
A Constraint Functional Logic Language for Solving

Combinatorial Problems

Antonio J. Fern�andez-Leiva1, Teresa Hortal�a-Gonz�alez2 and Fernando S�aenz-P�erez2 ?

1 Depto. de Lenguajes y Ciencias de la Computaci�on, Universidad de M�alaga, Spain
2 Depto. de Sistemas Inform�aticos y Programaci�on Universidad Complutense de Madrid, Spain

afdez@lcc.uma.es, fteresa,fernang@sip.ucm.es

Abstract We present a constraint functional logic programming approach over �nite domain

(CFLP(FD)) for solving typical combinatorial problems. Our approach adds to former approaches

as (Constraint) Logic Programming, and Functional Logic Programming both expressiveness and

further eÆciency by combining combinatorial search with propagation. We integrate �nite domain

constraints into the functional logic language TOY. CFLP(FD) programs consist of TOY rules with

�nite domain constraints declared as functions. CFLP(FD) seamlessly combines the power of the

constraint logic programming over �nite domains with the higher order characteristics of the func-

tional logic programming paradigm. This paper describes a language for CFLP(FD), the evaluation

mechanism of CFLP(FD) programs, an implementation of our language for CFLP(FD) and pro-

gramming examples that demonstrate the potential of the integration.

Keywords: Constraint Programming, Scheduling, Functional Logic Programming, Finite Domains.

1 Introduction

Traditionally, Prolog has been a logic programming language used in many �elds of arti�cial intelligence.
However, it su�ers a lack of expressiveness and also eÆciency when solving combinatorial problems.
Constraint programming languages add eÆciency and expressiveness, but they lack several other impor-
tant features as higher order programming, functional applications, and lazy evaluation mechanisms. We
provide a language combining features from logic, constraint and functional programming.

Declarative programming (DP) is intended to separate the problem formulation from the procedure
to solve the problem itself. Well known DP instances are logic programming (LP) on which the problem
can be expressed in �rst order predicate calculus and functional programming (FP) that allows to express
problems in terms of higher order functions. Recently, constraint logic programming (CLP) emerged to
increase both the expressiveness and eÆciency of LP programs [JM94]. The basic idea in CLP consists
of replacing the classical LP uni�cation by constraint solving on a given computation domain. Then,
di�erent instances of the computation domain generate di�erent CLP instances that are used in the
solving of problems of distinct nature.

Among the domains for CLP, the Finite Domain (FD) [Hen89] is one of the most and best studied
since it is a suitable framework for solving discrete constraint satisfaction problems. The importance of
the CLP languages based on FD is their impact in the industry since a lot of problems in the real life that
involve variables ranging on discrete domains. This means that CLP languages for FD are appropriate
to solve many real-world industrial problems. Unfortunately, literature lacks proposals to integrate FD
constraints in the functional setting. This seems to be caused by the relational nature of the FD constraints
that does not �t well in FP.

Another instance of DP is functional logic programming (FLP) that emerges with the aim to integrate
the declarative techniques used in both FP and LP and that gives rise to new features not existing in
FP or LP [Han94]. This paper describes our work of integrating FD constraints as functions in the FLP
language TOY [LS99,Rod01], which include pure LP and lazy FP programs as particular cases. Our work
is a contribution for further augmenting the expressive power of FLP by adding the possibility of solving
FD constraint problems in the functional logic setting. Moreover, as far as we know, there is no concrete
realization of a pure F(L)P language embodying FD constraints with reasonable eÆciency. In this paper,
we show the integration of FD constraints into a FLP language. The implementation uses the eÆcient
FD library provided by Sicstus Prolog.

? This work has been supported by the Spanish project PR 48/01-9901 funded by UCM.

Most of the work to integrate constraints in the DP paradigm has been developed on LP [CD96,CO+97].
However, there exist some attempts to integrate constraints in the functional (logic) framework. For in-
stance, [AH+96,LS99] show how to integrate both linear constraints over real numbers and disequality
constraints in the FLP language TOY. Also, [Lux01] describes the addition of linear constraints over real
numbers to the FLP language Curry [Han00]. With respect to FD, the only functional system (to our
knowledge) supporting FD constraints is Oz (currently called Mozart) [Smo95] which is a functional logic
language based on concurrent constraint solving. However, this system is very di�erent from pure FP
systems as it is based on the concept of state over the object oriented paradigm. Also [AH00] provides a
hint on how the integration of FD constraints in F(L)P could be carried out.

