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Abstract. In this paper, multi-objective optimization is applied to determine the
parameters for a k-nearest neighbours classfier that has been used in the
diagnosis of Paroxysmal Atrial Fbrillation (PAF), in ader to get optimal
combinations of classfication rate, sensibility and spedficity. We have
considered three different evolutionary algorithms for implementing the multi-
objective optimization of parameters. the Sngle Front Genetic Algorithm
(SFGA), an improved verson o SFGA, caled New Single Front Genetic
Algorithm (NSFGA), and the Srength Pareto Evolutionary Algorithm (SPEA).
The experimental results and the comparison o the different methods, done by
using the hypervolume metric, show that multi-objective optimization
congtitutes an adequate dternative to combinatorial scanning techniques.

1 Introduction

Most red-world optimization problems are multi-objective in nature, since they
normally have several (usudly conflicting) objedives that must be satisfied at the
same time. These problems are known as MOP (Multi-objective Optimization
Problems) [1].The notion of optimum has to be re-defined in this context and instead
of aming to find a sngle solution; a procedure for solving MOP shoud determine a
set of good compromises or trade-off solutions, generaly known as Pareto optimal
solutions from which the decision maker will select one. These solutions are optimal
in the wider sense that no ather solution in the search space is superior when all
objectives are considered.

Evolutionary Algorithms (EAs) have the patentiad to finding multiple Pareto
optimal solutionsin a single run and have been widely used in this area [2] Recently
the importance of dlitism, suppated experimentally [2,3], secondary population and
adequate diversity maintaining techniques has focused the attention of reseacches [4].
In that sense, some of the authors have presented elsewhere the SFGA [5] and the
NSFGA[6] that continue exploring the benefits of the dorementioned concepts.

The Atrid Fibrillation is the heart arrhythmia that causes most frequently embolic
eventsthat may generate cerebrovascular accidents. In this paper is described how the
aforementioned techniques are gplied to an open rea world problem: Paroxysmal
Atrial Fbrillation Diagnosis based on Eledrocardiogram (ECG) traces withou



explicit Atrial Fibrillation episodes [7]. Recently has finished an international
initiative that addressed this problem concluding that an automatic PAF diagnasis
scheme is posshle with a reasonable efficiency. The different proposed dagnosis
approaches within the Computers in Cardiology Challenge 2001 [7] were focused on
achieving high classfication rates. But the use of ECGs (non invasive exploration
method) for the diagnasis motivates the posshility of using this diagnasis scheme in
routinely cardiac examinations. If the gplication reaches high accuracy detecting
PAF patients (high sensibility), even with a lower cgpability of accurate diagnosis
with healthy subjeds (lower specificity), positive diagnosis would motivate more
complete explorations. Therefore it can be mnsidered a MOP in which is has interest
to optimize the classification rate and the sensibility (see section 2.

In this paper section 2 describes the PAF diagnosis problem, Section 3 reviews
both SFGA and NSFGA. Experimental resultsfor SFGA, NSFGA and SFEA which is
one of the State-of the-art evolutionary algorithms for MOPSs, are given in section 4
Finally concluding remarks are summarized in Sedion 5

2 PAF Diagnosisbased on the K-nearest neighbor classifier

A pubic database for PAF diagnasis applications is available [8]. It is composed
by registers obtained of 25 hedthy individuals and 25 petients diagnosed with PAF.
An automatic dgorithm capable of discriminating registers of these two groups with a
certain accuracy isthe dhalenge addressed in the present paper. For this purpose 48
parameters have been extracted of each ECG register [9] obtaining a 48 component
vector that characterizes each subject (p,, ..., P,q)-

A modular classfication algorithm based on the K-neaest neighbaurs has been
used for this application and described in detail in [10]. The labelled vectors work as
references of the clasdfication system. For each new nonlabelled vector, the
Euclidean dstancesto the labelled vectors are clculated. The labels of the K-nearest
neighbours are consulted and the final label is calculated through a voting scheme &
the label of the majority of the K-neaest neighbaurs. In this way the dassdfication
algorithm is modular, new parameters can be added easily, only the dimension
considered in the Euclidean dstance cdculation step has to be modified. The
modularity of the dasdfication algorithm enables automatic parameter scanning
techniques. Using the 48 parameters in the dasdfication scheme is highly inefficient,
therefore aparameter seledion stage is necessary to select a subset of parameters with
which the best classfication performances are reached.

