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Abstract. The problem of correctly diagnosing different types of ailments has 
been tackled with different artificial intelligence techniques since its early 
inception. Both heuristic and statistically based algorithms have been discussed 
in the past. In this paper we establish a comparison between one heuristic 
algorithm based on partial precedence and majority decision rules and two 
types of statistical ones: multi-layer perceptrons (MLP) and self-orgainizing 
maps (SOMs) when applied to the automated diagnosis and treatment of cleft 
lip and palate. We show that although all three methods perform reasonably 
well (with efficiency ratios better than 0.9) the neural networks achieve their 
goals with a considerably diminished set of  data without detriment in their 
performance. Furthermore, we are able to tackle an enlarged set and still retain 
the high yields with the use of MLPs and SOMs.  

1 Introduction 

Partial precedence algorithms (PPAs) were developed in an attempt to properly study 
the characteristics which make a problem amenable to characterization in a systematic 
way. A basic idea was to show the usefulness of the logical combinatory approach in 
pattern recognition for developing auxiliary criteria for differential medical diagnosis 
[1]. This approach gives rise to a method based on a simple heuristic which was 
shown to correctly achieve the classification of patients with cleft lip and palate [2]. 
On the other hand, statistical learning has been successfully implemented in various 
schemes which achieve their results by iteratively refining an initially coarse result 
until an acceptable one is reached by distributing the problem between a series of 
simple but densely connected processors which, in the literature, have been termed 
“neurons”. The so-called neural networks (NNs) have been shown to perform 
adequately in a surprisingly varied set of problems. When attempting classification, 
one may use NNs representing both  supervised and non-supervised learning schemes. 
Two possible and popular alternatives are the multi-layer percepton networks and the 
self-organizing maps. In this paper we review the results of partial precedence 



algorithms, compare the results stemming from its application both with MLPs and 
SOMs and show that both types of NNs achieve comparable or better results than 
PPAs. Furthermore, by applying a simple correlation analysis we are able to eliminate 
close to 90% of the parameters involved without impairing the classification abilities 
of the NNs. The rest of the paper is organized as follows.  In section 2 we give a basic 
description of the problem whose diagnosis is to be automated. In section 3 we 
discuss the basic idea behind the three methods to be  compared: PPAs, MLPs and 
SOMs. In section 4 we discuss the results gotten in the past by one of us (Ortiz) by 
using PPAs. In section 5 we describe the results derived from, both, MLPs and SOMs. 
In section 6 we offer our conclusions. 

2 The Clinical Problem 

The clinical problem consists of congenital malformations in the lip and/or palate, 
which are called cleft-primary palate and/or cleft-secondary palate, respectively. 
Surgical complexity for cleft reconstruction will depend on cleft complexity involving 
lip, nose and/or palate. Cleft correction translates into a very slow and complex 
process because it is related to the growth and development of the patient, and it 
requires at least one surgical procedure. The importance of prognosis of the patient’s 
rehabilitation, and subsequent evaluation of the surgical result, is the physician’s self-
feedback during all the rehabilitation process. The physician will learn if his/her work 
patient rehabilitation is adequate, or if it can be improved. 

3 Partial Precedence , MLPs and SOMs 

In order to describe the type of cleft it was necessary to define eighteen variables for 
initial description of the patient: two for palate, nine for lip, and seven for nose [3].  
The patients are then classified as Excellent (E), Very Good (VG) or Good (G) 
depending on the values assigned to these variables. Thereafter, an algorithm is 
applied to the set of known values and their corresponding prognosis in an attempt to 
extract general rules for future use by the physician. 

3.1 Partial Precedence Algorithm 

The algorithms based in precedence allow the analysis of partial likelihood, relating 
parts of the description of the objects with some class. Once this is achieved, a search 
for full likelihood (taking into consideration the full description of the object) allows 
us to reach a final classification decision. The algorithm of classification of partial 
precedence which is a majority (vote) algorithm is defined in six stages, described in 
what follows. 
1) Definition of the system of support sets. These are non-empty subsets of the set of 

variables, whose purpose is to define the combinations of variables on which a 
partial ordering will be established.  For the particular problem tackled in this 



work, three support sets were defined: cleft, lip and nose. 
2) Definition of the likelihood function. The likelihood between two clefts was 

