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Abstract. The main problem of using knn on large data sets is that its
computational cost is O(knn)=O(AN2) for A attributes and N examples. In this
paper it is proposed an instance-based Machine Learning System for continuous
labelled examples based on knn. This new system, called Continuous knn
Divide and Conquer (ckndc), incorporates a divide and conquer strategy that
reduces its computational cost to O(cknndc)=O(ANlogN). cknndc uses a m5
based heuristic to select the best division in the sense of improving accuracy.
Experimentally it is shown that knn and cknndc have similar accuracy.

1 Introduction

Instance-based approaches learn to remember a collection of prototypes. These
prototypes might be just some of the training cases, or some hypothetical cases
computed from one or more of them. The collection of prototypes that the algorithm
knn  collects is all training set. To evaluate a new test example, knn looks for the k
nearest neighbours of the test example. This means that it iterates by all examples in
the training set, so the order of knn is O(knn)=(ANT)  for N training examples, T test
examples and A attributes. Then, supposing that O(N)=O(T)  then O(knn)=(AN2)

In this paper it is proposed a new algorithm (cknndc) based on knn that uses divide
and conquer to reduce the order to O(cknndc)=O(ANlogN) for N examples and A
attributes. In the divide phase it is used a heuristic based on the heuristic that m5 [6]
employs to partitioning a leaf when the tree is being constructed. The accuracy of
cknndc is similar to knn.

2 Related Work

The accuracy and the computational cost of instance-based learning have been widely
study [1]. To improve the computational cost there are several Example Selection
techniques [2]. In this paper it is proposed another technique that does not select a
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subset of examples; otherwise it uses all of them. A divide and conquer algorithm is
employed to reduce its computational cost.

It is very usual to apply divide and conquer method for model-based approaches,
especially for decision trees [8] or for regression trees [6]. Domingos [3] proposes a
“conquering without separating” induction strategy. In [7] it is also proposed
strategies of combining divide and conquer model-based approaches with instance-
based learning.

3 The cknndc algorithm

The general idea of applying divide and conquer over a data set consists of dividing
recursively the set of training examples into smaller subsets and of applying knn  to
each subset. This idea presents two problems: firstly, the problem of which subset is
applied when the algorithm evaluates a test example and secondly, the problem of
dividing into subsets with accuracy similar to the accuracy of applying knn. In this
section it is described cknndc, which solves these two problems and whose
computational cost is O(cknndc)=O(ANlogN) for N examples and A attributes.

The algorithm divides recursively the train set and the test set at the same time
using a condition over an attribute for each single division. To find the best attribute
and division it employs a heuristic based on the heuristic that m5 uses to select the
best division of a leaf when the tree is being constructed. The recursion ends when the
number of examples of the train subset is below a fixed threshold (M). This threshold
represents the maximum number of examples over the original knn is applied.

The cknndc algorithm is described as follows:

Error cknndc(ExamplesSet Train, ExamplesSet Test)
{
 if(#Test==0) return 0; //There is no error

 //If the number of examples of train is lower than M
 //the original knn is applied
 if(#Train<M) return cknn(Training, Test);

 //The train and test sets are divided into two subsets
 {Train1,Test1,Train2,Test2}=Divide(Train,Test);

 //Calculus of the error of each subset(recursive call)
 Err1=cknndc(Train1,Test1);
 Err2=cknndc(Train2,Test2);

 //To calculate and return the global error
 return (Err1*#Test1+Err2*#Test2)/(#Test1+#Test2);
}

cknndc looks for an example and attribute in the train set and takes its value to
divide the train and the test sets. The division has two objectives: to make cknndc



faster and to keep similar accuracy. In subsection 3.1 it is detailed how to choose an
example for each attribute in a very fast way and in the subsection 3.2 it is detailed
the selection of the best division in order to get good accuracy.

3.1 Dividing the train and test set

It is important to notice that the division of the examples can not be done by its
category because it is going to be applied both for train and test sets and test examples
do not have information about its category.

The algorithm cknndc chooses a train example for each attribute to define a
division. It is important the search of the example to be fast and the division to be
near 50%. If the division splits the train set into two subsets with very different size
the order of the algorithm increases. To select quickly an example that splits the set
into two subsets with similar number of examples cknndc utilizes two algorithms, one
for continuous attributes and another for symbolic ones.

