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Abstract. The main problem of using knn on large data sets is that its
computational cost is O(knn)=0(AN?) for A attributes and N examples. In this
paper it is proposed an instance-based Machine Learning System for continuous
labelled examples based on knn. This new system, called Continuous knn
Divide and Conquer (ckndc), incorporates a divide and conquer strategy that
reduces its computational cost to O(cknndc)=0O(ANlIogN). cknndc uses a m5
based heuristic to select the best division in the sense of improving accuracy.
Experimentally it is shown thatknn and cknndc have similar accuracy.

1 Introduction

Instance-based approaches learn to remember a collection of prototypes. These
prototypes might be just some of the training cases, or some hypothetical cases
computed from one or more of them. The collection of prototypes that the algorithm
knn collects is all training set. To evaluate a new test example, knn looks for the k
nearest neighbours of the test example. This means that it iterates by all examplesin
the training set, so the order of knn is O(knn)=(ANT) for N training examples, T test
examples and A attributes. Then, supposing that O(N)=0O(T) then O(knn)=(AN?)

In this paper it is proposed a new algorithm (cknndc) based on knn that uses divide
and conquer to reduce the order to O(cknndc)=O(ANIogN) for N examples and A
attributes. In the divide phase it is used a heuristic based on the heuristic that mb [6]
employs to partitioning a leaf when the tree is being constructed. The accuracy of
cknndc is similar toknn.

2 Reated Work

The accuracy and the computational cost of instance-based learning have been widely
study [1]. To improve the computational cost there are several Example Selection
techniques [2]. In this paper it is proposed another technique that does not select a
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subset of examples; otherwise it uses all of them. A divide and conquer algorithm is
employed to reduce its computational cost.

It is very usual to apply divide and conquer method for model-based approaches,
especially for decision trees [8] or for regression trees [6]. Domingos [3] proposes a
“conquering without separating” induction strategy. In [7] it is also proposed
strategies of combining divide and conquer model-based approaches with instance-
based learning.

3 Thecknndc algorithm

The general idea of applying divide and conquer over a data set consists of dividing
recursively the set of training examples into smaller subsets and of applying knn to
each subset. This idea presents two problems: firstly, the problem of which subset is
applied when the algorithm evaluates a test example and secondly, the problem of
dividing into subsets with accuracy similar to the accuracy of applying knn. In this
section it is described cknndc, which solves these two problems and whose
computational cost isO(cknndc)=O(ANIogN) for N examples and A attributes.

The algorithm divides recursively the train set and the test set at the same time
using a condition over an attribute for each single division. To find the best attribute
and division it employs a heuristic based on the heuristic that mb uses to select the
best division of aleaf when the treeis being constructed. The recursion ends when the
number of examples of the train subset is below a fixed threshold (M). This threshold
represents the maximum number of examples over the original knn is applied.

The cknndc algorithm is described as follows:

Error cknndc(Exanpl esSet Train, ExanplesSet Test)
i f(#Test==0) return O0; //There is no error

[1lf the nunmber of exanples of train is |ower than M
/[lthe original knn is applied
i f(#Train<M return cknn(Training, Test);

//The train and test sets are divided into two subsets
{Trainl, Test1, Trai n2, Test 2} =Di vi de(Trai n, Test);

[/ Cal culus of the error of each subset(recursive call)
Err 1=cknndc(Trai nl, Test1);
Err 2=cknndc(Trai n2, Test 2) ;

/1 To calculate and return the gl obal error
return (Errl1*#Test 1+Err2*#Test 2)/ (#Test 1+#Test 2);

}

cknndc looks for an example and attribute in the train set and takes its value to
divide the train and the test sets. The division has two objectives: to make cknndc



faster and to keep similar accuracy. In subsection 3.1 it is detailed how to choose an
example for each attribute in a very fast way and in the subsection 3.2 it is detailed
the selection of the best division in order to get good accuracy.

3.1 Dividing thetrain and test set

It is important to notice that the division of the examples can not be done by its
category becauseit is going to be applied both for train and test sets and test examples
do not have information about its category.

The algorithm cknndc chooses a train example for each attribute to define a
division. It is important the search of the example to be fast and the division to be
near 50%. If the division splits the train set into two subsets with very different size
the order of the algorithm increases. To select quickly an example that splits the set
into two subsets with similar number of examplescknndc utilizes two algorithms, one
for continuous attributes and another for symbolic ones.