In order to be able to automatically modify the selection of the diff erent parameters
in the dasgfication scheme the inpu pattern has been multiplied by afilter vector (F),
i.e. 1=(p, f,, ..., Pu f.e)- Where the filter components f, lie within the interval [0,1].
These filter components represent the dromosome of the different solutions
optimized by the evolutionary algorithms.

For biomedica diagnasis applicaions, the fina diagnaostic of a specific disease for
apatient can keill (suffering d a certain pathology) or healthy (free of this concrete
pathology). This meansthat the dassfication result for PAF diagnosis can be:

True Positive (TP). The dgorithm classfies as PAF patient a real PAF patient.

True Negative (TN). The algorithm classfies a heathy subject as healthy.

False Positive (FP). The algarithm classfies as PAF patient a hedthy subject



False Negative (FN). The dgorithm classfies as healthy subject a PAF patient.
With these cases different functions of interest can be defined (1) : Classfication
rate (CR), Sensibility (SE) and Specificity (SP.

_ TP+TN © SE= TP ; P:L )
TP+TN+FP+FN TP+FN TN+ FP

Note that the Sensibility represents the ratio between the detected ill patients and
the total ill patients. While the Specificity represents the ration between the detected
healthy subjects and the total healthy subjects.

Due to the small sze of the training database (25 patients and 25 healthy subjects),
the evaluation of the dasdfication rate is calculated in 50 cycles with the method
leaving one out. In thisway, in eadh cycle, one vector is selected as test element. This
vector is classfied according to the scheme described above with the other 49 labelled
vectors as clasdfication references. In each cycle are actualised the dassfication
resultsin four counters: True Positive (TP), True_Negative (TN), False Positive (FP)
and False Negative (FN). The final classficaion rate (CR), the sensihility (SE) and
the specificity (SP are finaly calculated with these @urters that accumulate the
classfication results of the 50 cycles

It is worthy to mention that MOEAS generate a population d different solutions.
This must be seen as an added advantage because some of these solutions will be
more gpropriate than other for certain patients auffering from other cardiac
pathologies. This other current pathologies may invalidate some solutions based on
cetain parameters that are unreliable for these patients. Therefore a population of
solutionsinstead of asingle one is desirable.

3 Single Front Evolutionary Algorithms

The Sngle front Genetic Algarithm (SFGA) [5], previously propased by some of the
authors, implements a ditist selection procedure in which only the non-dominated
(and well-diversfied) individuals in the current popuation are copied to the mating
pod for recombination puposes (see Figure 1.8) The preservation of diversity in the
popuation is ensured by means of a filtering function, which prevents the crowding
of individuals by removing individuals according to a given grid in the objective
space. The filtering function uses the distance evaluated in the objective space. That
approach has been proved very effective when applied to Zitzler test functions in
comparison to ather smilar algorithms using a more complex selection scheme to
produce the mating pool .

In the New Sngle front genetic algorithm (Figure 1.b) [6], some features has
been added to the original SFGA. Firstly an external archive keeps track of the best-
ever solutions found duing the running of the dgorithm. A selection procedure
produces a mating pool of size S by randomly choasing individuals from the external
set and the filtered current popuation. The variation operators produces the off spring
that is copied to the next population. The updating procedure alds the first front of
ND individualsin the current popuation and deleting from the archive the dominated
individuals.
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Fig. 1.: Description of SFGA (a) and NSFGA (b).