The structure of the paper is as follows: Section 2 shows our implementation of CFLP(FD), the
TOY(FD) language. Section 3 introduces some program examples which show how to take advantage of
the integration of FLP and FD. Finally, section 4 summarizes some conclusions and points out future
work.

2 TOY(FD) : a CFLP(FD) Implementation

This section describes part of TOY(FD), that is, our CFLP(FD) implementation that extends the TOYsystem
to deal with FD constraints and that also shows how to increase the FLP paradigm by integrating FD
constraints as functions. (See [LS99] for a description of the base language.)

2.1 Constraints as Functions

TOY(FD) provides support for six di�erent categories of FD constraints: (1) relational constraints, (2)
arithmetic constraints, (3) combinatorial constraints, (4) membership constraints, (5) enumeration con-
straints and (6) statistics constraints.

Assume that L;L1; L2 are lists of integers or FD variables with length n; X;Y;N are FD variables
or integer values; V; V1; V2 are integers and RelOp is a value of type opRel that represents a relational
operator. Suppose also that equiv(RelOp) is a function that returns the classical arithmetic operator
equivalent to the value RelOp (i.e., equiv(lt) is `#<', equiv(eq) is `#=', equiv (le) is `#<=', equiv(ge) is
`#>=', equiv(gt) is `#>' and equiv(neq) is `#n =').

Relational Constraints include equality and disequality constraints in the form e#� e0 where � 2 f>
;�; <;�;=; 6=g and e and e0 are integers, FD variables or functional expressions.

Arithmetic Constraints include all the classical arithmetic operators as well as the dedicated con-
straints `sum/4' and `scalar products/5' where

{ `sum L RelOp V ' is true if X

e2L

e equiv(RelOp) V

holds.
{ `scalar products L1 L2 RelOp V ' is true if the scalar product of L1 and L2 is related with
the value V by the operator RelOp, i.e., if

L1 �e L2 equiv(RelOp) V

is satis�ed with �e de�ned as the usual scalar product of integer vectors.

Of course, the expressions constructed from both the arithmetic and relational constraints may be
non-linear. The precedence of both the arithmetic and relational constraints are shown in Table 1.

Combinatorial Constraints include well known global constraints that are useful in the solving of
problems formulated on discrete domains [Bel00]. TOY(FD) supports the following constraints:

{ `assignment=2' is applied over two lists of domain variables of length n where each variable takes
a value in f1; : : : ; ng that is unique for that list. Then, `assignment L1 L2' is true if for all i; j 2
f1; : : : ; ng, and Xi 2 L1, Yj 2 L2, then Xi = j if and only if Yj = i.

2

Table1. Priorities of Operators

RELATIONAL OPERATORS ARITHMETIC OPERATORS

in�x 30 #>;#<;#>=;#<= in�xr 90 #�
in�x 20 # =;#n = in�xl 90 #=

in�xl 50 #+;#�

{ `all di�erent L' and `all distinct L' are true if each variable in L is constrained to have a value that
is unique among the list L and there is no duplicate integers in the list L, i.e., this is equivalent to
say that for all X;Y 2 L, X 6= Y . The di�erence between both constraints is that all di�erent=1 uses
a complete algorithm that maintains the domain consistency [Reg94] whereas all distinct=1 uses an
incomplete one. There are extended versions that allow one more argument which is a list of options,
where each option may have one of the following values
1. `on value', `on domains' or `on range' to specify that the constraint has to be woken up, respec-

tively, when a variable becomes ground, when the domain associated to a variable changes or
when a bound of the domain (in interval form) associated to a variable changes.

2. `complete true' or `complete false' to specify if the propagation algorithm to apply is complete or
incomplete.

{ `circuit L1' and `circuit
0 L1 L2' are true if the values in L1 form a Hamiltonian circuit. This constraint

can be thought of as constraining n nodes in a graph to form a Hamiltonian circuit where the nodes
are numbered from 1 to n and the circuit starts in node 1, visits each node and returns to the origin.
L1 and L2 are lists of FD variables or integers of length n, where the i-th element of L1 (resp. L2) is
the successor (resp. predecessor) of i in the graph.

