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Abstract. In this paper a competitive neural network with binary synaptic 
weights is proposed. The aim of this network is to cluster or categorize binary 
input data. The neural network uses a learning mechanism based on activity 
levels that generates new binary synaptic weights that become medianoids of the 
clusters or categorizes that are being formed by process units of the network, 
since the medianoid is the better representation of a cluster for binary data when 
the Hamming distance is used. The proposed model has been applied to 
codebook generation in vector quantization (VQ) for binary fingerprint image 
compression. The binary neural network find a set of representative vectors 
(codebook) for a given training set minimizing the average distortion.  

1   Introduction 

The unsupervised competitive learning is a mechanism that allows the detection of 
regularities in the patterns inputs. It was introduced by Grossberg ([1] and [2]) and 
von der Malsburg ([3]) and developed by Amari et al ([4] and [5]), Bienstock et al 
([6]) and Rumelhart et al ([7]).  The aim of unsupervised competitive learning is to 
cluster or categorize the input data. Similar inputs should be classified as being in the 
same category, and so should fire the same output unit. 
  A competitive neuronal network consists of a single layer of M process units 
(neurons) fully connected to a same input x∈ RN and producing an outputs  yi∈ {0,1}, 
i=1,2,…,M. We say that process unit i is active if  yi=1.  For each input (stimulus) 
there is only one active unit. This active unit is called the winner and is determined as 
the unit with largest activation potential. The activation potential of the process unit i 
is the inner products wi

Tx, where wi  is the synaptic weight vector of process unit i and 
||wi||=1. Thus the winner is that process unit with the weight vector closest to the input 
vector x (in Euclidean distance sense). That is, the best match of the input vector x 
with the synaptic weight vectors.  The synaptic weight vector of the winning process 
unit, r, is updated according to the standard competitive learning rule,  

              ∆wr=η(x-wr).                      (1) 



which moves wr directly toward x. In this way, the synaptic weight vectors will 
become the centroids of the M clusters or categories that are formed by the networks. 
However, since the learning parameter η∈ (0,1) the new weight vector wr could be no 
binary. We look for a new learning rule where the weight vectors became medianoids 
of cluster of input data. Note that the medianoid of a cluster of binary inputs is its best 
representation.   

A well known binary competitive network is the Hamming network that is a 
maximum likelihood classifier that can be used to determine which of a group of 
prototype vectors is more similar to the input vector (stimulus). The prototype vectors 
determine the synaptic weights. The measure of similarity between the input vector 
and stored prototypes vectors is given by N minus the Hamming distance between 
these vectors. Another learning model that also allows the formation of clusters is the 
method ART1 (Adaptative Resonance Theory) that was developed in [8] (a simplified 
version has been shown in [9]).  This algorithm adjusts the winning vector wr by 
deleting any bits in it that are not also in x. However, while wr  preserves its binary 
nature, the new prototype wr can only have fewer and fewer 1s as training progresses.  

 
In this paper a new model with binary inputs, output and synaptic weights is 

proposed based on a learning rule that preserves the binary nature of the synaptic 
weights and they become the medianoids of clusters of input data. Moreover, the 
binary synaptic weight vectors are not normalized as in the simple competitive 
learning and so we have 2N possible binary vectors instead of N. This algorithm uses 
only binary operations and so it is very computationally efficient. The rest of this 
paper is organized as follows. In the section 2 we develop the model Biconn (Binary 
Competitive Neural Network). We present an application to compression of 
fingerprint images by codebook generation in section 3. Conclusions are presented in 
the section 4.  

2   A Binary Competitive Neural Networks 

Consider the Hamming space HN,   

HN={x=(x1,x2,…,xN)T∈ℜ N:  xi∈ {0,1}, i=1,2,…,N}  

The Hamming distance between the binary vectors x=(x1,x2,…,xN)T, 
y=(y1,y2,…,yN)T∈ℜ N, is given by expression  dH(x,y)=xT(1-y)+(1-x)Ty.  Let 
C={x1,x2,…,xp}  be a set of  p vectors of HN. We define the medianoid of C as the 
vector   m = (m1, m2, ..., mN) of HN  given by expression 
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where ui is the number of i-th components of vectors of C with value one and vi is the 
number of i-th components of vectors of C  with value zero. It is easy to prove that the 
medianoid de C is the best representation of C by a vector of HN  when the Hamming 



distance is used. That is, a medianoid of C is the vector w that minimizes the 
distortion function given by the expression 
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Next we propose a binary competitive neural networks to cluster or categorize 
input data where synaptic weight vectors become the medianoids of clusters.  

