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Abstract. In this paper we investigate the influence of parameter choice in the 
performance of the Predator Prey algorithm. This algorithm is a new variant of 
the Particle Swarm Optimiser algorithm, where a Predator Prey mechanism was 
inserted to better control the balance between exploration and exploitation in 
optimisation problems. We use a higher level Predator Prey Optimiser as a 
meta-algorithm to search for good parameter combinations for a set of bench-
mark problems. The results are used to introduce changes in the algorithm and 
to define guidelines for parameter choice for specific problems. 

1   Introduction 

The basic particle swarm algorithm was inspired on a metaphor of social interaction 
between individuals [1]. The result was a population based optimisation algorithm, 
where individuals, called particles, are represented as vectors of real numbers in a 
multidimensional space. A second vector is used to represent the particle’s velocity. 
The algorithm searches for optima in the search space by changing the velocity of 
each particle and, as a result, its trajectory through the search space. The changes in 
velocity are the result of the attraction of each particle for its previous best position in 
the multidimensional space, as well as for the best position previously found by all its 
neighbours. While generally considered a form of evolutionary computation, there is 
no form of mutation, recombination or even selection in the particle swarm algorithm. 
Further information on the particle swarm optimiser (PSO), its variants and the under-
lying cultural model can be found in [2]. 

It has been noted in previous work [3][4] that, while successful in the optimisation  
of several difficult benchmark problems, the PSO presents problems in controlling the 
balance between exploration and exploitation, namely when fine tuning around the 
optimum is attempted. In [5] we present a new variant of the particle swarm algorithm, 
called the predator prey optimiser (PPO), where a new particle, the predator, was 



 

 

introduced. This particle is attracted to the best individual in the population, while all 
other particles (prey) are repelled by the predator with a strength that increases with 
proximity. While this mechanism proved to be successful in increasing the perform-
ance of the algorithm in several benchmark optimisation problems it also introduced 
several new parameters. These allowed an increased control over the balance between 
exploration and exploitation, but combinations of parameters resulting in optimised 
performance were not known and the parameter space was too large for any form of 
enumeration. In this work we used a predator prey optimiser as a meta-algorithm in 
the search of good parametrical combinations for the optimisation of a set of bench-
mark minimization problems by PPOs using the parameters that were encoded as 
particles in the swarm of the meta-algorithm. 

This was done in order to pursue three main objectives: 
• Investigating the usefulness of the PPO as a meta-algorithm for optimising the 

parameter set of a lower level optimiser. 
• Identification of possible changes to the algorithm as a result of regularities in 

the parameters (e.g. parameters always near 0 may suggest a simplification of 
the algorithm). 

• Identification of good candidates as sets of parameters for optimising functions 
that present specific problems to the algorithm. 

In the next section we describe in more detail the basic particle swarm and the 
predator prey optimisers.  Section 3 is dedicated to the description of the experimental 
setup, as well as the presentation of the results obtained. In Section 4 we discuss these 
results relatively to the objectives stated above and draw some final conclusions to 
this work. 

2   The Optimiser Algorithms 

2.1   The Swarm Particle Optimiser 

In particle swarm optimisation a population of point particles “fly” in an n-
dimensional real number search space, where each dimension corresponds to a pa-
rameter in a function being optimised. The position of the particle in the search space 
is represented by a vector X. The velocity of the particle, i.e., its change in position, is 
represented by a vector V. The particle “flies” in the search space by adding the veloc-
ity vector to its position vector in order to change its position.  

V determines the particle’s trajectory and depends on two “urges” for each particle 
i: flying towards its best previous position and flying towards its neighbours’ best 
previous position. Different neighbourhood definitions have been tried [6]; here we 
assume that every particle is a neighbour to every other particle in the swarm. The 
general equations for updating the position and velocity for some particle i are the 
following:  
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In the above formula χ is the constriction coefficient described in [7], ϕ1 and ϕ2 are 
random numbers distributed between 0 and an upper limit and different for each di-
mension in each individual, Pi is the best position particle i has found in the search 
space and g is the index of the best individual in the neighbourhood. The velocity is 
usually limited in absolute value to a predefined maximum, Vmax. The parameter w is a 
linear decreasing weight. The swarm is usually run for a limit number of iterations or 
until an error criterion is met. 

