Towards MAS s design regarding communications and
mobility

GillesKlein, Ngla Amara-Hachmi, Amal El Fallah-Seghrouchni

LIPN-UMR 7030
Université Paris 13
99, Av. J.B. Clément
93430 Villetaneuse, France
Phore: (+33) 1 40403578
{gk, na, dfdlah} @lipn.univ-paris13.fr

Abstract. In this work, is shown how software engineering and mobile agents
may help the building of distributed-problem-solving programs. This paper
provides guidelines to build multi-agent systems. It focuses on a method to
distribute aents among computers on retwork-based systems in order to
improve load-baancing and reduce communications' cost. Mobile agents are
used to improve the runtime load dstribution.

Keywords. Design methodology, load badancing, distributed systems, Petri
nets, mobile aents.

Conference Topics. Multi-Agent Systems and Digtributed Al

2 GillesKlen, Ngla Amara-Hachmi, Amal El Fallah-Seghr ouchni

1 Introduction

The most important characteristic of agents is their lack of memory sharing. It
makes them relatively easy to dispatch over a network. However, even if agent-
oriented design simplifies this distribution, it is ill difficult to redize. The first
difficulty a software designer may encounter (following a dronological order) is the
regycling of former code-comporents. Integrating “non-agent” code into a Multi-
Agents System (MAYS) is not a simple task [JEN 93]. To overcome this problem, the
designer must diff erentiate the tasks “to agentize” in areaursive way. This gives me
choice over the granularity of the decomposition so that we can consider the software
componentsto be recycled (components canna normally be cut in different parts).

The second difficulty is the management of the risks associated with
synchronization. This difficulty must be solved by a formal analysis of the MAS
[Attaiya 1998].

To fill these two necessties (formalism and recursiveness, we used recursive Petri
nets to decompaose the program in sub-tasks.

The third difficulty, commonly associated with dstributed systems, is to manage
the load-balancing. It can be shown that a atic load-balancing (when the tasks have
been dstributed prior to the runtime) does not always give maximum efficiency ,
even if it was theoreticdly optimal. This is due to the approximations dore when
modeling a cmputer system [Taylor 2007. So dynamic load-balancing is needed to
correct the imperfections during the runtime. To perform dynamic load-balancing, we
conceived a system based on MASIF standard. As written above, agents, because of
their independence, are relatively easy to dstribute over a network, so they are very-
well adapted to help solve load-balancing problems. However, their independence
may render the situation more complex as no agent has a global knowledge of the
system. Now, the goal of load-balancing is not the improvement of the performances
of one ayent but of the whoe MAS. So it has been decided to use a method o
preferences aggregation based on negotiation [Vauvert 2001] to redistribute tasks
during the runtime.

2 Overview of the method

Our method d conception and implementation of MAS is composed o five
different steps (see Fig.1). During the analysis gep, the desgners must find the
spedfic pieces of information which will be necessary to create the system and then
anayse them. This gep can be decompased into two different parts:

TowardsMAS's design regarding communications and mobility 3

Analyae

Reusahble Externial
components | 1 25K8 [Customer| o op pmication

AL

Conception

Comranic atig;gents

BFECECESPRRE

[rple mernting the interac:tions and coneninications

Interactions I Communications
]
‘ Static agents’ placing ‘ Offline
‘ Dymnaic load-balancing ‘ Online

Fig. 0. Method of conception and implementation of MAS.

e The collect of information about the recyclable mde, about the needs and
toals of the austomer, as well asthe analysis of the future use of the program
and so of its needs of communication with the outside (users, other
programs...)

» Theanaysis of the task; during which, the task of the program must be “ cut”
in different subtasks that will then be given to diff erent agents.

Afterwards, during the design phase, the agents, themselves, are designed.

Once the gents have been designed, their interaction modes and then their
communication systems (down to the lowest level of abstraction). During this step,
the implementation of the system, itself, begins.

The last two steps include the positioning of the agents on the mmputer system (as
we aonsider a priori that the MAS will run ona multi-processor system (for example
a PC-clugter). The ayents must be placed but they will also have to be movable in
order to correct errors made during the static step or in order to adapt to an evolution
of the system.

3 Multiagent DOGS

The method presented in this article is born of our collaboration with THALES on
the “Multiagent DOGS’ project. So it is necessry to describe DOGS <o that the
decompaosition step of the method can be explained.

