph 3.3, we introduce
symbolic parameters to represent these "rules". These parameters are symbolic values
using essentially the notion of symbolic cardinality of a subset. This notion is introduced
briefly in the next paragraph.

3.2 Symbolic quotient of cardinalities

In order to qualify the cardinality of an ordinary subset, we use a binary predicate
called Recard which is defined on boolean formulas of the logic language. This predicate
has been defined for handling with symbolic cardinalities of subsets [7, 8]. The definition
of this predicate and some properties governing it are presented in appendix B. This
predicate allows to define the Quotient of Cardinalities of two subsets. More precisely, it
allows to qualify the cardinality of a subset compared to another subset with a bigger
cardinality. Given two subsets A and B such as the cardinality of B is bigger than
the cardinality of A, we can express the cardinality of A compared to the cardinality
of B in a qualitative way by using linguistic terms like "approximately the quarter”,
"approximately the half", etc. Then, we can say "the cardinality of A is "approzimately
the half" among that of B". These terms constitute a set of M symbolic degrees of
quotient of cardinalities: Qp = {Qq, @ € [1, M]}. More generally, we can say "the
cardinality of A is @, among that of B" which will be denoted as A <, B (see appendix
B for more details).



Ezample 2. For M=9, we can introduce the following set: Qg = {nothing at all, less of
the quarter, approximately the quarter, approzimately the third, approzimately the half,
approzimately the two thirds, approzimately the three quarters, near to equal, equal}.

3.3 Symbolic parameters defining a multiset

Within a symbolic context, we want to define a multiset P; by a symbolic parameter
set. These parameters are given by experts which describe the "rule" associated with P;
in a qualitative way. We distinguish two types of parameters: parameters describing the
sign of the term and the internal geometry of the "rule". The description of the internal
geometry concerns the relative sizes of the fuzzy parts and the core compared to the
"rule". The second type of parameters relates to the size of the "rule" and its position in
the domain. The position of a "rule” is given compared to another, known as multiset
or "rule" of reference. For example, for the concept "size of men" described by {small,
moderate, tall}, we can say that "moderate” is on the right compared to "small” and
"tall" on the right compared to "moderate”. Equivalently, we can say that "moderate”
is on the left compared to "tall” and "small" on the left compared to "moderate’.
So, to locate a "rule" representing a multiset P;, we introduce two parameters that
indicate: (1) the position of this "rule" compared to a "rule" representing a multiset of
reference P, and (2) to what degree these "rules" overlap.

l [ 1 l | (o)
N
e Sp(Py) Sp(P)
l l 11 \ | | @
/
> Sp(P) Sp(Pr)

Fig. 4: Relative position for a "rule”

We can introduce the following parameters to represent a multiset:

- Qi € Q- indicates the relative size of the left fuzzy part compared to the "rule".
In other words, we have: L; <;, Sp(F;).

- Qr; € Qu: indicates the relative size of the right fuzzy part compared to the "rule".
In other words, we have: R; <,., Sp(P;). Let us announce that the degrees @;, and Q..
determine the fuzzy character of the term. The larger these degrees are, the more
the term is fuzzy.

- Qc; € Q- indicates the relative size of the core compared to the "rule". In other
words, we have: C; <., Sp(F;).

- Q¢; € Qu: indicates the relative size of the "rule” compared to the domain X. In
other words, we have: Sp(P;) <., X. This parameter determines the precision of the
term. More this degree is bigger, more the term is imprecise.

- 0; € {—1,0,+1}: indicates the sign of P;. o; = —1 if P; is negative, o; = 0 if P; is
neutral and o; = +1 if P; is positive.

- s; € {"I”,7r” }: indicates the position of P; compared to P,.. s; ="1" if P; is on the
left compared to P, and s; ="r" if P; on the right compared to F,.

- Qp; € Qu: indicates the relative size of the intersection between the "rules" repre-
senting respectively P; and P,. More precisely, we have: Sp(P; N P,) <, Sp(P;).

