
Building Knowledge Discovery-Driven Models for Decision Support
in Project Management

 María N. Moreno García , Luis A. Miguel Quintales, Francisco J. García Peñalvo y M. José Polo
Martín

Dept. Informática y Automática. University of Salamanca. Plaza Merced s/n. 37007 Salamanca. Spain
{mmg, lamq, fgarcia, mjpolo}@usal.es

Abstract. Accurate estimations of software size in the early stages of a software project are critical in
software project management because they lead to a good planning and reduce project costs. In this
work, the relation between early software size measures as the function points and measures of the
final product as the lines of code has been studied. A process to refine association rules, based on the
generation of unexpected patterns, is proposed. The goal is to generate strong association rules
between attributes that can be obtained early in the project and the final software size. Our approach
allows to extract more relevant patterns from data for the effective decision support in the project
management area.

1 Introduction

A current trend in software organizations is to take advantage of data-mining techniques to extract
knowledge from the huge volumes of data that they manage. Data-mining techniques provides the
objective information needed to make decisions about business and engineering performance. In the
project management environment many of those decisions are based on the software size estimation.

The determination of the value of software size in the early stages of a software project is a key
activity in order to predict the effort to be consumed in a software project. Accurate estimations are
critical in software project management because they lead to a good planning and reduce project costs.
Many methods for estimating software size have been developed. Most of them provide functional
measures of the software size such as functions points [1], functions blocks [2] and object points [3]. The
values obtained for those functional variables should correspond with the final product size (for example
lines of code). In an earlier work [4] we used several supervised data mining techniques to obtain
software size estimation models. A component-based method [5] and a global method (Mark II) [6] were
taken as reference. We observed that models obtained by combining attributes from both methods were
better than models obtained by using attributes of each method separately. We also found a correlation
between the function points of the method Mark II (MKII FP) and lines of code (LOC). This indicates
that the function points of the method Mark II are good size predictors, but that correlation is stronger for
some size intervals than for others.

In this work we have used unsupervised data-mining algorithms in order to discover knowledge that
enhances the results of the classification models obtained previously and lead to the development of more
efficient decision-support systems. We have applied two discovery-driven techniques: clustering and
association rules. The goal in knowledge discovery modeling is to discover rules and segments of the data
that behave similarly.

At first, we applied several data clustering algorithms to obtain a high-level view of what is occurring
in the data with respect to software size and to classify records. We also applied association rule
algorithms to discover pattern in data. Extracted rules revealed which software size intervals showed a
weak correlation between lines of code and Mark II function Points. We applied a refinement process in
order to obtain stronger rules that reinforce the relation between LOC and MKII FP by using other
attributes that can be obtained early in the project life cycle.

Our proposal should provide managers with more relevant patterns from data and aid them in effective
decision making.

2 Data Description

This section describes the data set used to build the models. It was obtained from experiments carried out
by Dolado [7]. The data originate from academic projects in which students developed accounting
information systems that have the characteristics of commercial products. Each system includes some or
all of the following subsystems: sales, purchases, inventories, financial statements, and production cycles.
We have analyzed data from 42 projects written in Informix-4GL.

The information available was divided in two groups. One group containing global data from each
project (42 records) and other group containing attributes from each component of the projects (1537
records). The code of the applications was classified into three types of components according to Verner
and Tate [5]

Component attributes

TYPECOMP: type of component (1: menu, 2: input, 3: report/query)
OPTMENU: number of choices (only for menus)
DATAELEMENT: number of data elements (only for inputs and reports/queries)
RELATION: number of relations (only for inputs and reports/queries)
LOC: lines of code

Project attributes

The attributes described below are used in Mark II method [6] to calculate functions points. That proposal
consists of considering a system composed of logical transactions. A logical transaction is a unique
input/process/output combination triggered by a unique event of interest to the user or a need to retrieve
information. The central concept in this method is that of entity, that replaces the concept of logical file.