From (1) we can derive the two most usual ways in which convergence and, as a re-
sult, the balance between exploration and exploitation are controlled. [4] uses χ=1 and 
weight w decreasing linearly from wmax to wmin during the execution of the algorithm. 
[7] guaranties convergence by choosing appropriated values for χ and ϕ=ϕ1+ ϕ2. w is 
fixed and equal to 1 in this approach. 

2.2 The Predator Prey Optimiser 

Our motivation for developing the predator-prey model was mainly to introduce a 
mechanism for creating diversity in the swarm at any moment during the run of the 
algorithm, not depending on the level of convergence already achieved. This would 
allow the “escape” of particles even when convergence of the swarm around a local 
sub-optimum had already occurred. A second, and less practical, motive was to main-
tain the swarm intelligence principle behind the algorithm. Other mechanisms could 
perhaps have been used to the same effect, but it seemed more appropriate to intro-
duce a mechanism that could also be implemented as a distributed behaviour in the 
swarm. The predator-prey model is inspired in the hunt in nature of animals grouped 
in flocks by one or more predators. When chased, animals have more difficulty to stay 
around their most preferable places (better pastures, water sources…) and have to 
search for other locations, free of predators and perhaps even better. This is the effect 
we want to model in our algorithm, where the metaphorical better pastures are the 
functions’ local sub-optima. 

In the present state of development of the predator-prey optimiser, only one preda-
tor is used. The predator’s objective is to pursue the best individual in the swarm, i.e. 
the individual that has found the best point in the search space corresponding to the 
function being optimised. The predator update equations are: 
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ϕ3 is another random number distributed between 0 and an upper limit and Xg is the 
present position of the best particle in the swarm. The upper limit on ϕ3 allows us to 
control how fast the predator “catches” the best individual.  

The influence of the predator on any individual in the swarm is controlled by a 
“fear” probability Pf, which is the probability of a particle changing its velocity in one 



 

 

of the available dimensions due to the presence of the predator. For some particle i, if 
there is no change in the velocity in a dimension j the update rules in that dimension 
still are: 
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But if the predator influences the velocity in dimension j, the rule becomes: 
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The fourth term in the first equation in (4) quantifies the repulsive influence of the 
predator by modifying the velocity adding a value that is a function of the difference 
between the position of the predator and the particle. d is the Euclidean distance be-
tween predator and prey. D(x) is an exponential decreasing distance function: 

bxaexD /)( −=  (5) 

D(x) makes the influence of the predator grow exponentially with proximity. The 
objective of its use is to introduce more perturbation in the swarm when the particles 
are nearer the predator, which usually happens when convergence occurs. When the 
distance is bigger (e.g. during the initial exploration phase of the swarm, when w is 
still big), the predator’s influence is smaller and usual swarm dynamics take control. 
The a and b parameters define the form of the D function: a represents the maximum 
amplitude of the predator effect over a prey and b allows to control the distance at 
which the effect is still significant. 

The predator effect was designed to take advantage of the use of w as an inertia pa-
rameter in the swarm update equations. The idea is to lower the values of w, thus forc-
ing a faster convergence, while relying on the predator to maintain population diver-
sity. The constriction coefficient is set to 1. 

3   Experimental Results 

In this work we used a PPO as a meta-algorithm for finding good parameter sets for a 
lower level PPO being used to optimise a set of functions commonly utilized in parti-
cle swarm [3][4][7] and evolutionary computation [8] as benchmark problems. These 
functions were chosen because they present different difficulties to the PPO, so it was 
expected that different parameter sets should be needed to optimise the algorithm 
performance for each one.  
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In the functions above, x is a real number, n-dimensional vector and xi is the ith 
element of that vector. f1 is the generalized Rosenbrock function, a unimodal function 
where the optimum is situated near the origin in a long, slightly decreasing, curved 
valley, where the difference between particles’ fitness is very small, thus making the 
search difficult. f2 is the generalized Rastrigin function and f3 the generalized 
Griewank function, two multimodal functions with many local minima set around the 
global minima in an unimodal macrostructure. But, while for f2 the PPO shows diffi-
culties in getting near the optimum, for f3 the difficulty seems to be the fine tuning 
stage when the particles are already near the optimum (see [5]). f4 is the Schwefel 
function which is also a multimodal function, but is designed to be difficult for evolu-
tionary algorithms, with the local minima set far away from each other and the global 
minimum located at the boundary of the search space. All these functions are used as 
minimisation problems. The search space and initialisation limits for each function are 
presented in Table 1. The functions were optimized in 30 dimensions with an iteration 
limit of 2000.  

