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1 Introduction

Standard supervised learning algorithms such as decision trees (e.g. [1, 2]), in-
stance based learning (e.g. [3]), Bayesian learning and neural networks require
a large training set in order to obtain a good approximation of the concept to
be learned. This training set consists of instances or examples that have been
manually, or semi-manually, analyzed and classified by human experts. The cost
and time of having human experts performing this task is what makes unfeasible
the job of building automated classifiers with traditional approaches. In many
real-world classification problems we do not have a large enough collection of
labeled samples to build and accurate classifier. The purpose of our work is to
develop new methods for reducing the number of examples needed for training
by taking advantage of large test sets.
Given that the problem setting described above is very common, an increas-

ing interest from the machine learning community has arisen with the aim of
designing new methods that take advantage of unlabeled data. By allowing the
learners to effectively use the large amounts of unlabeled data available, the
size of the manual labeled training sets can be reduced. Hence, the cost and
time needed for building good classifiers will be reduced, too. Among the most
popular methods proposed are the ones based on a generative model, e.g. Naive
Bayes algorithm in combination with the Expectation Maximization (EM) al-
gorithm [4–8]. While this approach has proven to increase classifiers accuracy



when added unlabeled data in some problem domains, it is not always applica-
ble since violations to the assumptions made by the Naive Bayes classifier will
deteriorate the final classifier performance [9, 10]. A different approach is that of
co-training [11, 10], where the attributes describing the instances can naturally
be divided into two disjoint sets, each being sufficient for perfect classification.
One drawback of this co-training method is that not all classification problems
have instances with two redundant views. This difficulty may be overcome with
the co-training method proposed by Goldman and Zhou [12], where two differ-
ent learning algorithms are used for bootstrapping from unlabeled data. Other
proposals for the use of unlabeled data include the use of neural networks [13],
graph mincuts [14], Semi-Supervised Support Vector Machines [15] and Kernel
Expansions [16] among others.
In this paper we address the problem of building accurate classifiers when the

only labeled data are insufficient but a large test set is available. We proposed a
method called Ordered Classification (OC), where all the unlabeled data avail-
able are considered as part of the test set. Classification with the OC is performed
by a discriminant approach similar to that of Query By Committee within the
active learning setting [17–19]. In the OC setting the test set is presented to
an ensemble of classifiers built using the labeled examples. The ensemble as-
signs labels to the entire test set and measures the degree of confidence in the
predictions of each member of the ensemble. According to a selection criterion
examples from the test set are selected and used for building a new ensemble of
classifiers. This process is repeated until all the examples from the test set are
classified.
We present some experimental results of applying the OC to some benchmark

problems taken from the UCI Machine Learning Repository [20]. Also, as we
are interested in the performance of this algorithm in real-world problems, we
evaluate it on a data set obtained from a star catalog due to Jones [21] where
the learning problem consists in predicting the atmospheric parameters of stars
from spectral indices. Both types of experiments show that using the OC results
in a considerable decrease of the prediction error.

2 The Ordered Classification Algorithm

The object of the OC is to select those examples whose class can be predicted
by the ensemble with a high confidence level in order to use them to improve its
learning process by gradually augmenting an originally small training set. How
can we measure this confidence level? Inspired by the selection criterion used in
previous works within the active learning setting (e.g. [17–19]) we measure the
degree of agreement among the members of the ensemble. For real-valued target
functions, the confidence level is given by the standard deviation on the predic-
tions of the ensemble. Examples with low standard deviation in their predicted
target function are considered more likely to be correctly classified by the ensem-
ble, thus these examples are selected and added to the training set. For discrete
target functions we measure the confidence level by computing the entropy on



the classifications made by the ensemble on the test set. Again, examples with
lower entropy values are selected for rebuilding the ensemble. The test set is
considered as the unlabeled data since they do not have a label indicating their
class, so from now on we will use the words unlabeled data and test set to refer
to the same set.
Our algorithm proceeds as follows: First, we build several classifiers (the

ensemble) using the base learning algorithm and the training set available. Then,
each single classifier predicts the classes for the unlabeled data and we use these
predictions to estimate the reliability of the predictions for each example. We now
proceed to select the n previously unlabeled examples with the highest confidence
level and add them to the training set. Also, the ensemble re-classifies all the
examples added until then, if the confidence level is higher than the previous
value then the labels of the examples are changed. This process is repeated until
there are no unlabeled examples left. See Table 1 for an outline of our algorithm.
The OC can be used in combination with any supervised learning algorithm.

In the experimental results presented here, when the learning task involves real-
valued target functions we used Locally Weighted Linear Regression (LWLR)
[3]; for discrete-valued target functions we used C4.5 [2]. The next subsections
briefly describe these learning algorithms.