{ `element X L Y ' is true if the X-th element in the list L is Y (in the sense of FD).
{ `count V L RelOp Y ' is true if the number of elements of L that are equal to V is N and also
N equiv(RelOp) Y .

Membership Constraints restrict variables to have values in a set of integers (i.e., an interval). The
expression 'domain L V1 V2' is true if each element in the list L belongs to the interval [V1; V2].

Enumeration Constraints reactivate the search process when no more constraint propagation is pos-
sible. TOY(FD) provides the following constraints:

1. `indomain X ' that assigns a value, from the minimum to the maximum in its domain, to X .
2. `labeling Options L' that is true if an assignment of the variables in L can be found such that all the

constraints are satis�ed. Options is a list of four elements of type `labelingType' that allows to specify
the nature of the search. Each element in this list may have a value in one of the following groups: (a)
the �rst group controls the order in which variables are chosen for assignment (i.e., variable ordering)
and allows to select the leftmost variable in L (leftmost), the variable with the smallest lower bound
(mini), the variable with the greatest upper bound (maxi) or the variable with the smallest domain
(ff). The value ffc extends the option ff by selecting the variable involved in the higher number of
constraints. (b) The second group controls the value ordering, that is to say, the order in which values
are chosen for assignment. For instance from the minimum to the maximum (enum), by selecting the
minimum or maximum (step) or by dividing the domain in two choices by the midpoint (bisect).
Also the domain of a variable can be explored in ascending order (up) or in descending order (down).
(c) The third group demands to �nd all the solutions (all) or only one solution to maximize (resp.
minimize) the domain of a variable X in L (toMinimize X) (resp. toMaximize X). (d) The fourth
group controls the number of assumptions k (choices) made during the search (assumptions K).

3 Programming in TOY(FD)

Since CLP(FD) is an instance of CFLP(FD), any CLP(FD)-program can be straightforwardly translated
into a CFLP(FD)-program, thus determining a wide range of applications for our language. We will not
insist here on this matter, but prefer to concentrate on the extra capabilities of the language. We illustrate
here di�erent features of CFLP(FD) by means of example. We would like to emphasize that all the pieces
of code are executable in TOY(FD) and the answers for example goals correspond to actual execution

3

of the program. Further programming examples in pure functional logic programming can be found in
[LS99].

3.1 A Scheduling Problem

Here, we consider a more realistic problem: the scheduling of tasks that require resources to complete,
and have to ful�ll precedence constraints. Figure 1 shows a precedence graph for six tasks which are
labeled as tXY

mZ
, where X stands for the identi�er of a task t, Y for its time to complete, and Z for the

identi�er of a machine m (a recourse needed for performing task tX).

3
11
P

W

4
26

P
W

3
25

P
W

8
13
P

W

6
24

P
W

8
12
P

W

Figure1. Precedence Graph.

The following program models the posed scheduling problem:

data taskName = t1 | t2 | t3 | t4 | t5 | t6

data resourceName = m1 | m2

type durationType = int

type startType = int

type precedencesType = [taskName]

type resourcesType = [resourceName]

type task = (taskName, durationType, precedencesType, resourcesType, startType)

start :: task -> int

start (Name, Duration, Precedences, Resources, Start) = Start

duration :: task -> int

duration (Name, Duration, Precedences, Resources, Start) = Duration

schedule :: [task] -> int -> int -> bool

schedule TL Start End = true <== horizon TL Start End, scheduleTasks TL TL

horizon :: [task] -> int -> int -> bool

horizon [] S E = true

horizon [(N, D, P, R, S)|Ts] Start End :-

domain [S] Start (End-D), horizon Ts Start End

scheduleTasks :: [task] -> [task] -> bool

scheduleTasks [] TL = true

scheduleTasks [(N, D, P, R, S)|Ts] TL :-

precedeList (N, D, P, R, S) P TL, requireList (N, D, P, R, S) R TL,

scheduleTasks Ts TL

precedeList :: task -> [taskName] -> [task] -> bool

precedeList T [] TL = true

precedeList T1 [TN|TNs] TL :-

belongs (TN, D, P, R, S) TL, precedes T1 (TN, D, P, R, S),

precedeList T1 TNs TL

4

precedes :: task -> task -> bool

precedes T1 T2 = (start T1) #+ (duration T1) #<= (start T2)

