
On Using Constraint-based Reasoning to Enhance
Win-Win Conflict Detection?

Antonio Ruiz–Cortés, Amador Durán, Rafael Corchuelo, and Miguel Toro

E.T.S. Ingenieros Informáticos. Universidad de Sevilla
Avda. de la Reina Mercedes s/n, Sevilla 41012. Spain

aruiz@lsi.us.es, http://tdg.lsi.us.es

Abstract Requirements engineering is quite an ongoing research area. One of
the most mature models in this field is Boehm’s Win–Win. Unfortunately, it is not
adequate in quantitative, product–oriented contexts in which a precise knowledge
about the requirements is needed. In this paper, we enhance this model by using
constraint-based reasoning as a means to endow it with precise semantics that
helps us automate the detection of conflicts. This extension endows Win–Win
with quantitative, product–oriented capabilities and allows us to use it during the
whole software development process.

1 Introduction

Boehm’s spiral model for requirements engineering (RE) is one of the most widely
known in the literature [1,2,15]. According to [5], it can be classified as a qualitative,
process–oriented method because it is intended to be used at the early stages of re-
quirements engineering, when the requirements are still vague, and because conflict
identification is oriented towards reaching decisions about the architecture of a system.

Win–Win is supported by QARCC (Quality Attribute Risk and Conflict Consultant),
a tool that can identify conflicts in quality requirements (QR) by using an auxiliary
knowledge base [3]. Turning the detection of conflicts into an automated process is
interesting to requirements engineers, managers of applications based on web services
[18,20,21], developers of agent societies [13], and so on.

The approach presented in this paper is based on the idea that some problems ad-
dressed by quantitative, product–oriented approaches can also be addressed by extend-
ing the conceptual framework behind Win–Win. The main benefit of our approach is
that the same conceptual model for RE can be used during the whole software develop-
ment process, instead of using different models. Our proposal relies on two conjectures:
(1) every QR can be formally specified as a mathematical constraint, and (2) the require-
ments engineer is able to elicit, totally or partially, the flexibility degree of stakeholders
on QRs before the negotiation process can be started. If we assume these conjectures are
true, our proposal allows (i) to detect conflicts more precisely, and (ii) to take provider
stakeholders into account.

? The work reported in this article was partially funded by the Spanish Interministerial Commis-
sion on Science and Technology under grant TIC 2000–1106–C02–01

Win-win
negotiation model

Stakeholders

Individual
requirements

(win conditions)

Agreement

Figure 1. Overall view of the Win–Win requirements negotiation process.

The rest of the paper is organized as follows. In Section 2, we present an overview of
the Win–Win model; next, our approach for enhancing Win–Win is presented in Section
3; finally, we present some conclusions in Section 4.

2 The Win–Win negotiation model

The Win–Win model [1,2,15] is based on Theory W [4], whose main motto is “make
everyone a winner”. Figure 1 illustrates this process. In projects with multiple stake-
holders, conflicts amongst win conditions, i.e. individual requirements, arise frequently.
When a conflict is detected, all related stakeholders are reported to propose options to
solve the conflict. Once all conflicts are solved, it is said that an agreement is attained
because the win conditions of which it is composed satisfy everyone’s needs.

2.1 Win conditions

A win condition is a stakeholder’s requirement considered important and beneficial.
Formally, if space R contains all possible requirements specifications, a win condition
can be viewed as a constraint on R that splits it into mutually exclusive subsets of re-
quirements specifications that do or do not satisfy the win condition. The set of win
conditions associated with a given stakeholder defines a win region, as depicted in Fig-
ure 2. Win conditions and win regions are formally described using set theory [15], so
that the win region corresponding to i th stakeholder is defined as:

Wi =

n\

j=1

R(wi;j)

whereR(wi;j) represents the set of requirements which satisfy the j th win condition
of the ith stakeholder, i.e.,

R(wi;j) = fr 2 R j r satisfies wi;jg (1)

R

r
2

r
3

r
1

w
11

R(w
11
)

r
2

r
3

r
1

W
1

R

w
11

w
12

w
13

Figure 2. Graphical interpretation of both a win condition and a win region.

W
2

W
1

r
10

r
9

R

W
3

r
4

r
5

r
1

r
2

r
3

r
6

r
8

r
7

Figure 3. Graphical interpretation of a conflict amongst three stakeholders.