To select an example for a continuous attribute cknndc takes one example
randomly and calculates the number of examples of each subset. If the percent of the
number of examples of the bigger subset is below a threshold (P) the example is
accepted, else a new example is randomly taken. This search is repeated only M times
at the most. The algorithm is described as follows:

Example SearchExampleCont(Examples SetExa, Attribute A)
{
 Continuous Min=+Inf,Max=-Inf;
 int iterations=0;
 do{
  iterations++;
  //Takes a random example from SetExa whose its value
  //for attribute A is between Min and Max
  Example E=RandomExample(SetExa,A,Min,Max);

  //Calculus of the number of examples higher and lower
  Percent Lower=PercentLower(SetExa,A,E);
  Percent Higher=PercentHigher(SetExa,A,E);

  //If E divides the set into two subsets with similar
  //number of examples, the example E is accepted
  if(MAX(Lower,Higher)<P) return E;

  //Update the interval of attribute A for the forward
  //examples (E.A is the value of attribute A for E)
  if(Lower>Higher) Max=E.A;
  if(Higher>Lower) Min=E.A;

 }while(iterations<M);
 return E;
}



To select an example for a symbolic attribute cknndc iterates for each value of the
attribute and calculate the percent of examples of the set that has the same value. The
value with the percent nearest to 50% is selected. The algorithm is described as
follows:

Example SearchExampleSymb(Examples SetExa, Attribute A)
{
  //It is calculated the best value as the one with
  //best percent
  Percent BestPercent=100.0;
  Value BetsValue;
  for Value v=each value of attribute A
  {
    //The percent of examples that has the value ‘v’
    Percent Per=PercentSame(SetExa,A,v);

    //The percent nearest to 50% is the best
    if(|Per-50|<|BestPercent-50|)
    {
     BestValue=v;
     BestPercent=Per;
    }
  }
 //It returns an example that has the value BestValue
 return FirstExampleOFValue(SetExa,BestValue,A);
}

3.2 Selecting the best division

In the latter subsection it is calculated a division for each attributes being the
objective of this phase to select the division that gives the best accuracy. To carry out
this issue cknndc employs a heuristic based in the heuristic of m5 that uses to select
the best division of a leaf when the tree is being constructed. The algorithm m5 looks
for the division that minimizes the sum of the standard deviation of the categories of
each subset. This heuristic, which is fine to make regression trees, has a problem: the
division could separate examples of its nearest neighbours for too many examples. A
good criterion should tries to not separate the examples of its nearest neighbours.

The heuristic used in cknndc tries to not divide if the values of the examples for the
attribute of the division are too near to the division (see figure 1). A better division is
that which creates two subsets that group the nearest neighbours to each other.

The mean of the distance to the division (MDD) is the heuristic that cknndc utilizes
to determine the quality of a division in the way of not separating examples from its
neighbours. Combining this heuristic with m5`s heuristic it is obtained the cknndc’s
heuristic SelectDivision  (See equation 1 for a particular case of two attributes). This
heuristic is the same of m5’s but dividing each standard deviation by the MDD.
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Fig. 1. This figure represents ten examples with two attributes. The nearest example of an
example is the one at its left or right. There are two possible divisions, division X1 and division
X2. It is better to choose division X2 in order to group the examples with its nearest neighbours.
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The heuristic SelectDivision  is applied to each division. SDi and MDDi represent
the standard deviation and the mean distance to the division of the two subsets that
creates the division, that are called 1 and 2. The division finally accepted is the one
whose SelectDivision  is lower. The algorithm Divide is described as follows:

{Examples Train1, Test1, Train2, Test2} Divide(Examples
                                        Train, Test)
{
  Continuous LowerSelectDiv=+Inf;
  Attribute BestAttr;  //These variables remember the
  Example BestEx;      //best division
  for Attr=each Attribute
  {
   //To calculate the division
   Example ExDiv;
   if(IsSymbolicAttribute(Attr))
     ExDiv=SearchExampleSymb(Train,Attr);
   else
     ExDiv=SearchExampleCont(Train,Attr);

   //To calculate the best division
   if(SelectDivision(Attr,ExDiv)<LowerSelectionDiv)
   {
    LowerSelectionDivision= SelectDivision(Atr,ExDiv);
    BestAttr=Attr;
    BestEx=ExDiv;
   }
  }
 {Train1,Train2}=CreateSubSets(Train,BestAttr,BestEx);
 {Test1,Test2}=CreateSubSets(Test,BestAttr,BestEx);
 return { Train1, Test1, Train2, Test2};
}