Table 1. Search space and initialisation limits for each function. 

Function Search Space Init. Limits
f1 [-100,100]n [15,30]n 
f2 [-10,10] n [2.56,512]n 

f3 [-600,600]n [300,600]n 
f4 [-500,500]n [-500,500]n 

 
In a first set of experiments the meta-algorithm was ran for 200 iterations or until 

50 iterations elapsed without any improvement in the fitness of the best individual. 
Each particle encoded the eight parameters of a PPO: [ϕ1, ϕ2, ϕ3, Pf, a, b, wmin, wmax]. 
The search space limits and values for Vmax for each parameter are presented in Table 
2. 



 

 

 

Table 2. Search space limits and Vmax for each parameter. 

 ϕϕϕϕ1 ϕϕϕϕ2 ϕϕϕϕ3 Pf a b wmin wmax

Xmin 0 0 0 0 0 0 0 0 
Xmax 5 5 5 0.1 10 10 2 2 
Vmax 2.5 2.5 2.5 0.05 5 5 1 1 

 
The meta-PPO was run with parameters that have been proved in previous work [5] 

to result in acceptable performance for a wide range of functions: ϕ1=2, ϕ2=2, ϕ3=0.1, 
Pf=0.002, a=0.1Xmax, b=0.1Xmax, wmin=0, wmax=0.5. 

Each particle (parameter set) was evaluated by running the PPO 30 times with the 
respective parameters for the function being optimized. The fitness of the particle was 
defined as the average best value found over the 30 runs. Table 3 presents 3 represen-
tative sets of parameters for each function, chosen from 10 executed experiments. The 
PPO and Fitness columns allow the comparison of the average best particle found by a 
PPO with standard parameters [5] (over 100 runs) and a PPO using the parameter set 
found. 

Table 3. Typical parameter sets found for each function. 

F PPO ϕϕϕϕ1 ϕϕϕϕ2 ϕϕϕϕ3 f a b wmin wmax Fitness 
f1 163,9791 2,0622 0,8025 2,1557 0,0324 2,1421 0,0008 0,0595 0,1420 14,2283 

  0,4486 2,1009 2,9482 0,0005 4,9887 1,3829 0,2265 0,5820 21,5599 
  1,3022 1,8574 0,0780 0,0008 3,6346 3,9220 0,2801 0,3181 8,0003 

f2 10,7441 0,0089 2,4337 0,2065 0,0032 6,7914 1,4256 0,0420 0,1385 2,29E-10 
  0,1129 1,7565 2,3885 0,0028 1,3996 0,0332 0,2674 0,3804 4,34E-09 
  0,0703 1,2949 1,0450 0,0031 0,8349 4,6922 0,0424 0,4551 9,51E-08 

f3 0,0133 1,7592 0,4997 0,0322 0,0046 7,5328 0,2446 0,2193 0,2478 0,0018 
  2,1637 1,6711 2,2793 0,0022 0,5506 3,8235 0,0712 0,7111 0,0054 
  1,8012 0,6754 0,5784 0,0052 1,2217 3,3731 0,1839 0,0572 0,0012 

f4 724,7053 0,1753 1,5628 1,8675 0,0092 4,2232 0,1347 0,0474 0,0216 0,0004 
  0,0345 0,9674 1,0633 0,0053 4,7001 0,4164 0,0591 0,1124 0,0004 
  0,1241 1,2823 1,7609 0,0065 1,7154 3,2174 0,1479 0,0674 0,0004 

 
Even allowing for the increased variance in the average fitness of the best particles 

found by the PPO using these parameter sets, since only 30 runs were performed 
against the 100 of the PPO with standard parameters, it seems safe to conclude that 
they result in an increase of the average quality of the solutions found. This increase is 
particularly relevant for the Rastrigin and Schwefel functions. It can also be observed 
that, for the same function, very different sets of parameters result in similar average 
fitness – this is true not only for the selected parameter sets in Table 3 but also for all 
the 10 sets found for each function. We may conclude that, while correct choice of 
parameters is essential for good performance of the PPO – the standard parameters 
result in a significantly poorer performance than the sets found – there is a wide 
choice of parameters capable of producing good results for a given function. This 
seems to suggest that it may be possible to find a common parameter set capable of 
leading to increased performance in all the functions tested. 



 

 

Another interesting observation from the above results is the fact that several pa-
rameter combinations have values very similar and very small for wmax and wmin. This 
seems to indicate that the PPO could obtain the same results without the use of the 
linear decreasing inertia weight, resulting in a simpler algorithm, with less parameters.  

