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Abstract. Case-Based Classifier Systems obtain low accuracies on gen-
eralisation and higher waste on CPU time when the class distribution
space is not well defined. This paper presents the Mean Sphere and the
Mean K-Means approach based on unsupervised learning to improve the
CPU time and to improve or maintain the accuracy. We use clustering in
an unsupervised way to decide which is the representational space of each
class. The concept of clustering is introduced in two levels. First level
cluster the training data into spheres, obtaining one sphere for each class.
Second level consists of clustering the spheres in order to detect the
behaviour of the elements present in the sphere. In this level two policies
are applied, Mean Sphere and Mean K-Means approaches. Experiments
using different domains, most of them from the UCI repository, show
that the CPU time is considerably decremented while maintaining, and
sometimes improving, the accuracy of the system.

1 Introduction

Case-Based Reasoning systems are often faced with two main problems when a
great number of features and cases exist in the case memory. The first problem
is the reduction of the system performance because the system can not detect
different behaviours on the data. The second problem is an increase in CPU time
because the retrieval phase has to use all the information available.

This paper describes the Mean Sphere and the Mean K-Means (MKM) ap-
proach to organising the case memory. Our aim is twofold: (1) to reduce the CPU
time and (2) to distinguish between different behaviours of the data, avoiding
noisy instances. The organisation of the case memory proposed consists of ap-
plying two levels of clustering. Firstly, a construction of the spheres is done
based on the class distribution of the cases present in the case memory. Later,
a second level of clustering is applied using the results of the previous one. In
the second level, each sphere contains a set of clusters obtained using the Mean
Sphere approach or K-Means algorithm. Both approaches have been introduced
into our ULIC (Unsupervised Learning In CBR) platform.

This paper is organized as follows: first, section 2 presents the related work
about clustering and unsupervised learning in general; the next section intro-
duces the unsupervised organisation approaches. Then, section 4 explains the



testbed and experiments used and the results obtained. Finally, section 5 presents
the conclusions and further work.

2 Related work

This section summarises related work present in the literature for clustering
methods and for different approaches used in Case-Based Reasoning systems to
organise the case memory.

First of all, most of the clustering methods are described in Hartigan’s book
[13].

There exist a large number of clustering algorithms. The choice of clustering
algorithm depends on the type of data available and on the particular purpose
and application [10].

In general, clustering methods can be classified in the following approaches:

The first approach is the partitioning methods. They consist of clustering
training data into k clusters where £ < n and n is the number of objects in
the data set. An example of this approach is k-means algorithm [12]. There are
special variations to improve some aspects of the algorithm. The first variation
is the k-medoids algorithm or PAM (Partition Around Medoids) [15]. In this
algorithm, the objective is to reduce the sensibility of the k-means algorithm
when some extremely large values that distort the distribution of data are found.
A variation of the k-medoids algorithm is the CLARA algorithm (Clustering
LARge Applications) [16]. In this case, the algorithm extends the capabilities of
the last algorithm so as to perform the results when large data sets are explored.

The second approach is called hierarchical methods, which work by grouping
data objects into a tree of clusters. The hierarchical decomposition can be formed
as a bottom-up or top-down procedure.

Another approach considered are the density-based methods. The main ob-
jective of these methods is to discover clusters with an arbitrary shape. These
typically regard clusters as dense regions of objects in the data space that are
separated by regions of low density (representing noise).The most popular al-
gorithms in this category are: DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) [5], OPTICS (Ordering Points to Identify Clustering
Structure) [2] and DENCLUE (DENsity-based CLUstEring) [14].

Grid-based methods use a multiresolution grid data structure that divides
the space into a finite number of cells that form a grid structure on which all
operations for clustering are performed. This method has as an advantage a
constant processing time, independently of the number of data objects. We can
identify in this group algorithms such as CLIQUE (Clustering High-Dimensional
Space) [1], STING (STatistical INformation Grid) [23], and WaveCluster [22] (an
algorithm that clusters using the wavelet transformation).

Finally, model-based methods use mathematical and probability models. These
methods can be focused in two ways: firstly, as a statistical approach, and second
as a neural network approach. Some examples of this approach are AUTOCLASS
[3] and COBWEB [6].



One criticism directed at researchers that use conceptual clustering (similar
to [20]) has been that the clustering of objects or events without a context, goal
or some information concerning the function of the derived clusters is not likely
to be useful for real-world problems [11]. Hanson and Bauer propose a different
point of view and approach real-world problems with algorithms like WITT [11].

On the other hand, in the literature there exist different approaches of Case-
Based reasoning to produce a new organisation of case memory. The most im-
portant approaches are the following: RISE [4] treats each instance as a rule
that can be generalised. EACH [21] introduced the Nested Generalized Exem-
plars (NGE) theory, in which hyperrectangles are used to replace one or more
instances, thus reducing the original training set. And finally, a method that
avoids building sophisticated structures around a case memory or complex op-
erations is presented by Yang and Wu [24]. Their method partitions cases into
clusters where the cases in the same cluster are more similar than cases in other
clusters. Clusters can be converted to new smaller case-bases. However, not all
the approaches are focused on the organisation of the case memory in order to
improve the case memory and, at the same time, the computational time.

