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Abstract. In this paper, multi-objective optimization is applied to determine the
parameters for a k-nearest neighbours classifier that has been used in the
diagnosis of Paroxysmal Atrial Fibrillation (PAF), in order to get optimal
combinations of classification rate, sensibility and specificity. We have
considered three different evolutionary algorithms for implementing the multi-
objective optimization of parameters: the Single Front Genetic Algorithm
(SFGA), an improved version of SFGA, called  New Single Front Genetic
Algorithm (NSFGA), and the Strength Pareto Evolutionary Algorithm (SPEA).
The experimental results and the comparison of the different methods, done by
using the hypervolume metric, show that multi-objective optimization
constitutes an adequate alternative to combinatorial scanning techniques.

1  Introduction

Most real-world optimization problems are multi-objective in nature, since they
normally have several (usually conflicting) objectives that must be satisfied at the
same time. These problems are known as MOP (Multi-objective Optimization
Problems) [1].The notion of optimum has to be re-defined in this context and instead
of aiming to find a single solution; a procedure for solving MOP should determine a
set of good compromises or trade-off solutions, generall y known as Pareto optimal
solutions from which the decision maker will select one. These solutions are optimal
in the wider sense that no other solution in the search space is superior when all
objectives are considered.

Evolutionary Algorithms (EAs) have the potential to finding multiple Pareto
optimal solutions in a single run and have been widely used in this area [2] Recently
the importance of eli tism, supported experimentall y [2,3], secondary population  and
adequate diversity maintaining techniques has focused the attention of researches [4].
In that sense, some of the authors have presented elsewhere the SFGA [5] and the
NSFGA[6] that continue exploring the benefits of the aforementioned concepts.

The Atrial Fibrillation is the heart arrhythmia that causes most frequently embolic
events that may generate cerebrovascular accidents. In this paper is described how the
aforementioned techniques are applied to an open real world problem: Paroxysmal
Atrial Fibrillation Diagnosis based on Electrocardiogram (ECG) traces without



explicit Atrial Fibrillation episodes [7]. Recently has finished an international
initiative that addressed this problem concluding that an automatic PAF diagnosis
scheme is possible with a reasonable efficiency. The different proposed diagnosis
approaches within the Computers in Cardiology Challenge 2001 [7] were focused on
achieving high classification rates. But the use of ECGs (non invasive exploration
method) for the diagnosis motivates the possibility of using this diagnosis scheme in
routinely cardiac examinations. If the application reaches high accuracy detecting
PAF patients (high sensibility), even with a lower capability of accurate diagnosis
with healthy subjects (lower specificity), positive diagnosis would motivate more
complete explorations. Therefore it can be considered a MOP in which is has interest
to optimize the classification rate and the sensibility (see section 2).

In this paper section 2 describes the PAF diagnosis problem, Section 3 reviews
both SFGA and NSFGA. Experimental results for SFGA, NSFGA and SPEA which is
one of the State-of the-art evolutionary algorithms for MOPs, are given in section 4.
Finally concluding remarks are summarized in Section 5.

2 PAF Diagnosis based on the K-nearest neighbor classifier

A public database for PAF diagnosis applications is available [8]. It is composed
by registers obtained of 25 healthy individuals and 25 patients diagnosed with PAF.
An automatic algorithm capable of discriminating registers of these two groups with a
certain accuracy is the challenge addressed in the present paper. For this purpose 48
parameters have been extracted of each ECG register [9] obtaining a 48 component
vector that characterizes each subject (p1, …, p48).

A modular classification algorithm based on the K-nearest neighbours has been
used for this application and described in detail in [10]. The labelled vectors work as
references of the classification system. For each new non-labelled vector, the
Euclidean distances to the labelled vectors are calculated. The labels of the K-nearest
neighbours are consulted and the final label is calculated through a voting scheme as
the label of the majority of the K-nearest neighbours. In this way the classification
algorithm is modular, new parameters can be added easily, only the dimension
considered in the Euclidean distance calculation step has to be modified. The
modularity of the classification algorithm enables automatic parameter scanning
techniques. Using the 48 parameters in the classification scheme is highly ineff icient,
therefore a parameter selection stage is necessary to select a subset of parameters with
which the best classification performances are reached.

In order to be able to automatically modify the selection of the different parameters
in the classification scheme the input pattern has been multiplied by a fil ter vector (F),
i.e. I=(p1 f1, …, p48 f48). Where the filter components f i lie within the interval [0,1].
These fil ter components represent  the chromosome of the different solutions
optimized by the evolutionary algorithms.

For biomedical diagnosis applications, the final diagnostic of a specific disease for
a patient can be ill (suffering of a certain pathology) or healthy (free of this concrete
pathology). This means that the classification result for PAF diagnosis can be:

True Positive (TP). The algorithm classifies as PAF patient a real PAF patient.
True Negative (TN). The algorithm classifies a healthy subject as healthy.
False Positive (FP). The algorithm classifies as PAF patient a healthy subject



False Negative (FN). The algorithm classifies as healthy subject a PAF patient.
With these cases different functions of interest can be defined (1) : Classification

rate (CR), Sensibility (SE) and Specificity (SP).
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Note that the Sensibility represents the ratio between the detected il l patients and
the total il l patients. While the Specificity represents the ration between the detected
healthy subjects and the total healthy subjects.