DOGS is a system of eectronic drcuits diagnostic based on intervals-logic [
Taillibert 1997. The former versons of DOGS were not built using the agent-
paradigm. So it has been necessary to decompaose the original program into different
sub-tasks which could then be distributed between the ggents. We had to reuse the
code of the former versions as much as possble. To obtain this result, we had to
define the minimal granularity so that we would not bresk reusable software-

4 GillesKlein, Ngla Amara-Hachmi, Amal El Fallah-Seghrouchni

components. There were dso tasks which were sequential so separating them would
not bring any gain.

DOGS can be separated in severa distinct parts: the program garts with a colled
of information (measure of the voltage value near certain eectronic components
(switches, diodes for example). Then the daracteristic equations of the drcuit are
cdculated at different levels of abstraction (from high level functional blocksto basic
component level). Then the theoretica values asociated with the drcuit are
cdculated and compared to experimental ones.

4 Design and implementation of the system

4.1 Decomposing of the task between the agents

4.1.1 Analyzing the recyclable softwar e-components

Before building the MAS, the designer shoud begin by analyzing the potentialy
recyclable software components. We do not advice one method or ancther for this
step of the conception. The most important during this step is to ensure that these
components are well -defined and constructed. It is necessary as, during the next step,
the granularity of the decompostion is partly determined by the results of this
andysis.
4.1.2 Building the Petri net

We will, now, describe the decompasition of the program into agents. We will use
reaursive Petri nets to achieve this goal. During the first part of the decomposition

_-77| Find every reofimctiommz
cormponert

-4 ----| Eecognie the irvportat meanres
onthe crout

Calmilate the theomwtical equations
aof the ciwuit

Compare the meamrs and the
equations, deduce any potertial
faibare

Fig. 2. DOGS Petri net developed orce

phases, the designers must build the gplication’s Petri net. A top-down method,
based on recursive Petri nets, is used (Figure 2). The Petri net representation of the
program which is obtained is not unique ad it can be necessary to badtradk in order
to make the recyclable components match the transitions of the Petri net.

The figure 2 could present the firgt iteration of DOGS's Petri net design.

4.2 Building the agentsand the MAS

4.2.1 Distributing the tasks between the agentsthrough recursive Petri net

Once the gplication’s Petri net has been built, it is used to build the agents. It
differentiates the tasks to be realized (they are represented by the transitions of the
Petri net) and it also gves the links between them. Two kinds of relations between
two tasks must be separated : there are “indifferent” and synchronized tasks.
(indifferent tasks are not related). Two indifferent tasks can be given to two different
agents o they can be fulfilled concurrently. When two tasks are synchronized, they

TowardsMAS's design regarding communications and mobility 5

must be digributed following a rule, as, for example, if they are aitomatically
sequential they shoud be given to the same agent. We propose the rule given by the
figure 3. It is advised to digribute the parallel and indifferent tasks on as many agents
as possble asit will then simplify the load-bal ancing on a multi-procesors g/stem.

The are also two other criteria that must be consdered, the software comporents
and the final clarity of the code. The first one's concern is the recyclable code (or the
functions libraries). It may happen that two tasks without any link have to be given to
the same agent as the code fulfilling both of them is inseparable (for example, if they
use the same sub-functions or if they are part of the same commercid li brary).

Seguence FParall. Sxchro
4 4
Shared resource | The full task i given to Fach task is giventoa If there are less access
the sarne agent separate agent points than tasks, it should

serialized, else see information

2 | = T o

information The full task is given to Each task is given to a Each task is givento a different
the sare agent separate agent agent or otie of the « pseudo
E o] secuence » is given one agent

s N

Fig. 3. Task distribution between agents regarding the tasks relations

In DOGS' case, we decided to separate the study and the research of the functiona
equations of the drcuit between “Block Agents’. Thase aents could have been
distributed randomly on the drcuit, but instead, we decided to create an abstraction
based hierarchy of Block Agents for clarity and programming-difficulties reasons. So
there ae high-abstraction Block Agents that study the circuit on a function-block
level (considering logical doors, for example) which then dstribute more mundane
agents on each suspect function Hock. The second category of agents studying the
circuits components (transistors, diodes ...), can find the non-functiona components
or verify that everything works correctly. It was also decided to centraize every
cdculus tasks into a single category of agents (instead of placing it in the Block
Agents) because of the @lculus libraries.

