EES: Efficient Data Structure for Decision Rules
Evaluation in Evolutionary Learning*

Jesus S. Aguilar—Ruiz, Raul Giraldez, José C. Riquelme, and D. S. Rodriguez

Department of Computer Science, University of Seville
Avenida Reina Mercedes s/n, 41012 Sevilla, Spain
{aguilar,giraldez,riquelme}@lsi.us.es

Abstract. The increasing amount of information available is encourag-
ing the search for efficient techniques to improve the data mining meth-
ods, especially those which consume great computational resources. We
present a novel structure, called EES; which helps certain data mining
algorithms which generate decision rules to reduce the aforementioned
cost. It is of particular interest when the search for the solution involves
a great many hypothetical solutions. Thus, this structure is designed for
speeding up the rule-evaluation process in methods based on Evolution-
ary Algorithms. The traditional structure, based on vectors of examples
(in which the database is stored) is evaluated and compared with EES,
including the costs for a stratified set of cases. Finally, the experimental
results demonstrate the quality of our proposal, reducing the computa-
tional cost by approximately 50%.

1 Introduction

Within the context of supervised learning there exist in the literature a large
number of methods and algorithms that extract inherent knowledge from a la-
belled database and build a model which represents the extracted information. A
great number of these methods (CN2 [2], RISE [4], OC1 [9], GABIL [3], GIL[7],
etc) use probabilistic algorithms to look for solutions in space, with a high com-
putational cost, principally due to the repetitive evaluation of the candidate
solutions. This work focus on those systems that define a probabilistic heuristic
for the generation of decision rules, especially on those methods that use an
Evolutionary Algorithm (henceforth EA) in order to carry out such aim. Thus,
we propose a data structure which reduces the computational cost of evaluation
in the learning process.

The aforementioned methods usually evaluate the rules directly from the
database. That is to explore such database sequentially, taking each of the ex-
amples and testing the quality of the rule through the correct classification of
those examples. We can see, therefore, that the learning process of these systems
is very costly in terms of time and space. Some authors [10, 11] have concentrated
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their efforts on improving the learning process by speeding up the algorithm, in
order to reduce its computational cost. Others have approached the problem
from the perspective of scalability [12]. However, the appropriate organisation
of the information could also contribute to the reduction of computing time.
This aspect, no less important than the previous one, has perhaps been more
neglected.

There are in the literature numerous proposals on data structures and organ-
isation of the information which essentially speed up the search for information
in multidimensional spaces, such as those known as Multidimensional Access
Methods (MAM)[5]: Grid File , LSD-tree ,K-D-Tree , R-tree , etc. However,
given the peculiarity of the problem we are facing, MAM do not, in themselves,
provide a solution to such problem, since they index a dataset with the goal
to speed up the queries on such data. However, we want to reduce the cost of
evaluation of decision rules. To do it, we distributes the examples according to
the values that they take for each attribute. Thus, we know exactly what ex-
amples fulfill these rules. For instance, AD-Tree [8] is the MAM that gives the
nearest solution to the problem we want to solve. Nevertheless, if we would want
to evaluate a decision rules using this structure, we would have to build the no
sparse AD-Tree, that is to store all possible queries in addition to the indexes
of the examples that each query includes. This means very high computational
cost, since too mach redundant information is stored.

In this work we are presenting a data structure called EES (Efficient Eval-
uation Structure) which is designed specifically for accelerating the evaluation
process of rules during the application of data mining algorithms based on EAs.
The EES structure organises the information from a database in such a way that
it is not necessary to process all the examples in order to evaluate decision rules
generated by a supervised learning system.