The main problem with this definitions is that Boehm’s proposal lacks a systematic,
formal way to express requirements and win conditions. Instead, natural language is
used, which complicates determining if a requirement satisfies a win condition.

2.2 Conflicts

When the intersection of the win regions of two or more stakeholders is empty, it is
said that there is a conflict amongst them, as illustrated in Figure 3. Given a set of win
conditions, different conflicts may arise, and each one involves a different conflicting
group of win conditions, denoted by Ik, that satisfies

\

wi;j2Ik

R(wi;j) = ; (2)

For instance, assume that a client’s win conditions are given by w
1;1 = “The bud-

get must not exceed e 6000” and w
2;2 = “The system must be interoperable through

CORBA 2.2”; also assume that and architect’s win conditions are w
2;1 = “The budget

is e 7000” and w
2;2 = “The system uses SOAP”. In such a case, two conflicts would

arise, being I
1
= fw

1;1; w2;1g, and I
2
= fw

1;2; w2;2g.
The main problem with this approach is, again, lack of formality, which implies the

detection of conflicts is error-prone, and may easily lead to situations in which a conflict
is not detected at the appropriate time.

2.3 Options and agreements

Once conflicts have been detected, they are issued to the corresponding stakeholders so
that they can begin negotiating. Solving a conflict necessarily requires one stakeholder,

S
2

S
1

r
10

r
9

R

S
3

r
4

r
5

r
1

r
2

r
3

r
6

r
8

r
7

Figure 4. A graphical interpretation of the weakening process.

at least, to relax or weaken some of his or her win conditions, which implies that he or
she has to yield in its original conditions to reach an agreement, as illustrated in Figure
4. Thus, an option is defined as an alternative that is proposed to resolve a conflict. For a
conflict Ik , an optionOk is a proposed relaxation of the set of win conditions involved in
the conflict. An option extends a win region (W) to a satisfactory (S) region, as depicted
in Figure 4.

In general, solving all the conflicts arisen during a negotiation may be carried out by
combining different groups of options. Each combination leads to a different agreement,
denoted by Ak , which satisfies

\

w0

i;j
2Ak

R(w0

i;j) 6= ;

where w0

i;j denotes either a weakened win condition or a primary one.

2.4 Automated detection of conflicts

As previously mentioned, the semiautomatic conflict detection implemented in QARCC
relies on a knowledge base (KB), which stores well–known conflicts. Table 1 shows
a partial view of a KB in which we state that there exist several strategies to endow
the architecture of a particular system with a given feature. Each strategy establishes
different relationships between the desired quality attribute and the rest.

The relationships between quality attributes are classified to be either conflicting
or cooperative. Two attributes are said to be conflicting if the value they have cannot
be improved or worsen simultaneously. For instance, a possible strategy for portability
is layering, which reinforces interoperability and reusability, and may conflict with the
cost, schedule or performance attributes: if you attempt to increase portability, this may
have a negative impact on performance, and the project might become more costly, and
the initial schedule might not be met; however, if you do not worry about portability,
the system might run faster, more effectively, and the project might be terminated in
less time with smaller costs.

From this point, the identification process works as follows: QARCC is triggered
when a stakeholder enters a new condition; it then checks if its quality attributes conflict
with the QRs related to previous conditions; if so, a potential conflict has just been
detected and the stakeholders must negotiate (c.f. Section 3.3).

Table 1. Quality–attribute strategies and relations (taken from [3]).

Primary attribute Architecture strategy Cooperative attributes Conflicting attributes

Assurance Input checking Interoperability, us-
ability

Cost, schedule, perfor-
mance

Redundancy Cost, schedule, perfor-
mance, evolvability,
usability

Interoperability Input checking Assurance, usability Cost, schedule, perfor-
mance

Evolvability, portabil-
ity

Layering Interoperability,
reusability

Cost, schedule, perfor-
mance

3 Our proposal

In this section we show some drawbacks that prevent Win–Win from addressing some
problems that are usually solved by quantitative, product–oriented methods; we also
enhance the model so that it can deal with such problems.