To select an example for a continuous attribute cknndc takes one example
randomly and cal culates the number of examples of each subset. If the percent of the
number of examples of the bigger subset is below a threshold @) the example is
accepted, else anew exampleis randomly taken. This search isrepeated only M times
at the most. The algorithm is described as follows:

Exanpl e Sear chExanpl eCont (Exanpl es Set Exa, Attribute A
{
Conti nuous M n=+I nf, Max=-1nf;
int iterations=0;
do{
iterations++;
[/l Takes a random exanpl e from Set Exa whose its val ue
[/for attribute Ais between Mn and Max
Exanpl e E=RandonmExanpl e( Set Exa, A, M n, Max) ;

/I Cal culus of the nunber of exanples higher and | ower
Percent Lower =Per cent Lower ( Set Exa, A, E) ;
Per cent Hi gher =Per cent Hi gher ( Set Exa, A, E) ;

[11f E divides the set into two subsets with simlar
/I nunber of exanples, the exanple E is accepted
i f (MAX( Lower, Hi gher)<P) return E;

[/l Update the interval of attribute A for the forward
[/l exanples (E.Ais the value of attribute A for E)

i f (Lower >Hi gher) Max=E. A;

i f(Hi gher>Lower) M n=E. A;

Iwhile(iterations<M;
return E;

}



To select an example for a symbolic attribute cknndc iterates for each value of the
attribute and cal cul ate the percent of examples of the set that has the same value. The
value with the percent nearest to 50% is selected. The algorithm is described as
follows:

Exanpl e Sear chExanpl eSynb( Exanpl es Set Exa, Attribute A)
{
/11t is calculated the best value as the one with
/I best percent
Percent Best Percent =100. O;
Val ue Bet sVal ue;
for Val ue v=each value of attribute A
{
/1 The percent of exanples that has the val ue
Per cent Per =Per cent Sane( Set Exa, A, v) ;

\Y

/1 The percent nearest to 50%is the best
i f (| Per-50]|<| Best Percent-50])
{

Best Val ue=v;
Best Per cent =Per ;
}
}

/11t returns an exanple that has the val ue Best Val ue
return First Exanpl eOFVal ue( Set Exa, Best Val ue, A) ;

}

3.2 Selecting the best division

In the latter subsection it is calculated a division for each attributes being the
objective of this phase to select the division that gives the best accuracy. To carry out
thisissue cknndc employs a heuristic based in the heuristic of mb that uses to select
the best division of aleaf when the tree is being constructed. The algorithm mb looks
for the division that minimizes the sum of the standard deviation of the categories of
each subset. This heuristic, which is fine to make regression trees, has a problem: the
division could separate examples of its nearest neighbours for too many examples. A
good criterion should triesto not separate the examples of its nearest neighbours.

The heuristic used incknndc triesto not divide if the values of the examplesfor the
attribute of the division are too near to the division (seefigure 1). A better division is
that which creates two subsets that group the nearest neighbours to each other.

The mean of the distanceto the division (MDD) isthe heuristic that cknndc utilizes
to determine the quality of a division in the way of not separating examples from its
neighbours. Combining this heuristic with m5’s heuristic it is obtained the cknndc’s
heuristic SelectDivision (See equation 1 for a particular case of two attributes). This
heuristic is the same of m5's but dividing each standard deviation by the MDD.
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Fig. 1. This figure represents ten examples with two attributes. The nearest example of an

exampleisthe one at itsleft or right. There are two possible divisions, division X; and division
X,. Itis better to choose division X, in order to group the examples with its nearest neighbours.
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The heuristic SelectDivision is applied to each division. SD; and MDD; represent
the standard deviation and the mean distance to the division of the two subsets that
creates the division, that are called 1 and 2. The division finally accepted is the one
whose SelectDivision islower. The algorithm Divide is described as follows:

{Exampl es Trainl, Testl, Train2, Test2} Divide(Exanples
Train, Test)
{

Cont i nuous Lower Sel ect Di v=+I nf ;

Attribute BestAttr; [/ These variables renmenber the
Exanpl e Best Ex; /I best division

for Attr=each Attribute

/1 To cal cul ate the division
Exanpl e ExDi v;
i f(IsSynbolicAttribute(Attr))
ExDi v=Sear chExanpl eSynb(Trai n, Attr);
el se
ExDi v=Sear chExanpl eCont (Trai n, Attr);

//To cal cul ate the best division
i f(Sel ectDivision(Attr, ExDi v) <Lower Sel ecti onDi v)