Finally, we will represent a multiset P; by: P; = {< P,,Q,;, $:,Q¢; >,< 04, Qi;, Qc;, Qr; >}



Remark 2. In this paper, we suppose that, for any multiset P;, the subsets [L;]o (resp. [Rila)
where a varying from 2 to M-1 have the same cardinality.

Ezample 3. We consider the concept "size of men" which is described by the three following
basic terms: C = {P;|i € [1..3]} = {small, moderate, tall} which are considered respectively
as negative, neutral and positive terms. We can show, as an example, how to define the "rule"
representing the term "tall". Its position is defined as on the right to "moderate". The relative
size of the "rule" and the sizes of the parts forming it can be given as follows. The size of the
"rule" is "approximately the third" of that of X which means that "approximately the third"
of men are tall. So, we have Q., = Q4. The size of the core is "approximately the quarter"
of that of the "rule" which means that "approximately the quarter" of tall men are perfectly
tall. Thus, we have Qc; = Q3. We can define the other parameters as Q;; = Q4 and Qr; = Q4
which mean respectively that the size of the left (resp. right) fuzzy part is "approximately the
third" of that of the "rule". In the same way, we can define the basic terms as follows:

- small: Pr = {< P1,Qum,"7",Q4 >,< —1,Q1,Qs, Q1 >}

- moderate: Py = {< P1,Q4,777, Q4 >,<0,Q4,Q3, Q4 >}
- tall: P3 ={< P2,Q4,"7",Q4 >,< +1,Q4,Qs, Q1 >}.

te

Fig. 5: Terms associated with "size of men"

4 Linguistic modifiers

We have noted previously that some nuances can not be interpreted as symbolic degrees and
they must be defined as linguistic modifiers [3,4,11,12]. These modifiers provide new vague
terms starting from a vague basic term. Thus, from a particular term "tall” one obtains new
vague terms like "very tall” and "really tall”. In this section, we define linguistic modifiers in a
completely symbolic way and we are interested in some modifiers known as precision modifiers
and translation modifiers. We define these modifiers within a symbolic context in which one
uses the representation in "rules” of vague terms.

4.1 Precision modifiers

The precision modifiers make it possible to increase or decrease the precision of the basic term.
We distinguish two types of precision modifiers: contraction modifiers and dilation modifiers.
A contraction (resp. dilation) modifier m produces nuanced term mP; more (resp. less) pre-
cise than the basic term P;. In other words, the "rule" associated with mP; is smaller (resp.
bigger) than that associated with P;. We define these modifiers in a way that the contraction
modifiers contract simultaneously the core and the support of a multiset P;, and the dilation
modifiers dilate them. The amplitude of the modification (contraction or dilation) for a preci-
sion modifier m is given by a new parameter denoted as 7. The higher 7.,, the more important
the modification is. We give now two definitions for these types of modifiers.

Definition 10. Let P; be a multiset. m is said to be a T,-contraction modifier if, and only if
it is defined in the following way:

1. if P, = (L;, Ci, R;) then mP; = (L;, C;,R;) such as R; <m L; and R; <m R;



2.Vz,x €y P; with 1o < Tm = © €g mP; such as f = maz(l,a —v+1)

Definition 11. Let P; be a multiset. m is said to be a 7, -dilation modifier if, and only if it
is defined in the following way:

1. if P, = (Li, C;, R;) then mP; = (L;, C;, R;) such as L; <ar L; et R; <ar R;

2.Vz,x €o P; with 7o > 11 = x €g mP; such as B = min(M,y+ a — 1)

In this paper, we use Mg = {mg|k € [1..6]} ={ezactly, really, B, more or less, approrimately,
vaguely} which is totally ordered by j < k < m; < my (cf. Figure 6). Mg contains a modifier
by default, denoted as @), which keeps unchanged the basic term. The modifiers situated after
(0 are dilation modifiers and those preceding it are contraction modifiers.