4.2.3 Agents building

In the last step, we distributed the tasks between the agents, however, it is not
sufficient to completely describe the ggents. We shall now describe the method of
construction of the models of agent. Abgtractly, we could consider that an agent is the
union of three parts: a work-module, a memory and a communication-modue. In
what follows, no rule of the memory and work-modue is describe, it could not
encompass every specific situation. Our concern here is how to describe the MAS
using Petri-nets 9 asto not lose the advantages of this formalism, once the system is
built. In what follows, the work-module (WM), which includes every tasks given to
the agent in the precedent part, will be represented by a set of Petri nets and the
memory (MEM) by the local environment of these networks.

Agent’'s WM'’s Petri nets are different from the nets of the tasks that have been
assgned to them. The difference is caused by the independence of the gents, the

6 GillesKlein, Ngla Amara-Hachmi, Amal El Fallah-Seghr ouchni

WM'’s environment is the MEM of its agent when the original tasks were
encompassed within the program’ s global environment.

So the new representation must take communications into accournt as the tokens
and the environment data must be transmitted from one gent to another. The Petri
nets must be modified to manage the communications and make them verifiable. To
obtain that result, we represent communications asin the figure 4.

In the example described in the figure 4, the original Petri net was a choice, it was
separated into two diff erent agents. Two types of communications had to be defined,
one for the data (type a on the figure) and one for the “token communications’ (type
b on the figure). We dso had to add new transitions to represent the agent’s
management of the communications.

Ageatl | legend

P_ Eavl
h ;_ o transitians and states

B 1 adided 10 eepresent the
l commaications

* I—'— betwesn the sgeda

4
%:l I *loken eomemiue sl
4

i :h ® dita communacations®
L]

o - Cosmunie stion
Modak

.
v

Comemication
Medule

Fig. 4. aPetri net-based model of communications

The mode we obtained takes communi cations into account.
4.3 Building the communications and adapting the agents

Once the gents have been built, their communication module must be mnceived.
Two points must not be overlooked:

First, the designers must consider the level of abstraction of the communications.

Then, they must choose the protocol s of communications to be used.

FIPA ACL-based messges dow the system when compared to JAVA object
transmitted between Java-programmed agents (as the first kind must be transformed
into typed data before being used. To choose the ommunications modes, having
studied well the needs and the links between the agents and the outside is necessary
[KLEIN 2002].

There ae dso different communication vectors for the messges (e-mail s using
TCP-1Pto UDP datagram sockets which are considered for DOGS). Chocsing a mode
of communication depends on a lot of criteria (security, compatibility...). To choose
TCP “because anyone does ®”, asin APRIL [Mc Cabe 1994], isnot a good solution.

Once the communications are built, the agents must be distributed on the computer
system, and the weight of the communications must be clculated (at least very
approximately, for example by using the following formula)

E*(T1+Tcom+T2) (E is the estimation of the frequency of this gecific kind of
communication, T1 the time necessary from sender agent to build the message, Tcom
the average length of the transport from Emisson to Reception and T2 the length of
the treatment necessary for the receiver to use the content of the message).

TowardsMAS's design regarding communications and mobility 7

If a ommunication is too costly, it must be diminished by pladng the
communicating agents near to one ancther or eliminated by breaking the
communicating agents and pacing the two communicating tasks in the same agent.

4.4 Placing the agents

Placing agents on a network so as to optimize the cmputationa power and
minimize the weight of the communications is difficult. To solve it, smplifying
hypahesis must be done. The most usual is the nullity of the cost of communications
which is unacceptable in our situation. So it is necessary to find good hypothesis and
then to apply operationd research methods from TABOU to column generation
[Desaulnier 1998 depending on the difficulty of the problem.

5 Dynamic load distribution : use of mobility

In the previous study, we proposed a method to build agents and digtribute them
among computers in order to minimize their costing communications and baance
their tasks. This distribution is static as it is done a priori during the design step, so
there might be some limitations that can arise during the runtime. In this section, welll
present a way to balance load dynamically using mobile agents.

5.1 Why mobile agents?

One of the mog difficult steps of the proposed MAS designing methad is the
physical digtribution of the agents. In fact, the designer has to make adigtribution that
reduces the cost of the interactions and follows two main principles:

e Agents shoud aways have enough computational power to work correctly.
Therefore they must be assgned to computers where the computational power can
be distributed between them proportionaly to their needs.