Lower Sel ecti onDi vi si on= Sel ect Di vi si on(Atr, ExDi v);
Best Attr=Attr;
Best Ex=ExDi v;

}

}
{Trainl, Trai n2} =Cr eat eSubSet s(Trai n, Best Attr, Best Ex) ;

{Test 1, Test 2} =Cr eat eSubSet s( Test, Best Attr, Best Ex) ;
return { Trainl, Testl, Train2, Test2};

}



3.3 Theorder of cknndc

The order of cknndc depends on N, T and M, which are respectively the number of
examples in the train set, in the test set and the maximum number of examples over
the original knn is applied. It is supposed that N, T and M are integers so that
T,N>M>1. It also depends on the number of attributes (A). This program creates a
binary tree of recursive calls, where in each node, except in the leaves, a Divide
function is executed. In the leaves the original knn is executed. If it is supposed that
the function Divide splits the set into two subsets with equal number of examples then
inthe i level of recursion the number of examples that Divide treats is N/2. As the
number of examples in the leaves is M, the depth at the leaves is logy(N/M). The
average of the number of examples in the nodes is called NDiv and is estimated as
follows:
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The number of executions of Divide and knn are limited by 2N/M, so
O(cknndc)=0O(2N/M(O(Divide)+ O(knn)). The order of Divide is O(Divide)=
O(A(O(SearchExample)+ O( SelectDivision))+ O(CreateSubSets)). The order of all
these functions is the number of examples treated in each execution, which is NDiv
and islimited by the expression in equation (3). Then, the order of Divide is shown in
equation (4).
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If M is supposed to be a constant, O(Divide) is simplified (see equation (5)).
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To calculate the order of knn it is necessary to estimate the number of examples
that are considered as train and as test. The number of train examplesis limited by M.



To estimate the number of examples of test it is supposed that the train set and the test
set have the same distribution of examples. This supposition is generally accepted in
Machine Learning. If the original train set has N examples and at the leaves the knn
uses M for train, the same proportion of test examples knn would use. The number of
examples that knn uses astest is called TDiv and equation (6) shows this value.

TDisz =M l
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Equation (7) shows the order of knn, which is the product of the number of
examples of train (M), the number of examples of test (TDiv) and the number of
attributes (A). It is also supposed that M is constant.
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So the order of cknndc is shown in equations (8) and (9).
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If it is supposed that O(N)=0O(T), then equation (10) shows the order of cknndc.
O(cknndg = O(AN log, N) (10

4 Experimental Evaluation

The well known heterogeneous data sets of the Torgo’s repository at LIACC [5],
described in table 1, are used to compare the performance of knn and cknndc. Each
experiment consists of a Cross Validation (CV) with 10 folds. Besides, it is employed
MLC++[4] with 2032 seed (our office’s telephone) to make the experiments to be
repeatable.

The value of k for both algorithms varies from 1 to 3. cknndc has two additional
parameters: M, which determines the maximum number of examples that use the
original knn and PMax, which determines the maximum percent of examplesit could
bein asubset. In our experimentsM is set to 200 and PMax is set to 60%.

The result of a CV experiment is the Medium Average Deviation (MAD), but in
table 2 it is shown the Relative Medium Average Deviation RMAD) which is the
MAD divided by the MAD of the system that always predicts the average function. Its
execution time is shown in figure 2.



Table 1. List of the data sets of the Torgo’s repository. The name, the number of examples
(#EX), the number of attributes (#Att) and the MAD of the system that always predict the
average function (Av. MAD) are shown for each data set. Each data set is a'so numbered (N°)
to be referred forward using this number.

N° Name #Ex #Att Av.MAD| N° Name #Ex #Att Av.MAD
1 Abalone 4177 8 2,363 16 Diabetes 43 2 2,363
2 Ailerons 13750 40 0,0003 17 Elevators 16599 18 0,0046
3 Airpla.Com. 950 9 5,4852] 18 Friedman Ex. 40768 10 4,0648
4 Auto-Mpg 398 46,5459 19 Housing 506 13 6,6621
5 Auto-Price 159 14 4600,65| 20 Kinematics 8192 8 0,2156
6 Bank 32NH 8192 32 0,0903 21 Machine-Cpu 209 6 96,9004
7 Bank 8FM 8192 8 10,1236 22 MvExample 40768 10 18,8932
8 Cd. Hou. 20640 9 911745 23 PoleTele. 15000 48 37,2124
9 Cart Delve 40768 10 3,6069 24 Pumadyn(32) 8192 32 0,0235