formalized by a likelihood function ( ) ( )( )jOIOI ,ωβ , which was built from the 

comparison criteria discussed in [4].  
3) Evaluation of the likelihood for each object for a fixed support set . This stage is 

the basic step for the majority decision, since in it the likelihood of the object O 
(to be classified) with each of the already classified objects Oj (whose 
descriptions make up the rows of the learning matrix) is determined. The 
likelihood is calculated for each support set ω. If we denote this likelihood as 
Γω(O, Oj) then: ( ) ( ) ( )( )

jj OIOIOO ,, ωω β=Γ  where ωβ is the partial likelihood 

function corresponding to every support set. For this study three partial likelihood 
functions were defined: cleftβ , lipβ , noseβ . 

4) Class majority for a fixed support set. Here we define the way in which the votes 
corresponding to all objects belonging to the same class  (Ki) retaining the 
support set (ω) are counted. Denoting by )(Oi

ωΓ  the votes in  this stage, we have: 
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5) Class majority for the full system of support sets. In this stage vote counting is 
continued, but now considering all support sets. For each class (Ki) we compute 
the total majority )(OiΓ , with ∑
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Γ=Γ
ω
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the support set ω. 
6) Rule of general solution for the classification of the object. Here we define the 

way to decide, as a function of the majorities of the previous stage, the class 
where the object will be placed, i.e. its forecast. 

The object O will be placed (forecast) in the class Ks for which a maximum vote is 
reached (Γi ). If we denote with ( ) ( ) ( ) ( ) ( )O
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object O for each of the classes, then O is classified in class Ks if 
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than one class, O is placed in the one which represents a superior condition. Notice 
that in the preceding discussion we have considered 5 categories but in our final study 
only the three (E; VG, G) were considered. 

3.2 MLPs  

Multi-Layer perceptron networks have shown to be versatile and practical tools for 
classification purposes. It can be proved that MLPs are universal function 
approximators [5] and, hence, useful for our purposes here. Once the MLP is trained 
using an appropriate algorithm (we used a variation of the backpropagation algorithm) 
it may be thought of as a function, whose expression must include: a) The topology of 
the network, b) The transfer functions associated to each layer, c) the learning 



parameters and d) The weights for every connection. In this work we consider only 
the classical feed-forward, strongly connected MLP [6]. 
There is ample literature discussing the ways in which MLPs should be designed in 
order to achieve the most efficient performance. The reader is referred to [7] and [8] 
where a detailed account of such criteria may be found. Here we define a  network N 
(which has already been satisfactorily trained) as follows: ),,,( ωπλτfN = ; where 

),( 32,1 nnn=τ , ),( 32 ff=λ , ),;,( 2121 µµηηπ = , ),...,,( 21 mwww=ω  where 

323221 nnnnnnm +++= . Here ni denotes the number of neurons in layer i; fi denotes 
the transfer function for the i-th layer (we consider only three possible transfer 
functions: linear, sigmoid and hyperbolic tangent which we encode as 1, 2 or 3); and 

iη  and iµ  denote the learning rate and momentum of the i-th layer, respectively. 

In this sense, a MLP is a vector in 9+ℜm . Notice that we are considering a) 
three layered networks (which have been shown to approximate adequately functions 
without discontinuities, as is the case here);  b) linear functions on the presentation 
layer (and therefore  only the transfer functions for layers 2 and 3 need to be 
specified); c) one learning and momentum parameter per layer; d) only one kind of 
function per layer; e) a bias neuron with unit input. 

3.2.1 Training a MLP  
The training procedure for a MLP is, presently, well established and understood. 
Basically, it consists of  assigning an initial (usually random) set of values for ω . 
Then repeat the following procedure as needed: a) Evaluate the deviation of  the 
desired outputs from the network defined as above from the desired outputs, b) 
Correct the weights (free parameters) in order to minimize the observed errors, c) 
Repeat this process for all samples (inputting all samples to a MLP is called “an 
epoch”), d) Repeat the process until a  convergence criterion is met.  