requireList :: task -> [resourceName] -> [task] -> bool

requireList T [] TL = true

requireList T [R|Rs] TL :- requires T R TL, requireList T Rs TL

requires :: task -> resourceName -> [task] -> bool

requires T R [] = true

requires (N1, D1, P1, R1, S1) R [(N2, D2, P2, R2, S2)|Ts] :-

N1 /= N2, belongs R Rs,

noOverlaps (N1, D1, P1, R1, S1) (N2, D2, P2, R2, S2),

requires (N1, D1, P1, R1, S1) R Ts

requires T1 R [T2|Ts] :- requires T1 R Ts

belongs :: A -> [A] -> bool

belongs R [] = false

belongs R [R|Rs] = true

belongs R [R1|Rs] = belongs R Rs

noOverlaps :: task -> task -> bool

noOverlaps T1 T2 :- precedes T1 T2

noOverlaps T1 T2 :- precedes T2 T1

A task is modeled (via the type task) as a 4-tuple which holds its name, duration, list of precedence
tasks, list of required resources, and the start time. Two functions for accessing the start time and duration
of a task are provided (start and duration, respectively) that are used by the function precedes. This
last function imposes the precedence constraint between two tasks. The function requireList imposes the
constraints for tasks requiring resources, i.e., if two di�erent tasks require the same resource, they cannot
overlap. The function noOverlaps states that two non overlapping tasks t1 and t2 either t1 precedes t2
or vice versa. The main function is schedule which takes three arguments: a list of tasks to be scheduled,
the scheduling start time, and the maximum scheduling �nal time. These last two arguments represent
the time window that has to �t the scheduling. The time window is imposed via domain pruning for
each task's start time (a task cannot start at a time so that its duration makes its end time greater than
the end time of the window; this is imposed with the function horizon). The function scheduleTasks

imposes the precedence and requirement constraints for all of the tasks in the scheduling. Precedence
constraints and requirement constraints are imposed by the functions precedeList and requireList,
respectively.

With this model, we can submit the following goal, which de�nes the set of tasks, and asks for a
possible scheduling in the time window (1,20):

Tasks == [(t1, 3, [t2], [m1], S1),

(t2, 8, [], [m1], S2),

(t3, 8, [t4,t5], [m1], S3),

(t4, 6, [], [m2], S4),

(t5, 3, [t1], [m2], S4),

(t6, 4, [t1], [m2], S4)],

schedule Tasks 1 20, labeling [] [S1,S2,S3,S4,S5,S6]

3.2 A More Involved Example

A more interesting example comes from the hardware arena. In this setting, many constrained optimiza-
tion problems arise in the design of both sequential and combinational circuits as well as the intercon-
nection routing between components. Constraint programming has been shown to e�ectively attack these
problems. In particular, the interconnection routing problem (one of the major tasks in the physical de-
sign of very large scale integration - VLSI - circuits) have been solved with constraint logic programming
[Zho96].

5

For the sake of conciseness and clarity, we focus on a constraint combinational hardware problem at
the logical level but adding constraints about the physical factors the circuit has to meet. This problem
will show some of the nice features of TOY for specifying issues such as behavior, topology and physical
factors.

Our problem can be stated as follows. Given a set of gates and modules, a switching function, and
the problem parameters maximum circuit area, power dissipation, cost, and delay (dynamic behavior),
the problem consists of �nding possible topologies based on the given gates and modules so that it meets
the switching function and it commits to the constraint physical factors.

In order to have a manageable example, we restrict ourselves to the logical gates NOT, AND, and
OR. We also consider circuits with three inputs and one output, and the physical factors aforementioned.

In the sequel we will introduce the problem by �rst considering the features TOYo�ers for specifying
logical circuits, what are its weaknesses, and how they can e�ectively be solved with the integration of
constraints in TOY(FD) .