An EA codifies decision rules as individuals in the genetic population. Once
the population is constructed the individuals are evaluated and depending on the
quality of each one of them, the crossover and mutation operators are applied,
thus constructing the next generation. It is simple to see that those systems
that apply EAs need to carry out constant evaluations throughout the learning
process, since they have to evaluate each one of the individuals of each one of
the populations that they generate. For example, an EA that carries out 300
generations, each containing 100 individuals, needs to carry out at least 30,000
evaluations. If the database contains 1000 examples the process will be carried
out 30 million times. In the particular case of EAs applied to the generation
of rules, the database is stored in a vector of examples (see Figure 1), which is
used for evaluating of every individual. Evaluation by means of a linear search
processes each and every one of the examples in the database independently of
the conditions established by the rule. As can be seen in Figure 1, not all the
covered examples are correctly classified (only Examples 4 and N).

Therefore the computational cost of a single evaluation is O(N M), where N
is the number of examples and M is the number of attributes in the database.
The rule-learning methods that EAs use invest approximately 85% of their time
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Rule: If A in[35,4.9] and A,in{V1 V2 V3, V5 V7 }and..andA in[7.0,12.7] then Class B

‘—+ +—I #giorrectly

A A, A, Class Covered  classified
Example1 [44 [ V3 96 A —> yes no
Example2 [ 36 | V3 76| A —> yes no
Example3 [ 12 [ V5 23| B — 1o -
Example4 | 41 | V7 109 A —> ves ves
Example5 | 45 | V6 79| ¢C —> 1o -
Example N-1 [14.2 | V3 96| A —> 1o
ExampleN [ 36 | V3 91| B —> yes ves

Fig. 1. Evaluation of a rule using a vector of examples.

in evaluating the individuals (the mean of the executions of a 10-fold cross-
validation with 20 UCI Repository databases [1]). This is the reason why we
propose the EES structure in order to organise the information in such a way
that only the necessary examples from the database will be dealt with, and not
all data.

2 Description

EES distributes the information from the database in such a way it is possible
to carry out a search in the space by attribute instead of by example. The data
structure must be capable of storing this information independent of the type
of attribute (continuous or discrete). In the case of continuous attributes it is
convenient to apply a method to transform them into discrete which reduces the
cardinality of the set of values that this type of attributes can eventually take.
In certain cases the methods of rule-generation apply a method of discretization
as pre-processing of the data in order to calculate such intervals. EES must
be constructed using the same sets of intervals obtained by the discretization
method applied by the rule-generation method. This does not imply any kind
of limitation as regards the data structure, since the latter is totally flexible
as opposed to the discretization used by the continuous attributes. The only
restriction demanded of the discretization method is that the generated intervals
be disjoint, given that if this were not the case there could exist in the database
a value pertaining to various intervals. In any case we will be able to maintain
infinite rank, that is to say, we will not need to apply any discretization method.
The EES structure would still be valid: in this case the number of nodes would
increase and the size of the lists associated with the nodes would be reduced
even to length equal to one.

In general, for every attribute A; in the database we will denote the finite set
of values that A; can take by (2;. In the case of A; being a discrete attribute 2;
will contain values which we will represent as V;; (1 < j < |£2]). On the other
hand, if we are dealing with a continuous attribute, {2; will contain intervals
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1 i k M

Fig. 2. General schema of EES.

which we will call I;; (1 < j < |£2]), the lower and upper bounds of which
we will denote by l;; and u;; respectively. In this manner EES will store the
information of the continuous attributes in a similar way to that which it does
for the discrete attributes: the lower and upper limits of each interval will be
saved in place of the unique values that are stored for the discrete attributes.

EES arranges the information from the database in a vector of binary and
balanced search-trees in such a way that the i*"* element of the vector will con-
tain information about the i*" attribute (A;) in the database. Specifically, the
different values or intervals that A; can take are stored in the tree, which we will
denote by T;. In addition to Vj; or I;; , each node IV;; of the tree T; contains a
list (L;;) of numbers which indicate the positions of examples in the database.
If A; is discrete, the indexes contained in the list L;; will correspond to those
examples, the i'" attributes of which take the j** value (V;;) within the £2; set
of possible values of such attribute. If A; is continuous, the indexes contained in
L;; will correspond to those examples, the value of which for the it" attribute is
included in the j** interval (I;;) within the £2; set of possible intervals of such
attribute. Figure 2 shows the simplified general schema of the data structure for
a database with M attributes, where the i*" attribute is discrete while the k"
is continuous. It is important to note that in the case of continuous attributes
the tree is sorted (inorder) by (disjoint) intervals and in the case of discrete at-
tributes it is arranged alphabetically by the discrete value. In this manner, any
search within the tree has a logarithmic cost.