Due to the small size of the training database (25 patients and 25 healthy subjects),
the evaluation of the classification rate is calculated in 50 cycles with the method
leaving one out. In this way, in each cycle, one vector is selected as test element. This
vector is classified according to the scheme described above with the other 49 labelled
vectors as classification references. In each cycle are actuali sed the classification
results in four counters: True_Positive (TP), True_Negative (TN), False_Positive (FP)
and False_Negative (FN). The final classification rate (CR), the sensibility (SE) and
the specificity (SP) are finall y calculated with these counters that accumulate the
classification results of the 50 cycles

It is worthy to mention that MOEAs generate a population of different solutions.
This must be seen as an added advantage because some of these solutions wil l be
more appropriate than other for certain patients suffering from other cardiac
pathologies. This other current pathologies may invalidate some solutions based on
certain parameters that are unreliable for these patients. Therefore a population of
solutions instead of a single one is desirable.

3 Single Front Evolutionary Algorithms

The Single front Genetic Algorithm (SFGA) [5], previously proposed by some of the
authors, implements a elitist selection procedure in which only the non-dominated
(and well-diversified) individuals in the current population are copied to the mating
pool for recombination purposes (see Figure 1.a) The preservation of diversity in the
population is ensured by means of a filtering function, which prevents the crowding
of individuals by removing individuals according to a given grid in the objective
space. The filtering function uses the distance evaluated in the objective space. That
approach has been proved very effective when applied to Zitzler test functions in
comparison to other similar algorithms using a more complex selection scheme to
produce the mating pool .

In the New Single front genetic algorithm (Figure 1.b) [6], some features has
been added to the original SFGA. Firstly an external archive keeps track of the best-
ever solutions found during the running of the algorithm. A selection procedure
produces a mating pool of size S by randomly choosing individuals from the external
set and the filtered current population. The variation operators produces the offspring
that is copied to the next population. The updating procedure adds the first front of
ND individuals in the current population and deleting from the archive the dominated
individuals.
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Fig. 1.: Description of SFGA (a) and NSFGA (b).

4  Experimental Results

For performance comparison, the hypervolume metric [3] for maximization problems
has been used. For the sake of simplicity just S metric is shown. S(Ai) is the volume
of the space that is dominated [1] by the set Ai. All of the algorithms were executed
with the same initial population. The filter parameter, ft, is set to 0.01, the mutation
probability per gene is 0.01 and the crossover probability is 0.6. Each Algorithm (see
Table 1) is executed for 3 objectives (section 4.1) and 2 objectives (section 4.2). All
algorithms are executed 100 iterations except where indicated.

4.1 Three objectives: Classification rate, sensibility and specificity.

Although these three objectives are linearly dependent, this section can illustrate the
performance gain obtained by selecting two of these objectives in section 4.2.

In this case, best Performance was obtained by SPEA with K=1, (the average of
the three best Classification rates was 86% with 88% as average Sensibility and
81.3% average Specificity).The results are similar to the ones obtained by
combinatorial scanning techniques [10].



Table1. Performance of the algorithms for 3 and 2 objectives

Popsize K SFGA3 SFGA2 NSFGA3 NSFGA2 SPEA3 SPEA2

1 0.53632 0.68640 0.66259 0.82720 0.68147 0.77360
3 0.44256 0.73600 0.65910 0.75280 0.58732 0.78800
5 0.47980 0.65120 0.61958 0.77200 0.68371 0.83680
7 0.53262 0.65280 0.55104 0.77200 0.59222 0.73920

1001

9 0.46086 0.62400 0.59136 0.72080 0.57862 0.72160

1 0.49795 0.65360 0.66259 0.72160 0.68147 0.73840
3 0.44256 0.71760 0.50048 0.71760 0.57203 0.71760
5 0.47804 0.63520 0.52041 0.67120 0.64313 0.73520
7 0.51200 0.62400 0.55104 0.68880 0.55104 0.72000

100

9 0.45907 0.60800 0.55104 0.67200 0.53504 0.69840

1 0.49612 0.80960 0.63571 0.82800 0.68147 0.70560
3 0.50048 0.75440 0.50048 0.69920 0.44460 0.65920
5 0.55936 0.59200 0.42150 0.61920 0.61203 0.65040
7 0.51558 0.63840 0.46364 0.63840 0.51072 0.65360

50

9 0.44179 0.59040 0.53267 0.67200 0.53260 0.63840

1 0.68806 0.65600 0.61958 0.68880 0.73449 0.70560
3 0.45926 0.69920 0.48672 0.71520 0.46700 0.64400
5 0.48838 0.60480 0.53446 0.67120 0.53632 0.63840
7 0.51072 0.59200 0.48153 0.65520 0.51200 0.61840

30

9 0.43776 0.66880 0.46086 0.56080 0.55212 0.66800

4.2 Two objectives: Classification rate and Sensibility.

The whole diagnosis scheme is based on ECG traces, therefore on a non invasive
exploration process. In this context, a high sensibility is more desired than a high
specificity for the same classification rate. This means, that such an automatic PAF
diagnosis application could be applied in routinely explorations, in this way, positive
PAF diagnosis would motivate more complex diagnosis processes. Because of that we
have focused on optimizing the classification rate and sensibility of the algorithm.

In the two objectives optimization scheme the best Performance was obtained by
SPEA with K=5, (the average of the three best Classification rates was 82% with
94.7% as average Sensibili ty, for these solutions the a posteriori calculated Specificity
average is 69.3%). In this case, it is observed that the Sensibility increases
significantly, although the classification rate decreases, this can be of interest to detect
possible PAF patients among the general population in preventive examinations.

                                                       
1 1000 iterations



5 Concluding Remarks

Optimization of the three algorithms can be seen as a global optimization, while when
only two performance indicators are taken into account (CR and SE) the process is
focused on optimizing SE (although this would produce a decrease in SP) and CR.
The obtained results are of the same range to the ones reached by combinatorial
scanning processes [10] but the techniques applied in this paper have two intrinsic
advantages: the search space covers uniformly the whole parameter space, and the
generation of a population of different solutions instead of a single one. These two
characteristics are common to all the evolutionary algorithms applied in this paper.
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