approximately Pi
more or less Pi

i
really Pi

exactly Pi

Fig. 6: Precision modifiers

4.2 Translation modifiers

The translation modifiers operate both a translation and precision variation on the basic
term. We define translation modifiers similar to those defined by Desmontils and Pacholczyk
[4] within a fuzzy context. In this work, we use Tg = {tx|k € [1..9]} ={eatremely little, very
very little, very little, rather little, 0, rather, very, very very, extremely} totally ordered by
k <1<ty <t (cf. Figures 7 and 8). Ty contains a particular modifier, denoted as @), which
keeps unchanged the multiset P; to which it operates. The modifiers preceding () produce
dilations as well as translations on the right if P; is negative and translations on the left if P;
is positive. The modifiers following () produce contractions as well as translations on the right
if P; is positive and translations on the left if P; is negative. The translation amplitudes, the
contraction or dilation amplitudes are calculated in such a way that the "rules" associated
with nuanced multisets ¢ P; cover the universe X.

Extremely little Pi

very very little Pi
very little Pi
«— — — — raherlittle P

rather little Pl —

very litlePi  — — — . rether i ——————=——-=-—-—-

very very little Pi very Pi 7 ,,,,,,,,,,,,,,,
veyveryPi T T - T - - - - - - - - oo -

extremely little Pi I

m <

Fig. 7: Translation modifiers (P; is negative) Fig. 8: Translation modifiers (P; is positive)

Within a fuzzy context, a modifier operates on the membership function associated to a fuzzy
set and modifies the numerical parameters defining it. In a similar way, we define a translation
modifier ¢, which operates on multisets by modifying their symbolic parameters. So, we can
define the translation modifiers as follows:

Definition 12. Let P; be a multiset such as P; = {< Pr,Qp;,8i,Qe;>< 04,Qu;, Qc;s Qr; >
}. The nuanced multiset t, P; is defined in the following way:

-ty P =P, = {< PTanivsinei >< Ginl,’aQCan’ >} @faz =0ork=5
-t P = {< tk+1Pi,QPk7$iaQ€2 >< Gi)Qli)QCiJQTi >} 'Lfl S k<5



~t Py = {< thie1Pry Qpyy 55, Q >< 03, Quiy Qe Qry >} if 5 <k <9

with: z

1. 0;=1if {o; = —1 and k > 5} or {o; = +1 and k < 5} and o, = +1 otherwise,
2. 5;="r" if {o; = —1 and k > 5} or {o; = —1 and k < 5} and s;= "I" otherwise,
3. Qei < Qe if k>5 and Qe; > ¢, otherwise.

In this definition, we choose to place the nuanced multisets one compared to the other. More
precisely, one defines the position of ¢y P; compared to tx—1 P; if k > 5 and ¢ P; compared
to tg+1F% if k < 5. Let us notice that the parameters Q),, and @ are defined in such

a way that the "rules" associated with multisets {¢xP;}1<k<o cover the universe X. They
indicate respectively the translation amplitudes and the modification (contraction or dilation)
amplitudes.

5 Exploitation of vague knowledge

In this section, we treat the exploitation of nuanced information. In particular, we are inter-
ested to propose a generalization of the Modus Ponens rule within a many-valued context
[12]. The Modus Ponens rule allows, from the rule If "z is A" then "y is B" is true and the
fact "z is A" is true, to conclude "y is B" is true. In the M-valued logic on which we work, a
generalization of Modus Ponens rule has one of the following forms:

F1- If we know that {If "z is A" then "y is B" is 7g-true and "z is A'nis Te-true} and that
{AI is more or less near to A}, what can we conclude for "y is B", in other words, to what
degree "y is B" is true? ,

F2- If we know that {If "z is A" then "y is B" is 7a-true and "z is A " is Tc-true} and that
{A" is more or less near to A}, can we find a B' such as {B' is more or less near to B}
and to what degree "y is B'" is true?

These two forms of the Generalized Modus Ponens rule have been studied firstly by Pacholczyk
in [12] and later by El-Sayed in [7, 8]. In Pacholczyk’s versions, the concept of nearness binding
multisets A and A’ is modelled by a similarity relation which is defined as follows:

Definition 13. Let A and B be two multisets. A is said to be T -similar to B, denoted as A
Xa B, if and only if {Vz|zr €y A and x €g B = min{ry = 73,73 = 7} > Ta}-

This relation generalizes the equivalence relation in a many-valued context as the similarity
relation of Zadeh [15] has been in a fuzzy context. It is (1) reflexive: A s A, (2) symmetrical:
A ~q B & B =, A, and (3) weakly transitive: {A ~o B, B =3 C} = A =, C with
Ty 2 T(7a, 73) where T is a T-norm.