2.1 Construction of the EES structure

Let us start from the information contained in a labelled database with N ex-
amples indexed from one to N, each of them with M attributes of any type (see
Figure 3). In these M attributes we are not including the class. Previously a
discretization method similar to the method 1R described by Holte in [6] has
been applied, although any other supervised discretization method could have
been used. This method obtains a set of disjoint intervals for each one of the
continuous attributes in the database. For each attribute (A;) a balanced search-
tree is created and inserted in the structure in the corresponding position (7).
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N A;:Size A,:Colour Class A, (continuous) A(discrete)
1 2.0 blue A Size Colour
2 1.0 green A ! !
3 1.2 green A
4 1.4 blue A Lis 115 1.9) green L,
5 1.0 red A 7.8,15} {2,3,8,11, 14}
6 14 red A
" 12 1.1, 1.3 1.9, 2.2] blue red 23
7 17 blue B L. L ) L ] L
8 1.8 green B 3,9,13} ’ ? 5.6,9}
9 1.2 red B L’ L,y
0| 21 blue A Lis [10,11) [13,15) L Lis {4,4.7.0,12.13. 15}
11 2.2 green A (2.5.12} 1,10, 11, 14}
12 1.0 blue A Lis
13 1.2 blue B 4.6}
14 2.0 green A T ¥
15 16 blue B Tree T, Tree T,

Fig. 3. Example.

The nodes of these trees contain the values or intervals according respectively
to whether the attribute is discrete or continuous. Once all the trees have been
created and inserted, the lists for each node are completed. A linear search of
the database is carried out, passing through all the examples. For each attribute
A; of a specific example, the node corresponding to the value of such attribute
will be searched for in the tree T;. Once the node has been located, the index
of the example being processed is inserted into the list of such node and the
next attribute of this example is processed. When all the attributes of an ex-
ample have been treated we say that the example has been inserted into the
structure, and we go on to process the next example. At the point at which all
the examples have been inserted, the structure contains the same information
as the database, excepting the class of each example. However, this information
is directly accessible during the use of the structure, since the latter stores the
indexes of examples. The computational cost of the construction process of the
data structure is O(N Mlogs|f2|), where §2 is the mean number of tree-nodes.
Figure 3 shows a labelled database with 15 examples (two attributes and two
classes), and the EES structure that is obtained starting from the this database.

2.2 Use of the EES

The fundamental property that the data structure offers is the possibility of ac-
cessing the information from the database through attributes instead of through
examples. The main aim that we are looking for in the use of the data structure is
not having to process those examples, the values of which are not covered by the
rule which is being evaluated. If we take a node IV;; of each T, the intersection of
the lists L;; will be the set of the indexes of examples which fulfill that each one
of its attributes A; take values which are covered by each corresponding node
N;;. The advantage that the EES offers lies in the fact that the intersections are
carried out in an incremental manner - that is to say, firstly the intersection of
the list for the attribute A; and the list for the attribute A, is carried out. If
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Function EVALUATE
Inputs: R: Decision Rule; E: Data Structure
Output: L: List of indexes (examples covered by R)
begin
i:=1
L; := ListUnion(R, E, 1)
while i < NumberO f Attributes(E) A L; # 0
=1+ 1
Li:=Li_1 () ListUnion(R, E,1)
end while
L:= Li
end EVALUATE
Function ListUnion
Inputs: R: Decision Rule; E: Data Structure; k: Integer (attribute location)
Output: Lu: List of indexes(examples covered by Ry,)
begin
Lu := 0; Ty := E[k];
if Ay is Continuous
for every I; € Ty | I; C Ry
Lu:= Lu U Lyj
end for
else /* Ay is Discrete */
for every Vi; € Ty | Vij € Ry
Lu:= Lu U Lyj
end for
end if
end ListUnion