We ran a second set of experiments to investigate the ideas suggested by the results 
of the first set. The meta-algorithm was executed in the same conditions, using the 
same encoding and parameters, except that the wmax and wmin parameters were removed 
from the encoding and set to 0 in the algorithm, so there was no linear decreasing 
weight and the previous velocity value had no effect on the one being calculated. The 
second change was on the evaluation of each particle (parameter set). Each particle 
was now evaluated by running a PPO with the corresponding parameters 30 times for 
each of the f2, f3 and f4 functions. The fitness of the particle was set to the addition of 
the averaged best fitness for the three functions. f1 was not included since it would bias 
the search as the best values would be significantly larger for this function than for the 
remaining three. Due to the computational cost of this experiment it was only repeated 
5 times and the parameter sets that were found are presented in Table 4. 

Table 4.  Parameter sets found in the second group of experiments. 

ϕϕϕϕ1 ϕϕϕϕ2 ϕϕϕϕ3 f a b Fitness
0,0722 1,8216 0,5473 0,0073 3,1437 7,0544 0,0270 
0,2818 1,4278 0,8323 0,0062 7,8576 0,3049 0,0412 
0,0533 1,2856 3,9217 0,0042 2,3102 0,1118 0,0325 
0,0939 1,2045 0,2901 0,0127 6,8568 3,5659 0,0436 
0,0270 1,4228 0,4392 0,0071 3,9820 4,9039 0,0365 

 
The results in Table 4 show that it is indeed possible to find parameter sets capable 

of leading the PPO to good performance simultaneously in three of our test functions. 
They also imply that these results can be obtained without the use of the linear de-
creasing weight and previous velocity value component in the velocity update equa-
tion. 

The parameter set with best fitness was used to run a PPO 100 times for each func-
tion to validate the results obtained in the parameter search, where the high variance 
associated with the 30 runs for each function would probably have led to optimistic 
estimates of the average best particle fitness. In Figure 1 the evolution of the average 
best fitness for a PPO using the best parameter set (PPO2) is presented for each func-
tion against the average best fitness in the same conditions for a PPO (PPO1) with 
standard parameters and a basic PSO. The curves show that, while the PPO2 didn’t 
obtained the results expected from the first set of experiments, the results were still 
significantly better for the Rastrigin and Schwefel functions that the ones of the PPO 
with standard parameters and the PSO. For the Griewank function the results were 
marginally worse for the PPO with the new parameters. 
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Fig. 1.  Graphs illustrating the evolution of average fitness of a PPO with standard parameters 
(PPO1), a PPO with the new set of parameters (PPO2) and a basic PSO. Fitness is presented in 
logarithmic scale. 



 

 

 

4   Conclusions 

In this paper we presented and discussed the results of using a meta-POO to opti-
mize the parameters of a second level PPO evaluated in minimization problems. This 
was done to pursue the objectives stated in the introduction to this work: 

• Investigating the usefulness of the PPO as a meta-algorithm for optimising the 
parameter set of a lower level optimiser. 

• Identification of possible changes to the algorithm as a result of regularities in 
the parameters. 

• Identification of good candidates as sets of parameters for optimising functions 
that present specific problems to the algorithm. 

As for the first objective, we can conclude that the meta-PPO can be used as a tool 
in optimization to find better parameters for the main optimization algorithm. While 
this is an expensive procedure in computational terms, it may prove useful when the 
best possible quality for the final solution is essential.  

In relation to the second objective, the first results we obtained suggested that the 
linearly decreasing weight could be removed from the equations and a second set of 
experiments where it was not used also showed promising results. While further inves-
tigation is needed to confirm that such simplification is desirable, its suggestion by the 
meta-PPO results shows the meta-algorithm usefulness in identifying interesting 
changes to the base algorithm. In future work we propose to use the meta-algorithm to 
search for better predator strategies for the PPO.  

The third objective was achieved by proposing parameter sets capable of leading 
the PPO to better results in the test functions then the ones previously found either by 
the PPO with standard parameters or the basic PSO. Since the test functions were 
chosen to present specific problems to the optimizer, we hope the parameter sets 
found can be useful in the optimization of other functions that pose the same difficul-
ties to the PPO. Generic parameter sets leading to good (but not the best) results in 
three test functions were also found. These can be used to optimize a new function, if 
one of the more specific parameter sets does not lead to good results. 
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