Example 1. FLP Simple Circuits With this example we show the FLP approach that can be followed for
specifying the problem stated above. We use patterns to provide intensional representation of functions.
The alias behavior is used for representing the type bool! bool! bool! bool. Functions of this type
are intended to represent simple circuits which receive three Boolean inputs and return a Boolean output.
Given the Boolean functions not, and, and or de�ned elsewhere, we specify three-input, one-output simple
circuits as follows.

i0,i1, i2 :: behavior

i0 I2 I1 I0 = I0

i1 I2 I1 I0 = I1

i2 I2 I1 I0 = I2

notGate :: behavior -> behavior

notGate B I2 I1 I0 = not (B I2 I1 I0)

andGate, orGate :: behavior -> behavior -> behavior

andGate B1 B2 I2 I1 I0 = and (B1 I2 I1 I0) (B2 I2 I1 I0)

orGate B1 B2 I2 I1 I0 = or (B1 I2 I1 I0) (B2 I2 I1 I0)

Functions i0, i1, and i2 represent inputs to the circuits, that is, the minimal circuit which just copies
one of the inputs to the output (In fact, this can be thought as a �xed multiplexer - selector.) They are
combinatorial modules as depicted in Figure 2. The function notGate outputs a Boolean value which is
the result of applying the NOT gate to the output of a circuit of three inputs. In turn, functions andGate
and orGate output a Boolean value which is the result of applying the AND and OR gates, respectively,
to the outputs of three inputs-circuits (see Figure 2).

$QG�*DWH
0RGXOH

%�

%�

2U�*DWH
0RGXOH

%�

%�

1RW�*DWH
0RGXOH

%

,QSXW��
0RGXOH

,QSXW��
0RGXOH

,QSXW��
0RGXOH

Figure2. Basic Modules.

These functions can be used in a higher order fashion just to generate or match topologies. In particu-
lar, the higher order functions notGate, andGate and orGate take behaviors as parameters and build new

6

behaviors, corresponding to the logical gates NOT, AND and OR. For instance, the multiplexer depicted
in Figure 3 can be represented by the following pattern:

orGate (andGate i0 (notGate i2)) (andGate i1 i2)

0

1
s

L�

L�

L�

L�

L�

L�

Symbol Sum of products equivalence

Figure3. Two-Input Multiplexer Circuit.

This �rst-class citizen higher order pattern can be used for many purposes. For instance, it can be
compared to another pattern or it can be applied to actual values for its inputs in order to compute the
circuit output. So, with the previous pattern, the goal:

P == orGate (andGate i0 (notGate i2)) (andGate i1 i2), P true false true

is evaluated to true and produces the substitution P == false. The rules that de�ne the behavior can
be used to generate circuits, which can be restricted to satisfy some conditions. If we use the standard
arithmetics, we could de�ne the following set of rules for computing or limiting the power dissipation.

power :: behavior -> int

power i0 = 0

power i1 = 0

power i2 = 0

power (notGate C) = notGatePower + (power C)

power (andGate C1 C2) = andGatePower + (power C1) + (power C2)

power (orGate C1 C2) = orGatePower + (power C1) + (power C2)

Then, we can submit the following goal (provided the function maxPower acts as a problem parameter
that returns just the maximum power allowed for the circuit) in which the function power is used as
a behavior generator (Equivalently and more concisely, power B < maxPower could be submitted, but
doing so we make the power unobservable.): power B == P, P < maxPower.

As outcome, we get several solutions (hi0, fP==0g, fg, fgi, hi1, fP==0g, fg, fgi, hi2, fP==0g, fg,
fgi, hnot i0, fP==1g; fg; fgi, . . . , hnot (not i0), fP==2g, fg, fgi, . . .). Declaratively, it is �ne; but our
operational semantics requires a head normal form for the application of the arithmetic operand +. This
implies that we reach no more solutions beyond h not (. . . (not i0) . . .), maxPower, fg, fgi because
the application of the fourth rule of power yields to an in�nite computation. This drawback is solved by
recursing to successor arithmetics, that is:

data nat = z | s nat

plus :: nat -> nat -> nat

plus z Y = Y

plus (s X) Y = s (plus X Y)

less :: nat -> nat -> bool

less z (s X) = true

less (s X) (s Y) = less X Y

power' :: behavior -> nat

power' i0 = z

power' i1 = z

power' i2 = z

7

power' (notGate C) = s (power' C)

power' (andGate C1 C2) = s (plus (power' C1) (power' C2))

power' (orGate C1 C2) = s (plus (power' C1) (power' C2))

So, we can submit the goal less (power' P) (s (s (s z))), where we have written down explicitly
the maximum power (3 power units).