Fig. 4. Algorithm for the use of EES.

such intersection is not empty, the list for the attribute As is searched for and
a new intersection between this and the result of the previous intersection is
created. This process is repeated until all the attributes are completed, or until
one of the intersections remains empty. If the process concludes, the resulting
list will contain the indexes of the examples which fulfill the values or intervals
of all the selected nodes IV;;. If these nodes IV;; are searched for according to
the conditions established by a decision rule, we will be evaluating such rule.
The pseudo-code of the evaluation algorithm for decision rules using the EES is
shown in Figure 4.

The notation used in the algorithm in Figure 4 is the same as that used in
the general structure of Figure 2, excepting the following symbols: E represents
the data structure and R is the rule to be evaluated, while R; is the condition
that R establishes for the attribute A;. The symbol L; (with a single subindex)
represents the list of accumulated intersections until the ' iteration, that is
to say, until the *" attribute. The algorithm is divided in two functions. The
first, EVALUATE, is the main function and has as its input parameters the
decision rule R and the data structure E. The rule R has the structure that
is shown in Figure 1, the condition that R establishes for the k' attribute in
the database being represented by Rj. The function EVALUATE offers a single
output parameter (L), which is the list of indexes of examples resulting from
the evaluation of the rule R on the data structure E. In this way, the function
EVALUATE searches the rule R and the structure E simultaneously, calculating
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the intersections of the lists and returning the final list (L). The main function
uses an auxiliary function named ListUnion, that has the rule R, the structure
E and a integer which indicates the attribute which it has to deal with. The only
output parameter of this function is the list of indexes (Lu) corresponding to
the union of the lists Lj; for the attribute Ay (with 1 < j < |f2]). This union
of lists is necessary owing to the fact that the condition of the rule R for the
attribute A, can include various nodes of the tree 7). In the case of continuous
attributes the first node included in the condition that the rule establishes is
searched for in the tree. Once located, a inorder-walk of the tree starting from
such node and stopping when it finds the first node which is not covered by the
condition is carried out. In the case of discrete, it is necessary to search for all
the values that the rule establishes for such attribute in the corresponding tree.
When dealing with both cases of balanced search trees, all the searches carried
out in them have a logarithmic cost.

3 Experiments

The experiments carried out to test the efficiency of the structure consist of
evaluating various sets of decision rules for 15 different databases from the UCI
Repository, as opposed to the linear search habitually used for the evaluation
of decision rules. For each database groups of rules are generated in an aleatory
manner, through use of a method which assures the uniform distribution of these
rules. Subsequently, such rules are evaluated using the linear method and the
data structure EES and the results obtained are compared.

The linear method of evaluation used in the tests is the most efficient one
possible. For each rule this method searches the database, which has previously
been stored in an vector of examples, processing each and every one of the
examples. Likewise, for each example, the verification that its attributes fulfill
the conditions of the rule is also carried out in a linear manner. However, it is
not always necessary to process all the attributes of every example. If, during
the processing of an example, one of its values does not fulfill the condition that
the rule establishes for the corresponding attribute, that example is no longer
processed as it will no longer be able to fulfill the rule, independent of the values
that the rest of the attributes take, and the next example will be processed.
Given that could think that the major advantage of the structure lies in the
evaluation of rules which do not cover examples, in order to ensure that the
test-method is fair two types of rules have been generated and evaluated: valid
and invalid (see the results varying the percentage of valid rules in Figure 5).
Let us call a rule valid if it covers at least one example in the database. In
comparison, a rule which does not cover any of the examples in the database
shall be called invalid. According to these definitions a valid rule will ensure
that the structure is completely searched, while in the case of an invalid rule
the evaluation process of the data structure will be halted before the search of
the latter has been completed. Although, a priori, the evaluation of invalid rules
seems to be pointless, this is not so, since the learning methods based on EA
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Table 1. Comparison of average results and improvement.