In this paper, we only study the first form (F1) of the Generalized Modus Ponens rule. By
using the similarity relation to modelize the nearness binding between multisets, tlhe inference
rule can be interpreted as: {more the rule and the fact are true} and {more A and A are
similar}, more the conclusion is true. In particular, when A’ is more precise than A (AI C A)
but they are very weakly similar, any conclusion can be deduced or the conclusion deduced
isn’t as precise as one can expect. This is due to the fact that the similarity relation isn’t able
alone to modelize in a satisfactory way the nearness between A' and A. For that, we add to
the similarity relation a new relation called nearness relation and which has as role to define
the nearness of A to A when A" C A. In other words, it indicates the degree to which A is
included in A.

Definition 14. Let A and B be two multisets such as A C B. A is said to be 1 -near to B,
denoted as A Co B, if and only if {Vz € F(B), zx €4 A andx €g B = 7o = 73 < 74 }.

Proposition 1. The nearness relation satisfies the following properties:



1. Reflezivity: A Cm A
2. Weak transitivity: A Ca B and B Cpg C = A Cy C with 7y < min(7a, 7).

In the relation A C, B, the less the value of « is, the more A is included in B. We can notice
that the properties satisfied by the nearness relation are similar to those satisfied by the
resemblance relation proposed by Bouchon-Meunier and Valverde [2] within a fuzzy context.

Ezample 4. For a term A, we can obtain: "really A" ~g "A", "really A" Cg "A", "vaguely
A" g "A", "extremely little small" x5 "tall", "very tall" Cy "tall", ...

Finally, by using similarity and nearness relations, we can propose our Generalized Modus
Ponens rule.

Proposition 2. [Generalized Modus Ponens| Let A and AI, Band B’ be predicates associated
respectively with the concepts C; and Ce. Given the following assumptions:

1. it is Tg-true that if "z is A" then "y is B"

2. "z is A s Te-true with A o A.

Then, we conclude : "y is B" is 15-true with 7s = T(78, T (Ta, Te))-
If the predicate A’ s such as A’ Cor A, then, we conclude: "y is B" is 15-true with
15 = T(18, Tor — Te)-

This inference rule can be interpreted as: {more the rule and the fact are true} and {more A
and A are near}, more the conclusion is true. The nearness concept is represented here by

the nearness relation if A’ is included in A and by the similarity relation otherwise.

Ezample 5. From the following rule and fact:

- it is true that if "the tomato is red” then "it is ripe”

- "the tomato is really red” is quite-true,

we can deduce: "the tomato is ripe"” is almost-true. With the Pacholczyk’s inference rule
presented in [12] one obtains: "the tomato is ripe” is fairly-true. Given that almost-true >
fairly-true, we can remark clearly that, when the term in the fact (A') is more precise than the
term in the antecedent of the rule (A), our new result is more strong and more precise than
that obtained with the old Pacholczyk’s inference rule. For the other cases, the two results
are identical. Thus, we can conclude that by adding a supplementary assumption for more
precising the relation binding A' to A, we can obtain a more precise conclusion from the
inference rule.