» Agentsthat need to communicate frequently together should be placed so that the
cost of connections is minimal, which may mean that the best solution isto assgn
them to the same computer.

These principles can be mntradictory, so the desgner has to look for the best
compromise. Unfortunately, in spite of the design effort to achieve the best solution,
some problems may occur during the exeaution and induce a fall down of the
system’s performances. Indeed, as we dea with open systems, the number of agents
necessary to solve a problem may be unknown at the beginning and can even change
during the exeaution processas well as the amount of communications between them.
For example, in the DOGS system, the diagnosis rests on the model based diagnosis
which follows the hierarchy of the dectronic drcuit representations (models). The
diagnosis is hierarchical and top down, i.e. it Sarts from the most abstract modd of
the dectronic circuit down to the most basic models (the components of the drcuit).
To check hierarchically the models, agents are created dynamically at each level of
diagnosis. The distribution process $ioud then take into account these changes during
the runtime.

For these reasons, it is advantageous to seek for a dynamic distribution that fits
with changes which may occur in the runtime. In faa, the agents' distribution should
be ajustable so that it can be as adapted as posshle to situations like those listed
above. To meet these requirements, we propcse to use mobil e agents because they can
migrate from one cmputer to another to reach a distribution that minimizes the
communications’ cost, they reduce the need for network availability and they increase

8 GillesKlen, Ngla Amara-Hachmi, Amal El Fallah-Seghr ouchni

fault tolerance [Illmann 200Q]. Yet, before migrating, agents need to know when and
where to go. To take this decision, the sate of the whole system (e.g. the number of
exchanged messages, the load on each machine, etc.) hasto be considered. That's why
we neal a global view of the system, but we should avoid centralized solutions as
they are nat tolerant and don't fit the distributed aspect of our problem. We should not
also let each agent take the migration decision by itself because it would have to
negoatiate with all the other agents which may increase more and more the number and
the cogt of communications. Consequently, dedsons ould be taken neither by
agents nor by one entral component but by a medium level between them which we
will present in the next section.

5.2 The migration'sdecision

5.2.1 Ned for aruntime environment

In order to move correctly, mobile agents require a specific and secure runtime
environment on al potential hosts. This environment has to provide a support for
agents management, execution, localization, migration, communication and security
control. Ancther fundamental requirement isinteroperability between diff erent agents
platforms. An agent platform compliant with the OMG MASIF gandard [Crystaliz
1997 may be dle to fulfill these requirements. In fact, MASIF adopts concepts of
agent sysems (i.e. agencies), places and regions. A place groups the functionality
within an agency, encapsulating certain cgpabil ities and restrictions for hosted agents.
Each agency comprises at least one place in which the hosted agents are running. A
region facilitates the platform management by groupng sets of agencies that belong
to a single authority [Integrating Mobile Agent Technology and CORBA Internet].
Two interfaces represent the wre of the MASIF standard: the MAFAgentSystem
interface which is associated with each agency to provide operations for the
management and transfer of agents, and the MAFFinder interface which associated

i

i

1

i

i

Flace :
Agents i
— i
Region H

Registration H

1

i

i

i

i

i

i

r + Cormponent
[
- WIAF
Sy | [w| Agent AT
L Systern | | Finder
I I I I
Cormromication Channel (ORE) >

Fig. 5. MASIF Compliant Platform Architecture [Crystaliz 1997]

with every region to suppat the localization o agents, agencies and places (see
Figure5).

5.2.2 Migration actors

TowardsMAS's design regarding communications and mobility 9

The goal of an agent's migration towards a new hog is to achieve, when it is
possble, abetter gate of the hole system. In the previous sction, we agued that the
migration's dedsion hasto be made neither by each agent on his own nor by a entral
component, but by a medium level which can cooperate with ather agents to obtain a
global view of the system's state. In this work, we propose to provide each agency
with specific stationary agent, a manager, that has to observe the work of agents
hosted in the agency and decide, in concet with other managers, on eventua
migrations (see Figure 6).

| IvIAF Agent System | | MAF &gent System |
| — | E—

Fig. 6. Migration decison

In the static step (described in section 34), once agents assgned to machines,
everyone would be able to recognize agents that communicate with him (its contacts).
During the execution time, every agent should keep a loca trae of his
communications frequency, intensity and partners [Mazouzi 2002]. So, the request
for migration can be triggered by two ways:

1. Asevery agent has alocal trace of its communications, it can distinguish the most
costly and fregquent ones. It contacts then the manager of its agency and requiresto
move "nea" the distant agent with whom it has the most important
communications. Then, this manager contads the manager of the agency whereis
hosted the distant agent and triesto manage with it the best way to make the agents
closer to each other. Nevertheless, the decided migration should take into account
the performances of the machines, their capacity to receive new agents and
shoudn't damage the other communications. The migration decision is based on a
consensus (agreement) to be readhed be the managers according to a method
propaosed in [Vauvert 2001].

2. Periodically, the agents send their communications' local trace to the managers of
their hosting agencies. Therefore, the managers can have a global trace of all
communications that they anayze to manage the gpropriate migrations. In order
to adhieve aconsensus between the managers, we use the method reported in
[Vauvert 2007.

In both cases, managers shoud be in contact with the MAFFnder interface that

enables them to locate the region's components. For example, when a manager

receives an agent’s request to get closer to another agent spedfied by its name, the
manager consults the MAFF nder that returns the agent’ s location.

10 GillesKlen, Ngla Amara-Hachmi, Amal El Fallah-Seghr ouchni

5.3 Redlization

To implement this work, we started with the migration modue. To migrate, the
agent’s code, state and exeaution information have to be moved and restored at the
new location. The mobile agent’s community distinguishes between two types of
mobility: strong mobility that means the transfer of the agents code and its complete
state, and wed migration which transfers only the agent’s code and data [Picco
2007]). Degspite the alvantages of strong migration (it is transparent, the exeaution
resumes after the migration instruction, etc.), in our implementation of migration
process, we opted for weak migration. This can be justified as we use JAVA
programming language which offers many advantages sought by mobile agents
programmers (such as platform independence, multi-threading, network APIs, etc). In
fact, the Java Virtual Machine (JVM) provides only mechanisns saufficient to
implement wegk migration (namely the aility to program the dynamic dassloader)
but insufficient to deal with the execution state [ObjectSpace, Inc, (1997), Voyager].

Our agents are suppased to be collections of java dasses. To make them move, we
used Class Loaders which enable the VM to load classes without knowing anything
abou the underlying file semantics. The ébstract class ClassLoader, is a subclass of
Object and is contained in the java.lang package. Our application inherits from the
ClassLoader abgract classand extends its functionality to load classes dynamically.
The VM loads classes from the directory defined by the CLASSFATH environment
variable on the local file system or from remote destinations over the network. For
example, we implemented a ayent manager which is process running all times,
listening for requests from agents who would like to migrate to its agency. This
process is based on threads and communicates via TCP-based steam network
connedions. Both the manager and the ggent that wants to migrate use sockets to
implement reliable stream connections. The manager uses a socket classto accept
connedions from agents. Whenever an agent conrects to the port number on which
the manager is running, a new socket object, connected to some new port, is all ocated
to the gyent to communicate through The manager goes back then listening for more
requests. Once an agent opens a mnnection with the manager, it sends the URL for
which the mdeisto be exeauted.

6 Conclusion

In this paper, we presented a top-down method d conception and implementation
of DPSoriented MAS. Our god is to emphasize the advantages of the MAS on
matters of |oad-balancing, particularly during the implementation phrase.

Here, agents are fully cooperative, as they have to transmit every information
concerning their communications to the managers. But, further, our goal isto be ale
to apply the same methodto solve the problem of computer resources used by several
different users. It will present several new difficulties as the agents will not be
cooperative anymore and will try to optimize their own situation even at the other
agents expense.