3.3 The order of cknndc

The order of cknndc depends on N, T and M, which are respectively the number of
examples in the train set, in the test set and the maximum number of examples over
the original knn is applied. It is supposed that N, T and M are integers so that
T,N>M>1. It also depends on the number of attributes (A). This program creates a
binary tree of recursive calls, where in each node, except in the leaves, a Divide
function is executed. In the leaves the original knn is executed. If it is supposed that
the function Divide splits the set into two subsets with equal number of examples then
in the i level of recursion the number of examples that Divide treats is N/2i. As the
number of examples in the leaves is M, the depth at the leaves is log2(N/M) . The
average of the number of examples in the nodes is called NDiv and is estimated as
follows:
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The number of executions of Divide and knn  are limited by 2N/M, so
O(cknndc)=O(2N/M(O(Divide)+O(knn)) . The order of Divide is O(Divide)=
O(A(O(SearchExample)+O(SelectDivision))+O(CreateSubSets)). The order of all
these functions is the number of examples treated in each execution, which is NDiv
and is limited by the expression in equation (3). Then, the order of Divide is shown in
equation (4).
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If M  is supposed to be a constant, O(Divide) is simplified (see equation (5)).
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To calculate the order of knn it is necessary to estimate the number of examples
that are considered as train and as test. The number of train examples is limited by M.



To estimate the number of examples of test it is supposed that the train set and the test
set have the same distribution of examples. This supposition is generally accepted in
Machine Learning. If the original train set has N examples and at the leaves the knn
uses M for train, the same proportion of test examples knn would use. The number of
examples that knn uses as test is called TDiv and equation (6) shows this value.
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Equation (7) shows the order of knn, which is the product of the number of
examples of train (M), the number of examples of test (TDiv) and the number of
attributes (A). It is also supposed that M is constant.
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So the order of cknndc is shown in equations (8) and (9).
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If it is supposed that O(N)=O(T) , then equation (10) shows the order of cknndc.

)log()( 2 NANOcknndcO = (10)

4 Experimental Evaluation

The well known heterogeneous data sets of the Torgo’s repository at LIACC [5],
described in table 1, are used to compare the performance of knn and cknndc. Each
experiment consists of a Cross Validation (CV) with 10 folds. Besides, it is employed
MLC++[4] with 2032 seed (our office’s telephone) to make the experiments to be
repeatable.

The value of k  for both algorithms varies from 1 to 3. cknndc has two additional
parameters: M, which determines the maximum number of examples that use the
original knn and PMax, which determines the maximum percent of examples it could
be in a subset. In our experiments M is set to 200 and PMax is set to 60%.

The result of a CV experiment is the Medium Average Deviation (MAD), but in
table 2 it is shown the Relative Medium Average Deviation (RMAD) which is the
MAD divided by the MAD of the system that always predicts the average function. Its
execution time is shown in figure 2.



Table 1. List of the data sets of the Torgo’s repository. The name, the number of examples
(#Ex), the number of attributes (#Att) and the MAD of the system that always predict the
average function (Av. MAD) are shown for each data set. Each data set is also numbered (Nº)
to be referred forward using this number.

Nº Name #Ex #Att Av.MAD Nº Name #Ex #Att Av.MAD
1 Abalone 4177 8 2,363 16 Diabetes 43 2 2,363
2 Ailerons 13750 40 0,0003 17 Elevators 16599 18 0,0046
3 Airpla.Com. 950 9 5,4852 18 Friedman Ex. 40768 10 4,0648
4 Auto-Mpg 398 4 6,5459 19 Housing 506 13 6,6621
5 Auto-Price 159 14 4600,65 20 Kinematics 8192 8 0,2156
6 Bank 32NH 8192 32 0,0903 21 Machine-Cpu 209 6 96,9004
7 Bank 8FM 8192 8 0,1236 22 MvExample 40768 10 8,8932
8 Cal. Hou. 20640 9 91174,5 23 PoleTele. 15000 48 37,2124
9 Cart Delve 40768 10 3,6069 24 Pumadyn(32) 8192 32 0,0235