With the second approach we get a more awkward representation due to the use of successor arith-
metics. The �rst approach to express this problem is indeed more declarative than the second one, but
we get no termination. FD constraints can be pro�tably applied to the representation of this problem as
we show in the next example.

Example 2. CFLP(FD) Simple Circuits

As for any constraint problem, modelling can be started by identifying the FD constraint variables.
Recalling the problem speci�cation, circuit limitations refer to area, power dissipation, cost, and delay.
Provided we can choose �nite units to represent these factors, we choose them as problem variables. A
circuit can therefore be represented by the 4-tuple state harea, power, cost, delayi. The idea to formulate
the problem consists of attaching this state to an ongoing circuit so that state variables re
ect the current
state of the circuit during its generation. By contrast with the �rst example, we do not \generate" and
then \test", but we \test" when \generating", so that we can �nd failure in advance. A domain variable
has a domain attached indicating the set of possible assignments to the variable. This domain can be
reduced during the computation. Since domain variables are constrained by limiting factors, during the
generation of the circuit a domain may become empty. This event prunes the search space avoiding to
explore a branch which is known to yield no solution. Let's �rstly focus on the area factor. The following
function generates a circuit characterized by its state variables.

type area, power, cost, type = int

type state = (area, power, cost, delay)

type circuit = (behavior, state)

genCir :: state -> circuit

genCir (A, P, C, D) = (i0, (A, P, C, D))

genCir (A, P, C, D) = (i1, (A, P, C, D))

genCir (A, P, C, D) = (i2, (A, P, C, D))

genCir (A, P, C, D) = (notGate B, (A, P, C, D)) <==

domain [A] ((fd_min A) + notGateArea) (fd_max A),

genCir (A, P, C, D) == (B, (A, P, C, D))

genCir (A, P, C, D) = (andGate B1 B2, (A, P, C, D)) <==

domain [A] ((fd_min A) + andGateArea) (fd_max A),

genCir (A, P, C, D) == (B1, (A, P, C, D)),

genCir (A, P, C, D) == (B2, (A, P, C, D))

genCir (A, P, C, D) = (orGate B1 B2, (A, P, C, D)) <==

domain [A] ((fd_min A) + orGateArea) (fd_max A),

genCir (A, P, C, D) == (B1, (A, P, C, D)),

genCir (A, P, C, D) == (B2, (A, P, C, D))

The function genCir has an argument to hold the circuit state and returns a circuit characterized by
a behavior and a state (Please note that we can avoid the use of the state tuple as a parameter, since it
is included in the result.) The template of this function is like the previous example. The di�erence lies
in that we perform domain pruning during circuit generation with the membership constraint domain, so
that each time a rule is selected, the domain variable representing area is reduced in the size of the gate
selected by the operational mechanism. For instance, the circuit area domain is reduced in a number of
notGateArea when the rule for notGate has been selected. For domain reduction we use the re
ection
functions fd_min and fd_max.

This approach allows us to submit the following goal:

domain [A] 0 maxArea, genCir (Area, Power, Cost, Delay) == Circuit

which initially sets the possible range of area between 0 and the problem parameter area expressed by the
function maxArea, and then generates a Circuit. Recall that testing is performed during search space

8

exploration, so that termination is ensured because the add operation is monotonic. The mechanism
which allows this \test" when \generating" is the set of propagators, which are concurrent processes that
are triggered whenever a domain variable is changed (pruned). The state variable delay is more involved
since one cannot simply add the delay of each function at each generation step. The delay of a circuit
is related to the maximum number of levels an input signal has to traverse until it reaches the output.
This is to say that we cannot use a single domain variable for describing the delay. Therefore, considering
a module with several inputs, we must compute the delay at its output by computing the maximum
delays from its inputs and adding the module delay. So, we use new fresh variables for the inputs of a
module being generated and assign the maximum delay to the output delay. This solution is depicted in
the following function:

genCirDelay :: state -> delay -> circuit

genCirDelay (A, P, C, D) Dout = (i0, (A, P, C, D))

genCirDelay (A, P, C, D) Dout = (i1, (A, P, C, D))