LOC: lines of code
NOC: number of components
NTRNSMKII: number of transactions MKII
INPTMKII: number of total inputs
ENTMKII: number of referenced entities
OUTMKII: number of total ouputs (data elements over all transactions)
UFPMKII: number of unadjusted functions points MKII

We observed in previous research [4] that classification models obtained by combining attributes from

both methods were better than models obtained by using attributes of each method separately. So, we
added to project attributes those which we calculated from the module attributes of each project. The new
attributes are the following:

NOC-MENU: total number of menu components
NOC-INPUT: total number of input components
NOC-RQ: total number of report/query components
OPTMENU: total number of menu choices
DATAELEMENT: total number of data elements
RELATION: total number of relations

The statistical study of some of these attributes is shown in figure 1. The projects are between 726 and

8,888 LOC. There are more records with low values of the attributes. However, high values have
sufficient weight to influence the induction of the models.

3 Data clustering

All the attributes that are used in this work to generate association rules are numeric, that is, they can take
a wide range of values. In order to reduce the number of rules generated it is necessary to divide the range
of values of the attributes into a manageable number of intervals.

At first, we considered the target attribute LOC (line of code). The values of LOC were partitioned into
five uniform intervals. After that, a clustering technique was applied to all available attributes. The

clusters were built by using the single k-means algorithm with a Euclidean distance metric and a weight
for LOC-bin (the five LOC intervals) three times greater than for other attributes. This is a way of driving
the clustering of the attributes in those LOC intervals. The best results (low overlapping of the LOC
intervals) were obtained with five clusters (fig. 2).

From the study of the distribution of attribute values in each cluster we obtained the best partition of
the data values in order to generate the association rules. We also observed that the two greater LOC
intervals always appeared together in a single cluster. Those intervals represent a low number of
transactions, therefore we decided to join them.

Fig. 1. Statistical study of the data

4 Importance of columns

In classification problems, there is a special attribute called the label that one intends to predict. By
encoding the relation between the label and the other attributes, the model can make predictions about
new, unlabeled data. Importance of columns is a technique that determines how important various
attributes (columns) are in discriminating the different values of the label attribute. A measure called
purity (a number from 0 to 100) informs about how well the columns discriminate the different labels.
The cumulative purity measure is a measure of the purity of partitioning the data. The data is partitioned
using columns found as important in the same way data is partitioned in a Decision Tree. Each set in the
partition has its own purity measure, and the purity measure within the partition is a combination of these
individual measures. For a given set in the partition, the purity is 0 if each class has equal representation,
and 100 if every record is of the same class. Similarly, the cumulative purity will be 0 if each set in the
partition has an equal representation of classes, and 100 if each set in the partition contains record that all
have the same class [10].

In our case, we use that method to find the best attributes for discriminating the LOC-bin label. The
found attributes were used in the refinement of the association rules.

Fig. 2. Distribution of the LOC values in five clusters

5 Decision rules and unexpectedness

Methods for rule discovery are widely used in many domains. However, most of the existing algorithms
have the drawbacks that they discover too many patterns which are either obvious or irrelevant.
Padmanabhan and Tuzhilin have developed ways to generate useful patterns by incorporating managers’
prior knowledge in the process of searching for patterns in data. They generate unexpected patterns with
respect to managerial intuition and use them to refine domain knowledge [8]. Recently they have
proposed an iterative refinement process in which it is possible to search through all possible rules [9]. In
this work, we use the concept of unexpected patterns to refine decision rules but not their meaning nor
their elicitation process. Another difference is the application domain which provides us with another
kind of attributes. Padmanabhan and Tuzhilin manage atributes from the business area, most of which are
categorical. We use quantitative attributes because they come from the application of software metrics.
This fact adds the problem of choosing the best way to partition the range of values of the attributes. In a
previous section we explained how to solve it.