3.1 Specification of quality requirements

In order to avoid different interpretations of requirements by different stakeholders,
they need to be specified precisely and unambiguously. In Win–Win, win conditions
are not usually expressed in a rigorous way. For instance, “documents must be delivered
in multiple formats” or “developer training must be inexpensive” are examples found
in [11]. The precision of these win conditions can be enough for detecting potential
conflicts such as “the more formats needed, the more expensive training is”, but they
are clearly insufficient in general, and the lack of formality may lead to costly errors.

The basic assumption in our approach is that every QR can be both interpreted and
specified as a mathematical constraint. Although, it has been proved impossible to spec-
ify functional requirements as constraints, due to the complexity of the involved data
domains and operations, we strongly believe that this approach can be proved adequate
in the context of quality requirements. The main reason is that a requirement can always
be expressed in natural language as a constraint over a set of quality attributes (QAs)
[6,9,15] that usually range over domains such as integers, booleans, reals, or enumer-
ates, and the relationships amongst them are usually expressed in terms of arithmetic
operators. In [5], the author presents a list that includes over 150 quality attributes, and
none of them is out of this scope. Our experience [7,18,19,20] also suggests that this
conjecture may be considered valid in an ample variety of systems, and it allows us to
interpret requirements as if they were constraint satisfaction problems (CSP). This im-
plies we can prove or refute properties automatically by using well–known constraint
solvers.

For instance, if we want to express performance QRs, we can consider two at-
tributes: the time to failure (TTF) over the real domain [0;+1), and the time to repair
(TTR) over the real domain [0;+1). Then, we can specify the QR “time to failure

must be 100 hours at least and time to repair must be under 1 hour” as the mathematical
constraint TTF � 100 ^ TTR � 1.

This approach can also be applied to win conditions. For instance, the win condition
informally expressed in [11] as “documents must be delivered in multiple formats” can
be formally expressed as fTEX;DOC;PS; PDFg � FMT , where FMT represents
the set of available formats. Furthermore, the win condition “developer training must be
inexpensive” can be expressed as DTC � CD=10, if a developer training cost (DTC)
under 10% of total development cost (DC) is considered inexpensive.

Mathematical constraints allow to capture the semantics behind a requirement, and
thus allows the automatisation of the tasks that we present in the following section.

3.2 Checking properties automatically

Consistency The simplest property of a QR that can be interpreted as a CSP is consis-
tency. A QR is consistent as long as its description does not contain any contradiction.
Formally, requirement r is consistent if and only if its associated constraint r c is satis-
fiable:

r is consistent , sat(rc) = true

where sat denotes the satisfiability function associated with the constraint solver
used. sat takes a constraint c and returns one of the following values: true if c is satis-
fiable, false if it is not, and ? if it is not possible to determine whether c is satisfiable
or not. For instance, CLP(<) [12] is not able to determine if the constraint xy < 7 is
satisfiable because it can only deal with (semi-) linear constraints. Thus, sat(xy < 7)

would return? if CLP(<) was used as the underlying constraint solver. On the contrary,
it would return true if we used ILOG Solver [10].

We have not restricted the kind of constraints we can use to express QRs, thus offer-
ing the maximum expressiveness, but no general constraint solver able to solve any con-
straint exists. Notice that requirement r is considered to be inconsistent if sat(r c) =?,
which implies we analyse it from a conservative point of view. This might be wrong,
but if it is not possible to solve all needed constraints, our approach will not lead to
an inconsistent system. Anyway, most problems we have faced do only require linear
constraints that can be easily solved by using the well–known SIMPLEX method. Thus,
our decision does not substantially reduce the applicability of our proposal.

Satisfiability Another interesting property of QRs is satisfiability. A QR satisfies an-
other QR when the constraint formed by the conjunction of constraints from both QRs
is satisfiable, i.e.,

r
1

satisfies r
2
, sat(rc1 ^ rc2) = true

This definition allows to define the operational semantics of the win condition re-
gions in Win–Win. Notice that no precise definition of the semantics of this predicate
have been provided so far, despite the fact that it constitutes the core of Win–Win.

V1 V2 V3 V4 V5 ... Vn

Vn+1 Vm

Satisfiability Conformance (C1 → → → → C2)

V1 V2 V3 V4 V5 ... Vn

Vn+1 Vm

C1 solutionsC2 solutions C1 solutionsC2 solutions

Figure 5. Graphical interpretation of both satisfiability and conformance.