In our work we followed the best generalization criterion to stop the learning 
process. In it two data sets are defined: a training set (RS) and a test (TS) set. Usually 
RS > TS since we aim at incorporating as much knowledge about the system as 
possible. The MLP, thus, approximates the adequate values from RS but, since we do 
not want to over-train the network (which could learn “by heart” the samples in the 
data set) we stop when the calculated values for set TS pass the learning basin. This 
criteria  has been called the cross-validation scheme and was initially discussed in [9].  

3.3 SOMs  

Self-organizing maps (also known as Kohonen networks) are an example of non-
supervised learning. The “neurons” in a SOM are actually, elements which have a 
double vector: a) A vector in the (usually bidimensional) space of the map and b) A 
vector in the space of the features. In our case, every neuron has a bidimensional 
vector which allows for the identification of a neuron in the cartesian plane and a (in 
principle) vector in 18ℜ ; this last identifies a point in the space of the features of 
interest. 



The training algorithm is well known and can be found in [10]. The reader is 
invited to see [11] for a full description of the training algorithm as well as of the 
labeling algorithm. 
 A SOM is described in simpler terms than a MLP. We need only to specify: 
a) The number of dimensions of the SOM, b) The number of neurons per dimension, 
c) The coordinates for each neuron and d) The class to which every neuron belongs. 
In figure 3 above, the point is well illustrated. 
 Therefore, we define a network N (which has already been satisfactorily 
trained) as follows: ),,,( κωνδfN = ; where }3,2,1{=δ , 21 , nn=ν , 21nnm =  (here 
ni denotes the number of neurons in dimension i) and mwww rrr ,...,, 21=ω . 

4 Original Results using the PPA 

The PPA was tested with a sample of 95 patients treated in Tacubaya’s Pediatric 
Hospital, in Mexico City. Two matrices were established: a learning matrix and a 
control matrix. This was done randomly with a 1:2 ratio. The learning matrix was thus 
formed by data from 32 patients as follows: 10 in “E” class, 14 in “VG” class and 8 in 
“G” class. Likewise, the control matrix was formed with data for 63 patients: 19 in E, 
29 in VG and 15 in G. Classification was attempted with data from the control matrix 
and the results are shown in table 1. Out of 19 patients in class E, 17 were correctly 
classified; the remain ing 2 were assigned to class VG. Out of 29 patients in class VG, 
26 were correctly placed, whereas 3 were assigned to class B. For those patients in 
class B, 14 were set in the proper class and only one was set in class VG. Overall, 57 
patients were properly classified, yielding a 90.5% efficiency. 

 E VG G Total 

EXCELENT (E) 17 2 0 19 

VERY GOOD (VG) 0 26 3 29 

GOOD (G) 0 1 14 15 

Total 17 29 17 63 

Table 1.  Classification for PPA. 

5 Results Using MLPs and SOMs 

One of the main purposes of this work is to compare the three methods mentioned 
above. Although PPA has shown to perform satisfactorily, a statistically simple test 
pointed in a different direction. When analyzing the data we calculated a correlation 



matrix which made clear that clinically sound parameters displayed a high correlation. 
Therefore, we were forced to reappraise the value of the set of variables. 
 
5.1 Correlation Matrix 
 

The correlation matrix is found by applying the Bravais -Pearson formula: 
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where an absolute value of  r close to 1 indicates great correlation. Schematically, the 
correlation matrix we obtained may be represented as in figure 4. 
 

 F1 F2 L1 L2 ... N3 N4 N5 N6 N7 
F1     ...      
F2     ...      
L1     ...      
L2     ...      
L3     ...      
...     ...      
N3     ...      
N4     ...      
N5     ...      
N6     ...      
N7     ...      

Fig. 1. Schematic Representation of the Correlation Matrix. 

In Figure 4, the shadowed cells indicate a very high correlatio n. Therefore, we had 
evidence that many of the original variables displayed redundant information and 
were, therefore, unnecessary for classification purposes. This was a counter-intuitive 
result since such variables were determined from clinical and physiological 
considerations. However, we took the decision to retain only the uncorrelated 
variables and work with a reduced set consisting only of variables F1, F2, L1 and N7. 
In point of fact, we could have chosen any of the variables in {L1-L9, N1-N4} and 
any of the variables in {N5, N6, N7}. The choice of L1 and N7 was arbitrary. 