Now, we introduce the basis of decision rules and the concepts of unexpectedness given in [9]. Let
I={i1 ,i2 ,.... ..,im } be a set of discrete attributes. Let D={T1 ,T2 ,.... ..,TN } be a relation consisting on N
transactions T1 ,.... ..,TN over the relation schema {i1 ,i2 ,.... ..,im }. Also, let an atomic condition be a
proposition of the form value1 �� ��������	� ��
���e2 for ordered attributes and attribute = value for
unordered attributes where value, value1 and value2 belong to the set of distinct values taken by
attribute in D. Finally, an itemset is a conjunction of atomic conditions. Then we assume that rules and
beliefs are defined as extended association rules of the form X → A, where X is the conjunction of
atomic conditions (an itemset) and A is an atomic condition. The strength of the association rule is
quantified by the following factors:

Confidence or predictability. A rule has confidence c if c% of the transactions in D that contain X also
contain A. A rule is said to hold on a dataset D if the confidence of the rule is greater than a user-
specified threshold value chosen to be any value greater than 0.5.

Support or prevalence. The rule has support s in D if s% of the transactions in D contain both X and
A.

Expected predictability. This is the frequency of occurrence of the item A. So the difference between
expected predictability and predictability (confidence) is a measure of the change in predictive power due
to the presence of X [10].

In [8] unexpectedness is defined by starting with a set of beliefs that represent knowledge about the
domain. A rule A → B is defined to be unexpected with respect to the belief X → Y on the database D if
the following conditions hold:

�� B and Y logically contradict each other (B AND Y |= FALSE);
�� A AND X holds on a ‘‘large’’ subset of tuples in D;
�� The rule A, X → B holds.

Given a belief and a set of unexpected patterns, the motivation behind knowledge refinement is that the

belief can be made stronger by refining it based on the discovered unexpected patterns. In the same paper
Padmanabhan and Tuzhilin demonstrate formally that the refined rules have more confidence than the
original ones.

6 Refinement process

We start with a set of beliefs which relate lines of code with MKII function points. Those beliefs are
based on prior knowledge from previous research. Then we search for unexpected patterns that could help
us to increase the confidence or to solve ambiguities or inconsistencies between the rules representing the
beliefs. The refinement process fits into a generic iterative strategy [9]. Each iteration consists of three
steps:

1. Pattern generation procedure: generation of unexpected patterns for a belief.
2. Selection procedure: selection of a subset of unexpected patterns that will be used to refine the

belief.
3. Refinement procedure: refining the belief using selected patterns.
The process ends when no more unexpected patterns can be generated. At the end of each iteration, the

set of beliefs is checked for validity, where validity may be defined in different terms such as minimum
support and confidence.

This generic refinement strategy can be viewed as a broad framework that can allow for a large
number of different refinement approaches. We have instantiated this generic strategy and created a
specific refinement process that is described below. The principal feature of our approach is the gradual
generation of the unexpected patterns by taking a single attribute in each iteration. We take advantage of
knowledge of good attributes for classification and use them progressively, beginning with the best. This
simplifies the selection of patterns and the refinement process.

Rules representing the beliefs were generated and visualized by using Mineset, a Silicon Graphics
tool. The initial beliefs are used to seed the search for unexpected patterns. Figure 3 is a graphical
representation of first rules on a grid landscape with left-hand side (LHS) items on one axis, and right-
hand side (RHS) items on the other. Attributes of a rule (LHS → RHS) are displayed at the junction of its
LHS and RHS item. The display include bars, disk and colours whose meaning is given in the graph.

Rules generator does not report rules in which the predictability (confidence) is less than the expected
predictability, that is, the result of dividing predictability by expected predictability (pred_div_expect)
should be greater than one. Good rules are those with high values of pred_div_expect. We have also
specified a minimum predictability threshold of 50%.