2.1 Ensembles

An ensemble of classifiers is a set of classifiers whose individual decisions are
combined in some way, normally by voting. In order for an ensemble to work
properly, individual members of the ensemble need to have uncorrelated errors
and an accuracy higher than random guessing. There are several methods for
building ensembles. One of them, which is called bagging [22], consists of ma-
nipulating the training set. In this technique, each member of the ensemble
has a training set consisting of m examples selected randomly with replacement
from the original training set of m examples (Dietterich [23]). Another technique
similar to bagging manipulates the attributes set. Here, each member of the en-
semble uses a different subset of the attributes. More information concerning
ensemble methods, such as boosting and error-correcting output coding, can be
found in [23]. The technique used for building an ensemble is chosen according
to the learning algorithm used, which in turn is determined by the learning task.
In the work presented here, we use bagging when C4.5 [2] is the base learning
algorithm; and the one that manipulates the attribute set when using Locally
Weighted Regression [3].

2.2 The Base Learning Algorithm C4.5

C4.5 is an extension to the decision-tree learning algorithm ID3 [1]. Only a brief
description of the method is given here, more information can be found in [2].
The algorithm consists of the following steps:

1. Build the decision tree form the training set (conventional ID3).



Table 1. The ordered classification algorithm

Is is a matrix whose rows are vectors of attribute values
Ls is the class label
S is the training set, given by the tuple [Is, Ls]
U is the unlabeled test set
A is initially empty and will contain the unlabeled examples added to the training set

1. While U 6= ® do:
– Construct E, the ensemble containing k classifiers
– Classify U and estimate reliability of predictions
– V are the n elements of U for which the classification assigned by the

ensemble is most reliable:
– S = S ∪ V

– U = U − V

– A = A ∪ V

– Classify A using E and change the labels of the examples with higher
confidence level

2. End

2. Convert the resulting tree into an equivalent set of rules. The number of
rules is equivalent to the number of possible paths from the root to a leaf
node.

3. Prune each rule by removing any preconditions that result in improving its
accuracy, according to a validation set.

4. Sort the pruned rules in descending order according to their accuracy, and
consider them in this sequence when classifying subsequent instances.

Since the learning tasks used to evaluate this work involve nominal and numeric
values, we implemented the version of C4.5 that incorporates continuous values.

2.3 Locally Weighted Linear Regression

LWLR belongs to the family of instance-based learning algorithms. These al-
gorithms build query specific local models, which attempt to fit the training
examples only in a region around the query point. They simply store some or all
of the training examples and postpone any generalization until a new instance
must be classified. In this work we used a linear model around the query point
to approximate the target function.
Given a query point xq, to predict its output parameters yq, we assign to

each example in the training set a weight given by the inverse of the distance
from the training point to the query point: wi =

1
|xq−xi|

Let W , the weight matrix, be a diagonal matrix with entries w1, . . . , wn. Let
X be a matrix whose rows are the vectors x1, . . . ,xn, the input parameters of
the examples in the training set, with the addition of a “1” in the last column.
Let Y be a matrix whose rows are the vectors y1, . . . ,yn, the output parameters



of the examples in the training set. Then the weighted training data are given
by Z = WX and the weighted target function is V = WY . Then we use the
estimator for the target function yq = xT

q (Z
T Z)−1ZT V.

Table 2. Description of Data sets

name cases features % Cont. %Discr.

chess 3196 37 0 100
lymphography 148 19 0 100

credit 653 16 60 40
soybean 266 36 0 100

spectral indices 651 24 100 0

3 Experimental Results

In order to assess the effectiveness of the OC we experimented on some learning
tasks taken from the UCI Machine Learning Repository [20] as well as on an
astronomical data set of spectral indices due to Jones [21]. In Table 2 we present
a description of each data set used.
In all the experiments reported here we used the evaluation technique 10-fold

cross-validation, which consists of randomly dividing the data into 10 equally-
sized subgroups and performing ten different experiments. We separated one
group along with their original labels as the validation set; another group was
considered as the starting training set; the remainder of the data were considered
the test set. Each experiment consists of ten runs of the procedure described
above, and the overall average are the results reported here.

3.1 Benchmark Experiments

We described in this subsection the experiments with the data sets of the UCI
Machine Learning Repository. To analyze the effectiveness of the Ordered Clas-
sification Algorithm we performed three different experiments and compared the
resulting accuracy. In the first type of experiment we built an ensemble of clas-
sifiers, with seven members, using C4.5 and the training set available. The test
set was then classified by this ensemble and the final results are presented in
Table 3 under the column named standard. In the next type of experiment we
built again an ensemble with seven members, C4.5 and the training set avail-
able. This time a random selection of n examples from the test set was made
and added to the training set until the complete test set was classified. We set

n = |T |
10
, where T is the training set. The results for this experiment are also

in Table 3 under the feature random selection. The column named OC presents
the results of experimenting using our algorithm. Parameters k and n where set
to the same values as the previous experiment.