10 Census(16) 22784 16 32428,2| 25 Pumadyn(8) 8192 8 4,8659

11 Census(8) 22784 8 32428,2| 26 Pyrimidines 74 27 0,0957

12 Com.Act 8192 21 10,6326 27 Servo 167 2 1,1662

13 Com.Act(s) 8192 12 10,6326 28 Triazines 186 60 0,1187

14 DeltaAiler. 7129 5 0,0003 29 Wisconsin 198 32 29,6833

15 Delta Eleva 9517 6 0,002
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Fig. 2. Execution time of a Cross Validation with ten folders using knn and cknndc for
k={1,2,3} in alogarithmic scale versus the data sets ordered by 1nn execution time.

In figure 2 it can be observed the great improvement of execution time between
knn and cknndc for large data sets.



Table 2. RMAD of knn and cknndc with k={1,2,3}. It is shown the RMAD for each data set of
Torgo’ srepository and the average of all RMADSs (Av.) over all data sets.

Knn cknndc
k=1 k=2 k=3 k=1 k=2 k=3
1 8463% 7444% 7097%| 8528% 76.31% 73.03%
2 66.67% 3333% 33.33%| 66.67% 66.67% 33.33%
3 9.60% 8.49% 857%| 11.35% 1056% 10.82%
4 3918% 36.76% 3528%| 39.08% 36.93% 35.50%
5 4461% 41.84% 41.58%| 44.61% 41.84% 41.58%
6 104.87% 96.23% 93.02%| 109.63% 100.89%  97.23%
7 69.26% 60.68% 59.220%| 76.46% 68.85% 67.80%
8 5374% 4856% 46.77%| 55.88% 50.81%  49.26%
9 3522% 3230% 30.95%| 58.68% 49.46%  46.86%
10 7348% 65.84% 63.38%| 76.78% 69.72% 67.53%
11 6957% 6246% 59.67%| 7141% 64.39% 61.49%
12 2137% 1886% 17.97%| 23.77% 21.71% 21.22%
13 2455% 21.81% 20.86%| 26.68% 23.86% 23.07%
14 3333% 3333% 33.33%| 3333% 33.33% 33.33%
15 70.00% 65.00% 60.00%| 70.00% 65.00% 60.00%
16 129.04% 98.00% 95.75%]| 129.04% 98.00%  95.75%
17 60.87% 54.35% 5217%| 6522% 60.87% 58.70%
18 53.89% 43.97% 40.18%| 59.68% 50.24%  47.44%
19 46.12% 40.08% 40.01%| 46.38% 40.46%  41.55%
20 5937% 49.03% 4545%| 63.08% 54.73% 51.58%
21 3597% 32.09% 31.18%| 35.09% 31.98% 31.18%
22 1994% 1596% 14.68%| 2227% 1951% 19.07%
23 750% 7.18% 722%| 10.01% 10.10% 10.78%
24 12255% 105.96% 100.00%| 124.68% 108.94% 102.55%
25 7815% 67.96% 63.85%| 81.18% 71.13% 67.82%
26 68.65% 64.26% 63.32%| 68.65% 64.37% 63.32%
27 4136% 67.62% 83.61%| 40.92% 69.07% 83.61%
28 91.07% 81.97% 83.15%| 91.49% 8248% 83.15%
29 12556% 101.10%  97.42%| 12556% 101.10%  97.42%
Av. 60.00% 52.74% 51.48%| 6251% 56.67% 54.34%

The average of the accuracy of cknndc is slightly worse than the average of the
accuracy of knn for k={1,2,3}, but this difference is not relevant in contrast with the
improvement reached in execution time.



5 Conclusions

Thealgorithm cknndc, presented in this paper, is an instance-based Machine Learning
System based on knn. The main advantage is its computational cost, that is
O(cknndc)=(ANlogN). This improvement is caused by the application of a divide and
conquer strategy over the train and test sets. To procure the best computational cost
cknndc tries always to split the original set into two subsets with similar number of
examples. To overcome the lost of accuracy that the divide and conquer strategy
could cause, cknndc uses amb based heuristic that determines the best division.

The experiments presented shown that the accuracy of cknndc is similar to the
accuracy of knn for awell known and varied data sets.

In future work we will study the application of this technique to symbolic labeled
examples. We will also study the possible use of combining this technique with
example or attribute selection.
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