Fig. 3. Rules representing the initial beliefs

The following table contains numeric information about the represented rules. We have extracted the
rules with UFPMKII in the left-hand side because UFPMKII serve as predictors of LOC. Relations in the
opposite sense are not of interest.

Table 1. Initial beliefs

X
(UFPMKII)

��
(LOC)

Confidence
(predictability)

Support
(prevalence)

Expected
predictability

�������	��
����

420 >4987 75 7.14 7.14 10.50
245-295 3578-4987 50 4.76 11.90 4.20
245-295 2168-3578 50 4.76 33.33 1.50
190-245 2168-3578 50 9.52 33.33 1.50
120-195 2168-3578 50 16.67 33.33 1.50
120-195 < 2168 50 16.67 47.62 1.05

< 120 < 2168 100 28.57 47.62 2.10

The plot and the table show that good rules are in two software size intervals. When LOC > 4987 the

rule confidence is 75%, support 7.14%, and pred_div_espect 10.50. When LOC < 2168 confidence is
100%, support 28.57 and pred_div_expect 10.50. There are less transactions with high values of LOC
than with low values, this fact influences the lower value of suppor for LOC > 4987.

Intermediate rules are weak because they have low confidence and show confused correlations
between UFPMKII and LOC. Two conflicts that can be observed are the following:

1. UFPMKII: 120-195 → LOC < 2168

UFPMKII: 120-195 → LOC: 2168-3578
2. UFPMKII: 245-295 → LOC: 2168-3578

UFPMKII: 245-295 → LOC: 3578-4987

We take these rules (beliefs) to explain the refinement process that we propose. The beliefs selected are
those with confidence = 50%. The refinement process is applied to each belief.
Taking as the first belief (X → Y):

 If UFPMKII: 120-195 then LOC < 2168

(confidence=50%, support=16.67, pred_div_expect=1.05)

To refine that belief we take the following steps.
1. Pattern generation procedure. Generation of unexpected patterns (A → B) is based on

information from classification methods. We select the best attribute for classification
(RELATION) and use it to search for rules with LHS fulfilling the condition: LOC≥ 2168. The
potential unexpected patterns are shown in fig. 4. The following rule is a unexpected pattern with
respect to the belief:

If RELATION: 62-90 then LOC 2168-3578

Other possible patterns are the following, but they are not unexpected patterns because the rule
A, X → B does not hold.

If RELATION: 90-153 then LOC 3578-4987
If RELATION > 153 then LOC > 4987

2. Selection procedure. The unexpected patterns that we choose are those that can be used to solve
the conflicts between beliefs. They should have a minimum predictability of 50%. In this
example there is only one pattern to be selected:

If RELATION: 62.6-104.3 then LOC 2168-3578

This unexpected pattern is used to solve the conflict between the following beliefs:

If UFPMKII: 120-195 then LOC < 2168 (confidence=50%)
If UFPMKII: 120-195 then LOC: 2168 - 3578 (confidence=50%)

3. Refinement procedure. The belief is refined by searching for rules with the form X, A → B and
X, ¬A→ Y

If UFPMKII: 120-195 and RELATION: 62-90 then LOC: 2168 – 3578
(confidence = 100%, support = 9.52%, pred_div_expect =3)

If UFPMKII: 120-195 and RELATION: < 62 then LOC < 2168
(confidence = 70%, support = 16.67 %, pred_div_expect = 1.47)

Note the significant increase in the confidence and in pred_div_expect.
The remaining beliefs are treated by carrying out the same steps. The process is iterative. Refined

beliefs are the input to the next iteration. In that iteration new unexpected patterns are generated by taking
another good attribute (the following best attribute) from classification models. The refinements obtained
in the first iteration can be seen in figure 5.