Table 3. Comparison of the error rates

standard random selection OC

lymphography 0.2912 0.2668 0.2567
chess 0.0551 0.0523 0.0419

soybean 0.2714 0.2255 0.1947
credita 0.0952 0.0915 0.0848

Unsurprisingly, the error rates of random selection are lower than the tra-
ditional C4.5 but as it can be seen, in all the learning tasks, the lowest error
rates were obtained with our algorithm. We can notice that by incrementally
augmenting a small training set we can boost accuracy of standard algorithms.
The advantage of using our algorithm over random selection is that we are max-
imizing the information gained by carefully selecting unlabeled data. For these
benchmark problems error reductions of up to 29% were attained. Results from
Table 3 suggest that the OC algorithm is the best alternative.
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Fig. 1. Stellar spectrum

3.2 Prediction of Stellar Atmospheric Parameters

We introduce here the problem of automated prediction of stellar atmospheric
parameters. As mentioned earlier, we are interested in the applicability of our
algorithm to real-world problems. Besides, we know that important contribu-
tions might emerge from the collaboration of computer science researchers with
researchers from different scientific disciplines.



Table 4. Comparison of mean absolute errors in the prediction of stellar atmospheric
parameters

traditional random selection OC

Teff[K] 147.33 133.79 126.88
Log g[dex] 0.3221 0.3030 0.2833

Fe/H 0.223 0.177 0.172

In order to predict some physical properties of a star, astronomers analyze its
spectrum, which is a plot of energy flux against wavelength. The spectra of stars
consists of a continuum, with discontinuities superimposed, called spectral lines.
These spectral lines are mostly dark absorbtion lines, although some objects can
present bright emission lines. By studying the strength of various absorption
lines, temperature, composition and surface gravity can be deduced. Figure 1
shows a sample of the spectrum of a star from the data set we are using.
Instead of using the spectra as input data, a very large degree of compres-

sion can be attained if we use a measurement of the strength of several selected
absorption lines that are known to be important for predicting the stellar atmo-
spheric parameters. In this work we use a library of such measurements, which
are called spectral indices in the astronomical literature, due to Jones [21]. This
dataset consists of 24 spectral indices for 651 stars, together with their estimated
effective temperatures, surface gravities and metallicities. It was observed at Kitt
Peak National Observatory and has been made available by the author at an
anonymous ftp site at the National Optical Astronomy Observatories(NOAO).
For the learning task of the spectral indices we used LWLR as the base

learning algorithm. Results from the experiments are presented in Table 4, which
presents the mean absolute errors for the three types of experiments performed.
Each experiment was carried out as explained in the previous subsection. We
can observe that the lower error rates were attained when using our algorithm.
An error decrease of up to 14% was reached taking advantage of the large test
set available. However, both learners that used unlabeled data outperformed the
traditional Locally Weighted Linear Regression Algorithm.
A different experiment was performed to analyze the effect of using the OC

algorithm with training sets of different sizes. Figure 2 shows a graphical compar-
ison of predicting the stellar atmospheric parameter metallicity using an ensem-
ble of C4.5 and the OC algorithm. From these results we can conclude that even
when standard LWLR performs satisfactory well with a large enough training
set, OC can take advantage of the test set and outperform accuracy of LWLR.

4 Conclusions

The Ordered Classification algorithm presented here was successfully applied to
the problem of automated prediction of stellar atmospheric parameters, as well
as evaluated with some benchmark problems proving in both cases to be an
excellent alternative when the labeled data are scarce and expensive to obtain.
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Results presented here prove that poor performance of classifiers due to a
small training sets can be improved upon when a large test set is available or
can be gathered easily. One important feature of our method is the criterion for
which we select the unlabeled examples from the test set -the confidence level
estimation. This selection criterion allows the ensemble to add new instances
that will help obtain a better approximation of the target function; but at the
same time, this discriminative criterion decreases the likelihood of hurting the
final classifier performance, a very common situation when using unlabeled data.
Although the method gives good results, we believe that it will be useful to
experiment with other selection criteria.

Other advantage of the algorithm presented here is that it is easy to imple-
ment and given that it can be applied in combination with almost any supervised
learning algorithm the possible application fields are unlimited.

One disadvantage of this algorithm is the computational cost involved. As
expected, the running time of our algorithm increases with the size of the test
set. It evaluates the reliability of every single examples in the test set, thus
the computational cost is higher than traditional machine learning approaches.
However, if we consider the time and cost needed for gathering a large enough
training set, for traditional algorithms, our approach is still more practical and
feasible.

Some directions of future work include:

– Extending this methodology to other astronomical applications.

– Performing experiments with a different measure of the confidence level.

– Experimenting with a heterogeneous ensemble of classifiers.

– Performing experiments with other base algorithms such as neural networks.
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