6 Conclusion

In this paper, we have proposed a model symbolically dealing with nuanced information. In
this model, we defined a term by symbolic parameters provided by the expert in a qualitative
way. Based on this representation method, we defined some linguistic modifiers in a purely
symbolic way. Lastly, we presented a new Generalized Modus Ponens rule for exploiting nu-
anced information. With this rule, we obtain satisfactory results. Finally, we plan to generalize
our model of reasoning in order to reason on gradual rules like "the more the tomato is red,
the more it is ripe”.
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Appendix A: Representation within a fuzzy context

Within a fuzzy context, a fuzzy set A is associated with each vague term. A is defined by a
membership function p defined on numerical scale and which indicates the gradual membership
to A. This fuzzy set is characterized even by some traditional subsets like the core, the support
and the fuzzy part. These three subsets are defined respectively by Core(A)={x |pa(z) = 1},
Supp(A)={x [pa(z) > 0}, F(A) = {x |0 < pa(z) < 1} [2]. They represent some semantic
characteristics of the term to which A is associated. The fuzzy part cardinality indicates
the fuzziness of the term and the support cardinality indicates its precision. In the fuzzy
sets usually used, whose have membership L-R functions, the fuzzy part is the union of two
disjoined subsets: the left fuzzy part and the right fuzzy part. These fuzzy sets are defined
even by numerical parameters like A = {X, < @, a, b, 8 >, L, R} (cf. Figure 9). These
parameters indicate the sizes of the core, the support and the fuzzy parts, and their positions
in the universe X. L(x) and R(x) are two functions that define pa(z) respectively on left and
right fuzzy parts.

In this context, the nuances, like "very" and denoted as mq, are fuzzy modifiers which allow to
define nuanced terms denoted as "mqo A", whose membership L-R functions simply result from
A by using a translation, dilation or contraction. Some modifiers produce both (a translation
and contraction) or (a translation and dilation). These modifiers are defined by Desmontils
and Pacholczyk [4] in such a way that a finite and ordered set of modified fuzzy sets cover X
(cf. Figure 10).
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Appendix B: M-valued logic and Symbolic Quotient of cardinalities

We begin this appendix by giving some basic elements of the many-valued predicate logic
used here and which can be found in [12]. After, we describe briefly a symbolic approach for
handling symbolic cardinalities of subsets. More details about this approach can be found in
[7,8]. Let £ be a language of M-valued predicates and F the set of the formulas on £. We
call an interpretation structure A of £, the pair A =< D,{R,|n € N} >, where D designates
the domain of A and R, designate the multisets associated with the predicate P, of the
language. We call a valuation of variables of £, a sequence denoted as v =< vp,v1, ..., Un—1,
Un,Un41, ... >. The valuation v(n/a) is defined by v(n/a) =< V0,1, ..., Vn—1,G, Vnt1,... >.

Definition 15. For any formula ¢ of F, the relation of partial satisfaction v satisfies ¢ to a
degree 1o in A’, denoted as A =3, ¢, is defined as follows:

1. A IZZ Pn(zil, ""Zin(n)) = (Zil,---, Zin(n)) €qs R,.

2. AL ~¢ & AE}S dlrs =~ 1a

8. AL Uv & AL 6 et ARE dlr Vs =
4 AELSNG & AR 6 et ARES dlry Ay =1
5 AFad DY A, ¢ et AlEp YTy = T3 = Ta

Definition 16. A formula ¢ is said to be 7o —true-in-A, if and only if, there exists a valuation
v such that v To—satisfies ¢ in A.

Definition of the predicate Rcard

Given that A* is an arbitrary interpretation of £ of the universe of discourse {2, let C the set
of open formulas ¢ of F such as for any valuation v of (2, ¢ is completely satisfied in A* or
is not-at-all satisfied in A*. Thus, in the interpretation A*, each formula of C can refer to a
subset of the individuals of £2 who satisfy this formula.

To define the symbolic quotients of cardinalities assigned to sets referred by formulas of C, we
introduce a new many-valued predicate called Rcard added to the language £ and defined
on the formulas of C. This predicate will modelize the notion of the quotient of cardinalities
between sets referred by formulas of C. The degrees of truth of this predicate represent Sym-
bolic Quotients of Cardinalities of two subsets. We extend the structure of interpretation of
the language A" to A of the domain D = 2 U C, and we suppose that the noted variables
¢ and ¥ indicate the arguments of Rcard and that any valuation v comprises, moreover,
(vo,v1) € C x C which are associated with the arguments ¢ and W.

Definition 17. The Rcard predicate is defined formally in the following way:

- For any interpretation A, Rcard is a binary predicate of the language, defined on C x C and
for which ¥¢ € C, Vi € C Rcard(¢p,v) € F.