genCirDelay (A, P, C, D) Dout = (i2, (A, P, C, D))

genCirDelay (A, P, C, D) Dout = (notGate B, (A, P, C, D)) <==

domain [Dout] ((fd_min Dout) + notGateDelay) (fd_max Dout),

genCirDelay (A, P, C, D) Dout == (B, (A, P, C, D))

genCirDelay (A, P, C, D) Dout = (andGate B1 B2, (A, P, C, D)) <==

domain [Din1, Din2] ((fd_min Dout) + andGateDelay)(fd_max Dout),

genCirDelay (A, P, C, D) Din1 == (B1, (A, P, C, D)),

genCirDelay (A, P, C, D) Din2 == (B2, (A, P, C, D)),

domain [Dout] (maximum (fd_min Din1) (fd_min Din2)) (fd_max Dout)

genCirDelay (A, P, C, D) Dout = (orGate B1 B2, (A, P, C, D)) <==

domain [Din1, Din2] ((fd_min Dout) + orGateDelay) (fd_max Dout),

genCirDelay (A, P, C, D) Din1 == (B1, (A, P, C, D)),

genCirDelay (A, P, C, D) Din2 == (B2, (A, P, C, D)),

domain [Dout] (maximum (fd_min Din1) (fd_min Din2)) (fd_max Dout)

Observing the rules for the AND and OR gates, we can see two new fresh domain variables for
representing the delay in their inputs. These new variables are constrained to have the domain of the
delay in the output but pruned with the delay of the corresponding gate. After the circuits connected to
the inputs had been generated, the domain of the output delay is pruned with the maximum of the input
module delays. Please note that although the maximum is computed after the input modules had been
generated, the information in the given output delay has been propagated to the input delay domains
so that whenever an input delay domain becomes empty, the search branch is no longer searched and
another alternative is tried. Putting together the constraints about area, power dissipation, cost, and delay
is straightforward, since they are orthogonal factors that can be handled in the same way. In addition
to the constraints shown, we can further constrain the circuit generation with other factors as fan-in,
fan-out, and switching function enforcement, to name a few. Then, we could submit the following goal:

domain [A] 0 maxArea, domain [P] 0 maxPower, domain [C] 0 maxCost,

domain [D] 0 maxDelay, genCir (A,P,C,D) == (B, S), switchingFunction B == sw

where switchingFunction could be de�ned as the function that returns the result of a behavior B for
all its input combinations, and sw is the function that returns the intended result (sw is refereed as a
problem parameter, as well as maxArea, maxPower, maxCost, and maxDelay).

The solution to this problem has shown how to apply FD constraints to a functional logic language,
which bene�ts from both worlds, i.e., taking functions, higher order patterns, partial applications, non-
determinism, logical variables, and types from FLP and domain variables, constraints, and propagators
from the FD constraint programming. This leads to a more declarative way of expressing problems which
cannot be reached from each counterpart alone. Note also that our approach is far more declarative than
other constraint programming systems as algebraic constraint programming languages (OPL [Hen99],
AMPL [FG+93]), mainly since they do not bene�t neither from complex terms and patterns nor from
non-determinism.

4 Conclusions

We have presented CFLP(FD), a functional logic programming approach to FD constraint solving, which
we think may be pro�tably applied to solve typical problems in the arti�cial intelligence arena. We have

9

shown how FD constraints can be de�ned as functions and therefore integrated naturally on FLP lan-
guages. Due to its functional component, CFLP(FD) provides better tools, when compared to CLP(FD),
for a productive declarative programming. Due to the use of constraints, the expressivity and capabilities
of our approach are clearly superior to both those of the functional and purely constraint programming
approaches. We have also presented the language TOY(FD) for CFLP(FD). Our proposal can be applied
to a wide range of problems which include all CLP(FD) applications and typical uses of functional pro-
gramming for combinatorial problems. In particular, we have shown by example the bene�ts of integrating
FLP and FD. For the execution mechanism of the language, we have seamlessly integrated constraint
solving into a sophisticated, state-of-the-art execution mechanism for lazy narrowing. Our implementa-
tion translates CFLP(FD)-programs into Prolog-programs in a system equipped with a constraint solver.
In addition, we claim that our approach can be extended to other kind of interesting constraint systems,
such as non-linear real constraints, constraints over sets, or Boolean constraints, to name a few.