In the second iteration the attribute selected to find the unexpected patterns is NTRNSMKII. A belief
to be refined in that iteration is:

If UFPMKII: 120-195 and RELATION: < 62 then LOC < 2168
(confidence = 70%, support = 16.67 %, pred_div_expect = 1.47)

The only unexpected pattern with respect to NTRNSMKII is:

If NTRNSMKII: 28-38 then LOC:2168-3578

The refined beliefs are:

X, A →B UFP:120-195, RELATION:62-90, NTRNSMKII:28-38 ⇒ LOC:2168-3578

(confidence: 100%, support: 2.38%, pred_div_expect: 3)

X, ¬A →Y UFP: 120-195, RELATION: < 62, NTRNSMKII:18-28 ⇒ LOC < 2168
(confidence: 75%, support: 7.14%, pred_div_expect: 1.57)

 UFP: 120-195, RELATION: < 62, NTRNSMKII<18 ⇒ LOC < 2168
(confidence: 80%, support: 9.5%, pred_div_expect: 1.68)

In all cases confidence and pred_div_expect of the refined beliefs are greater than the original beliefs.
Therefore, we have demonstrated empirically that the rules are stronger after the process of incremental
refinement.

The iterative process can continue if more unexpected patterns can be generated by taking de following
best attribute.

Fig. 4. potential unexpected patterns in the firs iteration

Fig. 5. Refined beliefs in the first iteration

7 Conclusions

Due to the interest that the estimation of the software size has in the first stages of the project, we have
studied the relation between early software size measures as the function points and measures of the final
product as the lines of code. In this work we have presented the results obtained by using knowledge
discovery-driven techniques. The goal is to generate strong association rules between attributes that can
be obtained early in the project and the final software size. To do that we have instantiate a rule
refinement framework [9] based on discovering unexpected patterns for a belief. By this means we have
created a specific process that is very appropriate for solving problems in the project management area.
Our approach introduce some features that improve and simplify the refinement process and solve some
problems such as the treatment of quantitative attributes.
The main aspects of our proposal are the following ones:

Data clustering is used for partitioning the values of quantitative attributes into a suitable number of
intervals. The best partition was obtained from the study of the distribution of attribute values in each
cluster

The identification of weak rules representing beliefs and conflicts between them is the starting point to
the iterative refinement process.

The generation of the unexpected patterns is gradual, by taking a single attribute in each iteration. We
use information about good attributes for classification and take them progressively, beginning with the
best. This simplifies the selection of patterns and the refinement process because the number of patterns
generated in each iteration is less.

References

1. Albrecht, A.J.: Measuring Application Development. Proc. IBM Applications Development Joint SHARE/GUIDE
Symposium, Monterey, CA, (1979) 83-92

2. Hall, B., Orr, G., Reeves, T.E.: A Technique for Function Block Counting. The Journal of System and Software,
57 (2001), 217-220

3. Boehm, B.W., Clark, B., Horowitz E. et al.: Cost Models for Future Life Cycle Processes: COCOMO 2.0. Annals
Software Engineering 1 (1995) 1-24

4. Moreno, M.N., Miguel, L.A., García, F.J., Polo, M.J.: Data Mining Approaches for Early Software Size
Estimation. Proc. 3rd ACIS International Conference On Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD’02), Madrid, Spain (2002). In press

5. Verner, J., Tate, G.: A software size model. IEEE Transaction of Software Engineering, 18 (1992): 265-278
6. Symons, C.R. : Software Sizing and Estimating MKII FPA. John Wiley and Sons, (1991)
7. Dolado, J.J. : A validation of the component-based method for software size estimation. IEEE Transactions on

Software Engineering 26(2000): 1006-1021,.

8. Padmanabhan, B., Tuzhilin, A.: Knowledge Refinement based on the discovery of unexpected patterns in
datamining. Decision Support Systems 27 (1999) 303– 318.

9. Padmanabhan, B., Tuzhilin, A.: Unexpectedness as a measure of interestingness in knowledge discovery. Decision
Support Systems 33 (2002) 309– 321.

10. Mineset user’s guide, v. 007-3214-004, 5/98. Silicon Graphics (1998).