Conformance The definition of satisfiability presented in previous section was also
adopted by the Object Management Group (OMG) for the definition of their trading
service [17], and by the automatic negotiation models used in distributed agent plat-
forms [13]. This approach is very useful when the semantics of a win region is the same
for all the stakeholders. We refer to this as customer semantics.

Nevertheless, there are situations in which the semantics of a win region is not the
same for all stakeholders. For instance, consider a situation in which a requirements
engineer has elicited the win condition “the time to repair must be 60 minutes at most”,
i.e., TTR � 60, and the system architect states that “the time to repair will not exceed
70 minutes”, i.e., TTR � 70. Using customer semantics, it is easy to prove that TTR �
70 satisfies TTR � 60. We might consider that TTR � 60 is an agreement for both
win regions (c.f. Section 2.3). However, it cannot be considered satisfactory from a
customer/provider point of view because if they are disconnected, i.e., they do not meet
explicitly to clarify the semantics, the provider might supply TTR = 65, which does
not satisfy our customer’s needs.

In quality–aware distributed systems [8,14] and applications based on web services
[20,18], a stronger notion of satisfiability, called conformance is proposed. If r

1
and r

2

are QRs, then r
1

is said to be conformant to r
2
, denoted as r

1
! r

2
, if and only if the

set of solutions to rc1 is a subset of the solutions to rc2 . This relationship is known as
the implication constraint in [16], and it is defined as

r
1
! r

2
, sat(rc1 ^ :c2) = false

3.3 Detecting conflicts automatically

The semi–automatic conflict detection proposed in [3], later enhanced in Section 2.4,
is based on a relatively simple method. It is suitable to detect conflicts between win
conditions at early stages of development, but it has two important drawbacks when
compared to quantitative, product–oriented methods.

First, it does not address the quantification of the degree of conflict. This implies that
conflicts detected automatically must be classified as potential conflicts, since it is pos-
sible to consider non–conflicting requirements as if they were in conflict. For instance,
interoperability can be achieved with different solutions such as sockets, CORBA IIOP,
W3C SOAP, and so on. These solutions decrease communication performance, but not
to the same extent: SOAP is slower than sockets and it consumes more bandwidth;

CORBA IIOP is slower than sockets, but faster than SOAP. Thus, it is possible that
some conflicts exist if SOAP is used, but they might disappear if sockets were used.

Secondly, Win–Win needs all potential conflicts to be registered in a KB that must
be kept up–to–date. Maintaining such a KB is not a trivial task because it becomes
more and more error–prone and tedious as the number of quality attributes and relation-
ships amongst them increases. Furthermore, registered conflicting relationships must be
checked periodically because conflicts may change as time goes by. For instance, three–
tier architectures are very popular in today’s Internet world although they may have a
negative impact on performance, but this is not considered a serious conflict; ten years
ago, however, performance was so crucial that such architectures were not popular at
all, i.e., the conflict was more serious ten years ago.

Both problems may be avoided if we use constraints to specify QRs and interpret
the detection of conflicts as checking satisfiability or conformance. In equation 2, the
condition that helps requirements engineers detect that there is a problem was

\

wi;j2Ik

R(wi;j) = ;

which can now be formulated as

sat(

n^

i=1

wci;j) 6= true

wherewci;j represents the constraint associated with the win conditionw i;j . Roughly
speaking, a conflict exists if and only if it is not possible to prove the existence of a com-
mon solution to all win conditions. Notice that cases in which satisfiability cannot be
proved are considered to be potential conflicts. We might be wrong, but this solution
prevents conflicts from going unnoticed.

Obviously, this definition is valid as long as all stakeholders assume customer se-
mantics. If some stakeholder are playing a provider role, the absence of conflicts can be
formulated as follows:

sat(rp ^ :

n^

i=1

rci) 6= true

where rp represents the constraint associated with the provider stakeholder win re-
gion and rci represents the ith customer stakeholder win region.

4 Conclusions

In this paper, we have enhanced Win–Win so that it can be used in quantitative, product–
oriented contexts. Our idea consists of associating mathematical constraints with each
win condition, which allows to automate the detection of conflicts. Furthermore, we
have added a new notion called conformance that allows to capture provider semantics.
This proves that the world of quality requirements can be significantly enhanced if we
use mathematical constraints to capture their semantics in a precise way.