References

[AB92] A. Aggoun and N. Beldiceanu. Extending CHIP to Solve Complex Scheduling and Placement Problems.

In Proc. of Journ�ees Francophones de Programmation Logique, 1992.

[AH00] S. Antoy and M. Hanus. Compiling Multi-Paradigm Declarative Programs into Prolog. In Proc. of the

3rd International Workshop on Frontiers of Combining Systems, Springer LNCS 1794, pp. 171{185,

Nancy, 2000.

[AH+96] P. Arenas-S�anchez, T. Hortal�a-Gonz�alez, F.J. L�opez-Fraguas and E. Ull�an-Hern�andez. Functional Logic

Programming with Real Numbers. In Proc. of the JICSLP'96 Post-Conference Workshop on Multi-

Paradigm Logic Programming, TR 96-28, Technical University Berlin, 1996.

[Bel00] N. Beldiceanu. Global Constraints as Graph Properties on a Structured Network of Elementary Con-

straints of the Same Type. In Proc. of 6th International Conference on Principles and Practice of Con-

straint Programming, Springer LNCS 1894, pp:52{66, Singapore, 2000.

[CD96] P. Codognet and D. Diaz. Compiling Constraints in clp(FD). The Journal of Logic Programming,

27(3):185{226, 1996.

[CO+97] M. Carlsson, G. Ottosson and B. Carlson. An Open-Ended Finite Domain Constraint Solver. In Proc.

of 9th International Symposium on Programming Languages: Implementations, Logics and Programs,

Springer LNCS 1292, pp:191{206, Southampton, 1997.

[FG+93] R. Fourer, D.M. Gay and B.W. Kernighan. AMPL: A Modeling Language for Mathematical Program-

ming. Scienti�c Press, 1993.

[GH+01] J.C. Gonz�alez-Moreno, M.T. Hortal�a-Gonz�alez and M. Rodr��guez-Artalejo. Polymorphic Types in Func-

tional Logic Programming. FLOPS'99 special issue of the Journal of Functional and Logic Programming,

2001. See http://danae.uni-muenster.de/lehre/kuchen/JFLP

[Han94] M. Hanus. The Integration of Functions into Logic Programming: A Survey. The Journal of Logic Pro-

gramming (Special issue \Ten Years of Logic Programming"), 19-20:583{628, 1994.

[Han00] M. Hanus. Curry: An Integrated Functional Logic Language, 2000.

http://www.informatik.uni-kiel.de/~curry/.

[Hen89] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. The MIT Press, 1989.

[Hen99] P. Van Hentenryck. The OPL Optimization Programming Language. The MIT Press. 1999.

[JM94] J. Ja�ar and M.J. Maher. Constraint Logic Programming: A Survey. The Journal of Logic Programming,

19/20:503{582, 1994.

[LS99] F.J. L�opez-Fraguas and J. S�anchez-Hern�andez. TOY: A Multiparadigm Declarative System. In Proc.

of the 10th International Conference on Rewriting Techniques and Applications, Springer LNCS 1631,

pp. 244{247, Trento,, 1999. The system and further documentation including programming examples is

available at http://titan.sip.ucm.es/toy

[Lux01] W. Lux. Adding Linear Constraints over Real Numbers to Curry. In Proc. of 5th International Sympo-

sium on Functional and Logic Programming, Springer LNCS 2024, pp. 185{200, Tokyo, 2001.

[Reg94] J-C. R�egin. A Filtering Algorithm for Constraints of Di�erence in CSPs. In Proc. of 12th National

Conference on Arti�cial Intelligence, vol. 1, pp: 362{367, AAAI Press, 1994.

[Rod01] M. Rodr��guez-Artalejo. Functional and Constraint Logic Programming. In Constraints in Computational

Logics, Springer LNCS 2002, pp. 202{270, 2001.

[Smo95] G. Smolka. The Oz Programming Model. In Current Trends in Computer Science, Springer LNCS 1000,

1995.

[Zho96] N.F. Zhou, Channel Routing with Constraint Logic Programming and Delay. In Proc. of the 9th Inter-

national Conference on Industrial Applications of Arti�cial Intelligence, pp. 217-231, Gordon and Breach

Science Publishers, 1996.

10