3 Unsupervised organisation approaches

The spheres construction process performs the first level of the organisation of
the case memory. The concept of sphere had been introduced in the CaB-CS [§]
and exploited with success in preliminary works such as [9, 17].

The success of this type of representation of the Case Memory is based on
two aspects: first of all this representation greatly improves the speed of the
CBR system, and secondly the spheres offer high reliability in the selection of
the candidate cases.

Each case from the original case memory is distributed to one sphere de-
pending on the class associated to the case (see figure 1). One sphere contains a
subset n of cases from the original case memory (NC'). All the cases that belong
to the same sphere represent the same class. The union of all spheres is the whole
set of cases in the original case memory, such as is represented in equation 1.

k
Zn = NC (1)

where n; is the number of cases that belong to the sphere i, k is the number
of different classes and NC' is the number of cases in the training data.

3.1 Mean Sphere

The Mean Sphere uses the previously computed spheres to generate the centroid
of each class (see algorithm in figure 2).

Each Mean Sphere (of any class C') contains the mean value for each feature
computed using the cases present in the sphere of class C.
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Fig. 1. Representation of the Case Memory for the two approaches. The symbol e
represents a case and the symbol % represents the centroid of the sphere.

1. for each sphere S; in k different classes

2 Let be n; represented as N the number of cases of sphere ¢
3. for each attribute j in F' different features

4. centroid Sij = YN | et

5 end for

6.

end for

Fig. 2. Algorithm to compute the centroid x of each sphere. The variable a; represents
the value of the attribute j in the cth case of the i¢th sphere.

Later, in the retrieval phase, we search for the sphere that represents the
new case, we compute the Fuclidean Distance between each centroid and the
new case. We classify the new case depending on the class represented by the
sphere selected.

3.2 Mean K-Means Approach

The Mean K-Means (MKM) approach takes the original spheres and obtains
a new categorisation of the case memory by applying the k-means clustering
method (figure 3) internally in each sphere . This new categorisation also pro-
duces a smaller case memory. Thus, the CPU time is reduced.

For each sphere we obtain C; clusters and we compute the centroid of each
cluster in the sphere. Then, we select the nearest cluster to the new case in the



1. Choose an initial partition of the cases into k clusters. This
is a random assignment to k clusters.

2. Compute the distance from every case to the mean of each cluster
and assign the cases to their nearest clusters.

3. Recompute the cluster means following any change of cluster mem-
bership at step 2.

4. Repeat steps 2 and 3 until no further changes of cluster membership
occur in a complete iteration. The procedure has now converged
to a stable k-partition.

Fig. 3. K-Means algorithm modified to cluster each sphere.

same way as the Mean Sphere approach. The number of clusters for each sphere
can be different.

The clustering method is configured independently of the class treated. Thus,
we define the optimum number of clusters for each sphere.

Moreover, we can configure a class with n; clusters (one cluster for each case).
In this case we can combine the application of traditional Case-Based Reasoning
in one class with clustering in the other classes. Therefore, a sphere with n;
clusters is equivalent to applying CBR in this class.

4 Experiments and results

In this section we shall describe the data sets for testing the techniques proposed
and the results obtained.

4.1 Testbed

In order to evaluate the performance rate, we use eight datasets. Datasets can be
grouped in two ways: public and private. The datasets and their characteristics
are listed in table 1.

Public datasets are obtained from the UCI repository [19]. They are:
Breast Cancer Wisconsin, Glass, Ionosphere, Iris, Sonar and Vehicle. Private
datasets come from our own repository. They deal with diagnosis of breast
cancer. Datasets are Biopsy and Mammogram. Biopsy [7] is the result of digi-
tally processed biopsy images, whereas Mammogram consists in detecting breast
cancer using the microcalcifications (uCa) present in a mammogram [18,9]. In
mammogram each example contains the description of several uCa present in
the image; in other words, the input information used is a set of real valued
matrices.

These datasets were chosen in order to provide a wide variety of application
areas, sizes, combinations of feature types, and difficulty as measured by the
accuracy achieved on them by current algorithms. The choice was also made
with the goal of having enough data points to extract conclusions.



Table 1. Datasets and their characteristics used in the empirical study.

Dataset Reference Samples Features Classes Inconsistent
1 Biopsy BI 1027 24 2 Yes
2 Breast-cancer (Wisconsin) BC 699 9 2 Yes
3 Glass GL 214 9 6 No
4 ITonosphere 10 351 34 2 No
5 Iris IR 150 4 3 No
6 Mammogram MA 216 23 2 Yes
7 Sonar SO 208 60 2 No
8 Vehicle VE 846 18 4 No

The configuration of the ULIC system for this paper is 1-Nearest Neighbour
algorithm. Training cases are represented by spheres. We have not used weighting
methods in order to test the reliability of our system. The retain phase is limited
to the original training data. The learning process in the test is skipped in order
to to check the behaviour of the spheres.