References

1. B. Boehm, P. Bose, E. Horowitz, and M.-J. Lee. Software requirements as negotiated win
conditions. In Proceedings of the First International Conference on Requirements Engineer-
ing (ICRE’94), pages 74–83. IEEE Press, 1994.

2. B. Boehm, P. Bose, E. Horowitz, and M.-J. Lee. Software requirements negotiated and rene-
gotiation aids: A theory–W based spiral approach. In Proceedings of the 17th International
Conference on Software Engineering (ICSE’95). IEEE Press, 1995.

3. B. Boehm and H. In. Identifying quality–requirements conflicts. IEEE Software, 12(6):25–
35, March 1996.

4. B.W. Boehm and R. Ross. Theory–W software project management: Principles and exam-
ples. IEEE Transactions on Software Engineering, 15(7):902–912, 1989.

5. L. Chung, B. Nixon, E. Yu, and J. Mylopoulos. Non–Functional Requirements in Software
Engineering. Kluwer Academic Publishers, 2000.

6. A.M. Davis. The analysis and specification of systems and software requirements. In Soft-
ware Requirements Analysis and Specification, pages 119–144. Prentice–Hall, 2001.

7. A. Durán, B. Bernárdez, A. Ruiz, and M. Toro. A requirements elicitation approach based in
templates and patterns. In Proceedings of the 2nd Iberoamerican Workshop on Requirements
(WER’99), pages 17–29, Buenos Aires, 1999.

8. S. Frølund and J. Koistinen. Quality–of–service specification in distributed object systems.
Distributed Systems Engineering Journal, 5(4):179–202, December 1998.

9. T. Gilb. Principles of Software Engineering Management. Addison–Wesley, 1988.
10. ILOG. ILOG Solver 4.0, User’s Manual, May 1997.
11. H. In, D. Olson, and T. Rodgers. Multi–criteria preference analysis for systematic require-

ments negotiation. In Proceedings of the IEEE International Computer Software and Appli-
cations Conference (COMPSAC 2002), page To be published, 2002.

12. J. Jaffar and J.L. Lassez. Constraint logic programming. In Proceedings of the 14
th Annual

ACM SIGACT–SIGPLAN Symposium on Principles of Programming Languages POPL’87,
pages 111–119, New York, USA, January 1987. ACM Press.

13. N.R. Jennings, P. Faratin, A.R. Lomuscio, S. Parsons, C. Sierra, and M. Wooldridge. Au-
tomated negotiation: Prospects, methods and challenges. International Journal of Group
Decision and Negotiation, 10(2):199–215, 2001.

14. J. Koistinen and A. Seetharaman. Worth–based multi-category quality–of–service negotia-
tion in distributed object infrastructures. In Proceedings of the 2nd International Enterprise
Distributed Object Computing Workshop (EDOC’98), La Jolla, USA, November 1998.

15. M.J. Lee. Foundations of the Win–Win Requirements Negotiation System. Phd. thesis, Uni-
versity of Southern California, August 1996.

16. K. Marriot and P.J. Stuckey. Programming with Constraints: An Introduction. The MIT
Press, 1998.

17. OMG. Trading object service specification. Technical report, Object Management Group,
2000.

18. A. Ruiz, R. Corchuelo, and A. Duran. An automated approach to quality–aware web ap-
plications. In Proceedings of the 4th International Conference on Enterprise Information
Systems (ICEIS’2002), pages 995–1000, Ciudad Real, Spain, April 2002.

19. A. Ruiz, R. Corchuelo, O. Martı́n, A. Durán, and M. Toro. Addressing interoperability in
multi–organisational web–based systems. In European Conference on Object–Oriented Pro-
gramming ECOOP’00. Workshop on Object Interoperability WOI’00, pages 87–96, Sophia
Antipolis, France, 2000. Universidad de Extramadura.

20. A. Ruiz-Cortés, R. Corchuelo, A. Durán, and M. Toro. Automated support for quality re-
quirements in web-services-based systems. In Proceedings of the 8th IEEE Workshop on

Future Trends of Distributed Computing Systems (FTDCS’2001), pages 48–55, Bologna,
Italy, 2001. IEEE Press.

21. S.Y.W. Su, C. Huang, and J. Hammer. A replicable web–based negotiation server for e–
commerce. In Proceedings of the 33rd Hawaii International Conference on Systems Sci-
ences, pages 1–8. IEEE Press, 2000.