We dso want to focus on the changes that will be necessary for our method to be
adapted to the implementation of MAS on open computer systems open (as for
example an association of PC users connected by the Internet). This last perspective
raises new problems, not only for security reasons but also because it will introduce
heterogeneity among the computers connected, this difficulty may be simplified by
the use of JAVA virtual machine,

TowardsMAS's design regarding communications and mobility 11

Reference

Attaiya, H., Welch, J.., « Distributed Computing », 1998, Mc¢ GrawHill

Baumann, J., Hohl, F., Rothermel K. and Straler M.), « Mole - Concepts of a Mobile Agent
System », 1998, World Wide Web, Vol. 1, Nr. 3, pp. 123-137

Brenner, W., Zarnekow, R., Wittig, H., Intelligence Software Agents ¢ Fourdations and
Applications; 1998, Springer

Crystdiz Inc, (1997), Genera Magic Inc, GMD FOKUS, IBM, TOG, OMG Joint
Submisson: Mobile Agent System Interoperability Facility ,available via
ftp://ftp.omg.org/pub/docs/orbos/97-10-05. pdf

Desaulniers et a., « A unified framework for deterministic time @nstraint vehicle routing and
crew scheduling problem » fleet management and logistics, p57 93, édité par Cranic &
Laporte, 1998 Kluwer Boston

Eck van, P.. (1996), « The DESIRE Research Program »,
http://www.cs.vu.nl/vakgroepen/ai/project/desire/

Elfallah-Seghrouchni, A., Haddad, S.. « A Recursive Model for Digtributed Planning ».
Proceedings of ICMAS 96. 1996, AAA | Press.

FIPA, (2001), FIPA Agent Software Integration Specification,
http://www.fipa.org/specs/fipa00079/X CO0079B.htm

FIPA, (1998), FIPA 98 Draft Specification: Part 11: Agent Management support for Mobility,
FIPA 8415, Version 0.3, Foundtion for Intelligent Physical Agents.

Grasshopper: A Platform for Mobile Software Agents

http://www.grasshopper.de/downl oad/doc/ Grasshopper| ntroduction. pdf

Integrating Mobile Agent tech and CORBA http://www.det.ua.pt/Projed/diff erencelwork/D7/d 7chap4.html

Klein, G., El Fallah-Seghrouchni, A., Taillibert, P., « HAMAC: an agent-based programming
method », 2002, (to be published in the proceedings of AAMAS 2002. AAA| Press.

Knuth, D. E., « The Art of Computer Programming », 1998, Addison-Wed ey Pub Co

Lange, D., Oshima, M., The Aglet book « Programming and Deploying Java Mobile Agents
with Aglets», Addison-Wedey, http://cseng.awl.com/bookdetail .qry? SBN=0-201-3258-
9& ptype=0

Illmann, T. Krlger, T., Kargl, F., Weber, M., « Migration of Mobile Agents in Java : Problems,
Classification and solutions ». In: Proceedings of MAMA' 002000, Wollongong Australia

Jennings, N. R, Varga, L. Z., Aarnts, R., Fuchs, J and Skarek, P., « Transforming Standalone
Expert Systems into a community of Cooperating Agents», 1998, Int. Journal of
Engineering Applications of Artificial Intelligence 6 (4) 317-331

Jennings, N. R., “Agent-Oriented Software Engineering’, Proceedings of MAAMAW’99, 1999,
LNAI 1647 :

Loiez, E., Taillibert, P. Polynomid Tempord Band Sequences of andog Diagnasis, [JCAI'97
Nagoya. August 23-29 1997

MASIF: The OMG Mobhile Agent System Interoperability Facility

http://www.hpl.hp.com/paersona/Dejan.Mil oji ci c/mace.pdf

Mc Cabe, F. G., Clark, K. L..(1994), « April - Agent Process Interaction Language ».

Mazowzi, H., El Fallah-Seghrouchni, A., Haddad, S..(2001), « Open Protocol Design for
Complex Interactions in Multi-agent Systems», (to be published in the proceedings of
AAMAS2002).2002, AAA| Press.

ObjectSpace, Inc,, « Voyager : The agent ORB for Java Core Technology User Guide », 1997.

Picco, G. P, «Mobile Agents. An Introdwction ». In: Journal of Microprocessors and
Microsystems, vol. 25, no. 2, 2001, pp. 65-74,. Invited contribution in a specia isse on
mobile agents edited by A. Corradi.

Taylor E. et a., «Balancing Load versus Decreasing Communicetion: Parameterizing the
Tradeoff ». Journal of Paralld and Distributed Computing, Val. 61, No. 5, 2001, p.567-580

Vauvert, G., El Falah-Seghrouchni, A., « E-commerce Agents », in the Proceedings of the 2
Intelligent Agent Technol ogy, 2001, 355-356, World Scientific Publishing Co.

http://www.meitca.com/HSL/Projects/Concordia/