BD A.T. ESS A.T. Vector Improv.(%)
bupa liver disorder 1.464 4.370 66.5
breast cancer (Wisc.) 5.572 13.421 58.5
cars 2.173 4.870 55.4
cleveland 3.460 6.042 42.7
glass 1.634 2.884 43.3
hayes-roth 0.720 1.499 52.0
heart desease 3.018 6.228 51.5
iris 0.517 1.536 66.3
led7 20.689 34.905 40.7
letter 222.556 842.784 73.6
pima indian 4.283 11.309 62.1
soybean- 1.661 2.808 40.8
tic-tac-toe 7.623 11.031 30.9
vehicle 8.937 18.785 52.4
wine 2.084 4.120 49.4

generate intermediate rules which in many cases do not cover any examples. It
is worth noting to take this into account, seeing that EES is focus on this kind
of methods.

Table 1 shows the following: for each database (first column) the average time
used by the EES structure (second column) and that used by the linear method
(third column), as well as the improvement obtained by EES as compared with
evaluation using the vector (final column). For each database the improvement is
given by Equation 1, which represents the percentage of time saved by using the
EES structure with respect to the time used by the vector in the average-case.

Time(Vector) — Time(EES)

Improvement = 100 X 1
P Time(Vector) )

As can be observed in Table 1, for all the databases the average time taken
by the EES is noticeably less than that taken by the vector. This ensures that
the improvement will always be positive, that is to say, that the EES always
improves on the linear structure. If we calculate the mean improvement for the
15 databases, we obtain the result that the average improvement is 52.4%, which
is to say that the structure takes practically half as much time in evaluating the
rules.

The experimental results are graphically shown in Figure 5. This Figure
contains 15 graphs, one for each database used in the tests, which represent the
evaluation time in seconds against the percentage of valid rules in the sets of
rules evaluated. In turn, each graph contains two curves: the grey line shows the
temporal results obtained for the evaluation using the vector of examples, while
the black line refers to the results for the evaluation using the EES structure.
Both representations show the temporal variation as the percentage of valid
rules is increased. As graphs show, for all the databases used the behaviour of
the EES structure is very favourable in comparison with the vector of examples.
The first result that stands out is that for all the databases used, the evaluation
time taken by the EES structure is inferior to the time spent by the linear
method. The results show that EES is highly efficient independent of the type
of rule (valid or invalid) which gives an idea of the robustness of the structure.
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On the other hand, as the percentage of valid rules increases, so does the rule-
evaluation time for both methods. In this sense, it is interesting that for 8 of the
15 databases (Figure 5: a, b, f, g, h, i, j, k) the approximate incline of the curve
that represents the evaluation time for the method using EES is less pronounced
than the incline for the linear method. This indicates that as the percentage of
valid rules increases, the temporal evolution grows more slowly using the EES
structure than using the vector of examples.

4 Conclusions

In this work we are presenting the data structure called EES, the goal of which is
to organise the information from a database in such a manner that the efficiency
of the methods of generating decision rules based on Evolutionary Algorithms
is improved. ESS allows us to process only those examples, the values of which
are covered by such rule will be processed, and not the totality of the database.
In this way, the evaluation process of examples is incremental, that is to say, it
starts from a number of covered examples that is reduced as we analyse more
attributes of the structure. When the number of covered examples is reduced to
0, the rule ceases to be of interest, and therefore is no longer evaluated. Thus
EES calculates what examples are within a rule, if any; and not check if each
example satisfies all the conditions of a rule, as the vector of examples would do.
So this structure is not a method for indexing examples. Finally, the experimental
results show the quality of our propose.
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Fig. 5. Results.