4 Experimental Results

For performance comparison, the hypervolume metric [3] for maximization problems
has been used. For the sake of simplicity just S metric is 1own. S(Ai) is the volume
of the space that is dominated [1] by the set Ai. All of the algorithms were exeauted
with the same initial population. The filter parameter, ft, is st to 0.01, the mutation
probability per gene is 0.01 and the crossover probability is 0.6. Each Algorithm (see
Table 1) is exeauted for 3 objectives (section 4.1) and 2 objectives (section 4.2). All
algorithms are executed 100 iterations except where indicated.

4.1 Three objectives: Classification rate, sensibility and specificity.

Although these three objectives are linearly dependent, this section can illustrate the
performance gain obtained by selecting two of these objectivesin sedion 4.2.

In this case, best Performance was obtained by SFEA with K=1, (the average of
the three best Clasdfication rates was 86% with 88% as average Senshility and
81.3% average Spedficity).The results are smilar to the ones obtained by
combinatoria scanning techniques [10].



Tablel. Performance of the dgorithmsfor 3 and 2 dbjectives

Popsize

100

K |SFGA, |SFGA, |NSFGA, |[NSFGA, | SFEA

[EEN

0.53632

0.68640

0.66259

0.82720

0.68147

SFEA
0.77360

0.44256

0.73600

0.65910

0.75280

0.58732

0.78800

0.47980

0.65120

0.61958

0.77200

0.68371

0.83680

0.53262

0.65280

0.55104

0.77200

0.59222

0.73920

ON|O1|Ww

0.46086
0.49795

0.62400
0.65360

0.59136
0.66259

0.72080
0.72160

0.57862
0.68147

0.72160
0.73840

0.44256

0.71760

0.50048

0.71760

0.57203

0.71760

0.47804

0.63520

0.52041

0.67120

0.64313

0.73520

0.51200

0.62400

0.55104

0.68880

0.55104

0.72000

ON|O|W|

0.45907
0.49612

0.60800
0.80960

0.55104
0.63571

0.67200
0.82800

0.53504
0.68147

0.69840
0.70560

0.50048

0.75440

0.50048

0.69920

0.44460

0.65920

0.55936

0.59200

0.42150

0.61920

0.61203

0.65040

0.51558

0.63840

0.46364

0.63840

0.51072

0.65360

ON|O|W| -

0.44179
0.68806

0.59040
0.65600

0.53267
0.61958

0.67200
0.68880

0.53260
0.73449

0.63840
0.70560

0.45926

0.69920

0.48672

0.71520

0.46700

0.64400

0.48838

0.60480

0.53446

0.67120

0.53632

0.63840

0.51072

0.59200

0.48153

0.65520

0.51200

0.61840

ON|O|W|F-

0.43776

0.66880

0.46086

0.56080

0.55212

0.66800

4.2 Two objectives: Classification rateand Sensibility.

The whole diagnasis scheme is based on ECG traces, therefore on a non invasive
exploration process In this context, a high sensibility is more desired than a high
spedficity for the same dassfication rate. This means, that such an automatic PAF
diagnosis application could be gplied in routinely explorations, in this way, positive
PAF diagnosis would motivate more complex diagnasis processes. Because of that we
have focused on optimizing the dassfication rate and sensibility of the dgorithm.

In the two objectives optimization scheme the best Performance was obtained by
SFEA with K=5, (the average of the three best Classdfication rates was 82% with
94.7% as average Sensbility, for these solutions the aposteriori calculated Specificity
average is 69.3%). In this case, it is ohserved that the Sensihility increases
significantly, although the dassfication rate decreases, this can be of interest to detect
possble PAF patients among the general populationin preventive examinations.

11000 iterations



5 Concluding Remarks

Optimization of the three &gorithms can be seen as a global optimization, while when
only two performance indicators are taken into account (CR and SE) the processis
focused on optimizing SE (although this would produce a decrease in SP) and CR.
The ohtained results are of the same range to the ones reached by combinatorial
scanning processes [10] but the techniques applied in this paper have two intrinsic
advantages: the seach space overs uniformly the whole parameter space and the
generation of a population of different solutions instead of a single one. These two
characteristics are @mmon to all the evolutionary algorithms applied in this paper.
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