The binary neural network consist of a single layer of M output units, {O1,O2,…, 
OM}, each receiving the same input x=(x1, x2, ..., xN)’ and producing an outputs  
{y1,y2,…, yM}. They are fully connected to a set of inputs (x1, x2, ..., xN) via 
connections wij, i=1,2,…,M, j=1,2,…,N, that are called  synaptic weights. We consider 
that inputs, outputs and synaptic weights are binary.  Only one of the output units, 
called the winner, can be activated at a time. The active unit is determined as the unit 
with the largest net input, where the net input of unit i is given by the expression 
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and its output is 
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Thus, the winner is that unit with weight vector closest (in Hamming distance sense) 
to the input vector.  It is established in the following proposition: 

Proposition 1 
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where wi=(wi1,wi2,…,wiN)’ is the synaptic vector of the unit i. 
 
Proof. 
We have 
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since wij
2 = wij. Thus, the result is followed. �  

 
Next we present a learning process to determine the synaptic weights. First, we 

consider a set },...,,{ 21 pC xxx= of p inputs. We want to find M synaptic vectors to 
minimize the distortion function, that is,  
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In this way, synaptic vectors are the best representation of inputs data by M binary 

vectors. That is, the synaptic vectors must be medianoids of clusters of the input data. 
The rule of simple competitive learning for continuous inputs leads to a update of 

the neural network so that its synaptic vectors are moved toward input vectors, that is, 
the new synaptic vector is a linear combination between the old synaptic vector and 
the input vector. However, the lineal combination of two binary vectors could be a no 
binary vector and so the new synaptic vector could be a no binary vector. It is 
necessary a new learning process such that the new synaptic vector becomes a binary 
vector at the same time that it also comes near to input vector.  Thus, we propose a 
new learning rule based on activity levels to attain this goal. In each stage, we updates 
the components of the winner synaptic vector according to a learning rate ηij(k) that 
depends on the activity level. The activity level of the jth component of the synaptic 
weight wi after presentation of the kth training pattern, x(k)=(x1(k),x2(k),…,xN (k))T,  is 
given by  
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where } ,1)(  :{)( kssyZskC ii ≤=∈= + . It give us a balance between zeros and ones 
of the  jth components of presentation patters with yi(s)=1, s≤k. That is, if aij(k)>0 
then the median of the set  {xj(s), s∈  Ci(k)}  is one while if aij(k)<0 then the median is 
zero. Note that 
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The new learning rule is given by expression 
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That is, the weight wij  is changed only when the unit i is winner and the sign of the 

activation level is modified by the new training pattern. Note that the expression (8) is 
similar to simple competitive rule but the learning parameter is now different. In this 
way, the synaptic weight vectors will become medianoids of inputs patters. 

It is easy to prove that this learning rule guarantees that the new synaptic vector 
will be more similar to input vector than the old synaptic weight. It is established in 
the next proposition.  



Proposition 2 
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Proof: 
It is obvious since  
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Next we study the binary learning parameter ηij. Let {x(r), r=1,2,…,p} be drawn 
independently according to a finite mixture distribution. Then ηij(k) is a random 
variable that depends on {xj(s), s∈  Ci(k)}. If  P(Xj(r)=1) = p, r∈ Ci(k), then  
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(10) 

 
This probability tends to zero as k tend to infinite. So the learning parameter ηij(k) 

entails a convergence to zero. Like competitive neural networks, this network evolves 
until a local minimum is reached. 

 
In this way we have the following algorithm: 

 
Step 1:  Initialization. 

   Generate M  binary synaptic vectors  w1,..., wM. 
 
Step 2:  kth  iteration. Synaptic potentials. 



Given a input vector, (x1(k),x2(k),…,xN(k)) determine the synaptic  
potentials hi, i=1,2,...,M, by expression  

( )∑
=

−=
N

j
ijji wkxh

1

5.0)(  

Step 3:  Winner unit. 
         The unit r is activated (winner), yr=1,  if  hr ≥ hj ,  j=1, 2,...,M. 
 