- Any interpretation A associates with the Rcard predicate o multiset of C x C, denoted as
RPS, such as for any valuation v and if ¢ and 1y are arbitrary elements of C, then we have:
A IZU(OM))(IM) Rcard(p,¥) << (¢,9) >€Ea RPS & Rcard(d,v) is 1o-true-in-A. If no
confusion is possible A |Ea Rcard(p, ¢) stands for A I:Z(0/¢)(l/w) Rcard(p,¥).



- Vu, A, Reard(¢, ) = {3, IN | @« < A\, A |=a Reard(¢, T) et A =x Reard(y, T)}.

Let us indicate by Qs the set of M symbolic degrees of Quotients of cardinalities: Qa =
{Qa,a € [1,M]}. The term "A o Rcard(¢,)", will mean that "the cardinality of the
individuals set who satisfy ¢ in A is Qo among that of the individuals set who satisfy ¢ in
A". Thus, with each symbolic degree of truth 7,-true of Reard(¢,1)), we associate a symbolic
degree of quotient of cardinalities i.e. Qo of Q. To handle in an equivalent way of the sets
and formulas referring to these sets, we use a relation, denoted as <, which expresses the
quotient of cardinalities of two subsets. Let us suppose that ¢ and 1 are formulas which
refer respectively to the subsets A and B of {2 in interpretation .4, such as the cardinality
of B is larger than that of A. The equivalence between the two notations, enables us to use
"Ad, B" in the place of "A =, Rcard(¢,)". This equivalence can be established as follows:
A =, Reard(¢, ) < A <, B < "the cardinality of A is @, among that of B".

Axiomatic governing Rcard

We establish for the relation < some properties equivalent to the ones satisfied by the function
of traditional cardinality. In this appendix, we limit ourselves to define the axiomatic governing
the predicate Rcard. Other properties can be found in [7, §].

Axiom 2 (property of the union). Let A and B two subsets of E. If {ANB =0, A<,
E,B<g E and o+ < M +1} then (AU B) <, E with Qy = S(Qa, @3)-

Where S is an application representing the"symbolic sum”. This one is an application of
Qum X Qs in Qs which satisfies the properties of the traditional sum. We choose an application
inspired from Lukasiewicz’s T-conorm [12]. This application is defined as follows:

If a4+ 8 < M+1 then S(Qa, @) = Qats-1)

This axiom represents a symbolic generalization of the following expression:

|AUB| _ |A[+|B|-|ANB| _ |A| , |B| —
B = TF = 1z7 + 177 (because [AN B[ =0).

Axiom 3 (weak Transitivity). If {B<g A and A< E} then B, E with Q, = I(Qa, @3)-

Where I is an application representing the "symbolic multiplication”. The latter is an appli-
cation of Qn X O in Q) which satisfies the properties of the traditional multiplication.
This application satisfies some properties proposed by Pacholczyk [13]. We can choose the
multiplication presented in Table 1. This axiom represents a symbolic generalization of the
following relation:

I|Q1|Q2|Q3|Q4|Q5|Q6|Q7|Qs|Qo
Ql Ql Q1 Ql Ql Ql Ql Ql Ql Ql
Q21Q1]Q2|Q2(Q2|Q2(Q2|Q2|Q2|Q2
Q3|Q1|Q2]Q2(Q2|Q2|Q2|Q2|Q3|Q3
Q4|Q1|Q2]Q2|Q2|Q2|Q2|Q3|Q4|Q4
Q5(Q1]Q2]Q2]Q2|Q2|Q3|Q4|Q5|Qs
Qs|Q1|Q2]Q2|Q2|Q3|Q41|Q5|Qs|Qs
Q7|Q1|Q2]Q2|Q3|Q4|Q5|Q6|Q7|Q7
Qs|Q1|Q2]Q3]|Q4|Q5|Q6|Q7|Qs|Qs
Qo|Q1|Q2|Q3|Q4|Qs|Q6|Q7|Qs| Qo

Table 1: multiplication table