10 Census(16) 22784 16 32428,2 25 Pumadyn(8) 8192 8 4,8659
11 Census(8) 22784 8 32428,2 26 Pyrimidines 74 27 0,0957
12 Com.Act 8192 21 10,6326 27 Servo 167 2 1,1662
13 Com.Act(s) 8192 12 10,6326 28 Triazines 186 60 0,1187
14 Delta Ailer. 7129 5 0,0003 29 Wisconsin 198 32 29,6833
15 Delta Eleva 9517 6 0,002
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Fig. 2. Execution time of a Cross Validation with ten folders using knn and cknndc for
k={1,2,3} in a logarithmic scale versus the data sets ordered by 1nn execution time.

In figure 2 it can be observed the great improvement of execution time between
knn  and cknndc for large data sets.



Table 2. RMAD of knn and cknndc with k={1,2,3}. It is shown the RMAD for each data set of
Torgo’s repository and the average of all RMADs (Av.) over all data sets.

Knn cknndc
k=1 k=2 k=3 k=1 k=2 k=3

1 84.63% 74.44% 70.97% 85.28% 76.31% 73.03%
2 66.67% 33.33% 33.33% 66.67% 66.67% 33.33%
3 9.60% 8.49% 8.57% 11.35% 10.56% 10.82%
4 39.18% 36.76% 35.28% 39.08% 36.93% 35.50%
5 44.61% 41.84% 41.58% 44.61% 41.84% 41.58%
6 104.87% 96.23% 93.02% 109.63% 100.89% 97.23%
7 69.26% 60.68% 59.22% 76.46% 68.85% 67.80%
8 53.74% 48.56% 46.77% 55.88% 50.81% 49.26%
9 35.22% 32.30% 30.95% 58.68% 49.46% 46.86%

10 73.48% 65.84% 63.38% 76.78% 69.72% 67.53%
11 69.57% 62.46% 59.67% 71.41% 64.39% 61.49%
12 21.37% 18.86% 17.97% 23.77% 21.71% 21.22%
13 24.55% 21.81% 20.86% 26.68% 23.86% 23.07%
14 33.33% 33.33% 33.33% 33.33% 33.33% 33.33%
15 70.00% 65.00% 60.00% 70.00% 65.00% 60.00%
16 129.04% 98.00% 95.75% 129.04% 98.00% 95.75%
17 60.87% 54.35% 52.17% 65.22% 60.87% 58.70%
18 53.89% 43.97% 40.18% 59.68% 50.24% 47.44%
19 46.12% 40.08% 40.01% 46.38% 40.46% 41.55%
20 59.37% 49.03% 45.45% 63.08% 54.73% 51.58%
21 35.97% 32.09% 31.18% 35.09% 31.98% 31.18%
22 19.94% 15.96% 14.68% 22.27% 19.51% 19.07%
23 7.50% 7.18% 7.22% 10.01% 10.10% 10.78%
24 122.55% 105.96% 100.00% 124.68% 108.94% 102.55%
25 78.15% 67.96% 63.85% 81.18% 71.13% 67.82%
26 68.65% 64.26% 63.32% 68.65% 64.37% 63.32%
27 41.36% 67.62% 83.61% 40.92% 69.07% 83.61%
28 91.07% 81.97% 83.15% 91.49% 82.48% 83.15%
29 125.56% 101.10% 97.42% 125.56% 101.10% 97.42%

Av. 60.00% 52.74% 51.48% 62.51% 56.67% 54.34%

The average of the accuracy of cknndc is slightly worse than the average of the
accuracy of knn  for k={1,2,3}, but this difference is not relevant in contrast with the
improvement reached in execution time.



5 Conclusions

The algorithm cknndc, presented in this paper, is an instance-based Machine Learning
System based on knn . The main advantage is its computational cost, that is
O(cknndc)=(ANlogN). This improvement is caused by the application of a divide and
conquer strategy over the train and test sets. To procure the best computational cost
cknndc tries always to split the original set into two subsets with similar number of
examples. To overcome the lost of accuracy that the divide and conquer strategy
could cause, cknndc uses a m5 based heuristic that determines the best division.

The experiments presented shown that the accuracy of cknndc is similar to the
accuracy of knn  for a well known and varied data sets.

In future work we will study the application of this technique to symbolic labeled
examples. We will also study the possible use of combining this technique with
example or attribute selection.
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