Step 4:  Update activity levels  
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Step 4:  Update synaptic weight 
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Paso 6:  Stop rule. 
             If the learning parameters are equal to zero during an epoch of training, 

stop. In other case, go to step 2. 
 
On the other hand, in an update in batch mode we only have to assign to each synaptic 
vector, wi, the medianoid vector of the set of inputs that activate unit i.  

3. Experimental results: Codebook generation in vector 
quantization 

The aim of this network is to cluster or categorize the input data. It can be used for 
data encoding and compression through vector quantization, where each input vector 
is replaced by the code of the winner output unit.  In this application, the digital 
images to be encoded are decomposed into small blocks, say 3 by 3 pixels, called 
vectors. The resulting vectors are represented by the “nearest” of a reduced set of 
prototype vectors, called codewords.  The set of codewords used to represent an 
image, or a portion of an image, is called codebook. The codebook is given by the 
synaptic weights of the netwok.  
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Fig. 1.  (a) Fingerprint image. (b) Compressed fingerprint image. 

To illustrate the performance of the proposed algorithm, we consider a fingerprint 
image of size 255×255 (see figure 1(a)). It is partitioned in 7225 blocks (windows) of 
size 3×3. The problem is to find 4 prototype blocks (windows) of size 3×3 such that 
when each block is represented by one of the prototype blocks then we obtain the best 
possible representation. That is, we want to minimize the distortion function and so 
the prototype blocks should be medianoids.  

In our experiments, we use the peak signal to noise ratio (PSNR) to evaluate the 
quality of a compressed image. For an original image F={fij, i=1,2,…,m, 
j=1,2,…,n}and its corresponding compressed image F’={fij

’, i=1,2,…,m, j=1,2,…,n}, 
the PSNR is defined as follows: 
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where 1 is the peak grey level of the image, fij and fij
’ are the pixel grey levels from the 

original and compressed images, and m×n is the number of pixels in the image. In 
general, the higher PSNR value of an image implies the better image quality. 

The compressed image is constituted by prototype blocks, that is, medianoids, and 
when each block is replaced by its prototype block then we would obtain the most 
look like image to original image. In this way, we need only 2 bits to represent 4 
prototype blocks while each block of the original image is represented by 9 bits, so the 
compression rate was about 9 to 2, that is, 2/9 bits per pixels (bpp).This problem is 
solved by a binary competitive network with 4 units. It finds the prototypes blocks    
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(10) 

They correspond to 3311, 2704, 629 and 581 windows, respectively. The mean 
distortion error of a block is 0.8851 and the PSNR achieved was 10.07 dB.  The figure 
2(b) shows the compressed image. The compressed image retains features as such 
ridge lines, ridge bifurcation, arch, deltas, etc. Note that the new compressed image is 
formed by only 4 different blocks and so it can be compressed better than the original 



one by any compression techniques. Moreover, like other algorithms, the algorithm 
finds several solutions (local minimum); it depends by the initial set of synaptic 
weights. So, it also finds other prototype blocks such as 
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that correspond to 843, 839, 2840 and 2703 windows, respectively. The figure 2(c) 
shows the compressed image. The mean distortion error of a block is 0.8861 and the 
PSNR achieved was 10.06 dB.  This experiment has a lot of local minimum but the 
network always find solutions with mean distortion error less than 1.  Although the 
experimental outcomes do not distinguish the proposed algorithm from the standard 
competitive learning algorithm and other algorithms such as the well-known 
generalized Lloyd algorithm (GLA), also referred as k-means algorithm due to 
McQueen (see [10]), however, it always uses binary synaptic weights and binary 
operations, and evolves from binary values to binary values, whereas other algorithms 
use real values. Hence, the proposed algorithm is more computationally efficient.  

4. Conclusions 

A binary competitive neural network has been proposed where synaptic weight vectors 
are binary vectors. The new synaptic weight vector is obtained by a learning 
mechanism that guarantees that it will be closer to input vector and at the same time 
that it will be also binary. First, we have shown that a necessary condition for a 
optimum solution to the problem to minimize the distortion function is that binary 
vectors have to be medianoids. In the proposed model each synaptic weight vector 
evolves to the medianoid vector of cluster that is being formed by process units of the 
network. Moreover, this model is more computationally efficient than the simple 
competitive model with continuous weights. Finally, the model has been applied to 
image compression and though it reaches a local minimum this is global or a good 
solution.  
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