4.2 Results

In this section we describe the results obtained by the ULIC system using both
approaches.

In this paper we have only performed one distance function in order to test
the new organisation of the case memory. Other similarity functions will be
studied in further research.

The mean accuracy is the result of 10 different executions of the stratified
10-fold cross-validation.

Firstly, in the Mean Sphere approach, we have a sphere for each class with-
out internal clustering. We have computed the centroid values for each sphere.
Therefore, we reduce all the cases that belong to a class to one case.

Secondly, in the MKM approach, we cluster each sphere in order to detect
different behaviours of the data contained in each sphere.

In table 2 we present the results obtained by the traditional 1-NN CBR, the
Mean Sphere approach and the MKM approach. As we can observe, the results
in general improve both the mean accuracy and the CPU time of resolution of
one case.

As we can observe MKM approach improves the prediction accuracy obtained
by the Mean approach in some of cases. The explication of this is that MKM not
reduce so high the case memory. In Mean approach the case memory is reduced
to a unique case for each class. So, the CPU time is lower in the Mean approach
in all of data sets.

Table 3 shows the optimum number of clusters for each data set and the
average accuracy, the standard deviation and the average CPU time of resolution
for one case.



Table 2. This table compares the mean percentage of correct classifications (%PA),
standard deviation (std) and mean CPU time (CPUt) of the Retrieval phase using
traditional CBR, a first level of clustering (Mean Sphere) and a second level of clustering
(MKM approach). The results that improve the prediction accuracy or the CPU time
of the traditional CBR are marked with a +/.

Ref. CBR MeanSphere MKM

%PA CPUt std %PA  CPUt std %PA CPUt std
BC 96.14 56.34 1.45 96.28 / 0.13 ,/ 1.87 96.71 4/ 31.96 / 1.53
BI  83.15 199.63 3.55 79.07 0.27 ,/ 4.66 81.40 1.52 4/ 3.76
GL 69.16 33.60 7.32 53.74 0.51 4/ 7.01 70.79 v/ 30.52 y/ 8.70
IO 90.03 99.61 4.28 81.77 0.45 ./ 5.07 90.31 / 1.60 / 5.38
IR 95.33 6.00 3.06 92.67 0.20/ 2.00 97.33 / 1.50 4/ 3.27
MA 62.50 90.41 13.73 64.81 \/ 0.23 \/ 9.42 63.89 / 65.68 / 9.86
SO 82.21 198.71 6.99 70.67 1.83,/ 7.19 8293/ 89.20 \/ 7.73
VE 66.90 125.06 4.33  84.04 / 0.54 \/ 4.39 65.60 2.00 4/ 3.75

The number of clusters can be different for each sphere. Thus we can define
different numbers of clusters in different classes. For each data set, we have
determined with previous executions of the system which is the best combination
of number of clusters in order to configure the system for further experiments.

Table 3. Best configuration of the clusters. We indicate for each class the number of
clusters generated. A number n; indicates that there is a number of clusters equal to
the number of cases in the sphere

Dataset Classes Number of clusters

BI 2 28-16
BC 2 27-n,4
GL 7 20-n;-10-n3-20-n;-10
10 2 24-6
IR 3 20-4-10
MA 2 ’I’Li-40
SO 2 25-n;
VE 4 25-20-35-35

It is important to note that the CPU time is quite long when any sphere with
n; clusters exists. It means that we apply traditional Case-based Reasoning in
this sphere because each case represents a cluster.



5 Conclusions and further research

We have introduced two unsupervised learning approaches in a traditional Case-
Based Reasoning System achieving our initial objectives.

It is important to keep in mind that the main goal was to maintain the
prediction accuracy obtained by the traditional Case-based Reasoning improving
the speed on CPU time of the Retrieval phase. As we have seen, we have improved
the speed and we have also improved the results.

The results show that the clustering methods notably reduce the CPU time
when resolving a new case. Moreover, it maintains or even improves the predic-
tion accuracy obtained by the traditional Case-based Reasoning.

MKM approach obtains better prediction accuracies because this approach
organises the memory case with a higher number of cases than the Mean ap-
proach. However, the CPU time is lower in the Mean approach.

On the other hand we can introduce in further work the idea of not predict
when the clustering method had not a reliable result. In this way, we want
to increase the reliability of the system, in particular when we are working in
medical environments (like mammograms, biopsies and so on).

Another further objective is to add to the system other clustering algorithms
that automatically detect the optimum number of clusters. In the current con-
figuration we have found the best configuration for each problem.

Another aspect to take into consideration is the possibility of applying clus-
tering methods with non-real data (e.g. discrete values). Algorithms such as
WITT and variations of k-means algorithms should be adapted in order to solve
this question.

Finally, we want to improve the accuracy results adding weighting methods
in the clustering algorithms.
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