5.2 MLPs  

Using the reduced set, we were able to define a MLP with a (4:2:3) topology, 
analogous to the one illustrated in section 3.2. The trained MLPs performed as shown 
in tables  2 and 3 which display the results for the training and control matrices, 
respectively. 

 
 
 
 



 

 E VG G Total 

EXCELENT (E) 9 2 0 11 

VERY GOOD (VG) 0 13 0 13 

GOOD (G) 0 0 8 8 

Total 9 15 8 32 

Table 2. Classification for Training Data (MLP1) 

 

 E VG G Total 

EXCELENT (E) 17 2 0 19 

VERY GOOD (VG) 0 29 0 29 

GOOD (G) 0 2 13 15 

Total 17 33 13 63 

Table 3. Classification for Test Data (MLP2) 

5.3 SOMS  

Using the reduced set, we were likewise, able to define a SOM with a (4:4) topology, 
analogous to the one illustrated in section 3.3. The trained SOMs performed as shown 
in tables 4 and 5 which display the results for the training and control matrices, 
respectively. 

 
 E VG G Total 

EXCELENT (E) 9 2 0 11 

VERY GOOD (VG) 0 13 0 13 

GOOD (G)  0 1 7 8 

Total 9 16 7 32 

Table 4. Classification for Training Data (SOM1)  

 
 
 
 
 
 



 
 E VG G Total 

EXCELENT (E) 19 0 0 19 

VERY GOOD (VG) 0 29 0 29 

GOOD (G) 0 5 10 15 

Total 19 34 10 63 

Table 5.  Classification for Test Data (SOM2) 

A comparison for the PPA, MLP and SOM is shown in table 6. Notice that MLP1 
and SOM1 were tested versus the training matrix and, therefore, comparable tests 
have been shadowed in the table. Remarkably, both MLP2 and SOM2 achieved better 
classification ratios than PPA even though only 4 variables were considered. 

 
Algorithm PPA MLP1 MLP2 SOM1 SOM2 

Efficiency (%) 90.48 93.75 93.65 90.62 92.06 

Table 6. PPA, MLP and SOM compared. 

5.4 Enhanced Learning Matrix 

Even though because methodological considerations led to the definition of the 
learning matrix, originally, as the smaller of two in a 1:2 ratio, this process was 
revised in a second set of experiments. In these, the learning matrix consisted of 81 
samples whereas the test matrix contained the remaining 14 ones. Using the same 
methods described above, we achieved the following results. 

 
 E VG G Total 

EXCELENT (E) 22 1 0 23 

VERY GOOD (VG) 0 39 0 39 

GOOD (G) 0 1 18 19 

Total 22 41 18 81 

Table 7. Classification for Training Data (MLP1) 

 
 
 
 
 



 E VG G Total 

EXCELENT (E) 6 0 0 6 

VERY GOOD (VG) 0 4 0 4 

GOOD (G) 0 1 3 4 

Total 6 5 3 14 

Table 8. Classification for Test Data (MLP2) 

 E VG G Total 

EXCELENT (E) 21 2 0 23 

VERY GOOD (VG) 0 37 2 39 

GOOD (G) 0 4 15 19 

Total 21 43 17 81 

Table 9. Classification for Training Data (SOM1)  

 

 E VG G Total 

EXCELENT (E) 5 1 0 6 

VERY GOOD (VG) 0 3 1 4 

GOOD (G) 0 2 2 4 

Total 5 6 3 14 

Table 10. Classification for Test Data (SOM2) 

 
Algorithm MLP1 MLP2 SOM1 SOM2 

Efficiency (%) 97.53 92.86 88.89 71.43 

Table 11. PPA, MLP and SOM compared. 
 
The NNs performed satisfactorily. In particular, MLPs have shown to be insensitive 
to the large amount of data, and perform even better than in the reduced matrix. 
SOMs have not had such a good behavior. But the augmented matrix allows, from the 
standpoint of the already mentioned cross-validation strategy, a better and fuller 
generalization property. The NNs trained with a much larger learning matrix are 
expected to generalize with higher reliability when presented with data outside the 
known domain. This fact is of intereset in the sense that patients being controlled with 
the newer matrix will increase their rehabilitation ratios. 



6 Conclusions 

We have shown that both MLPs and SOMs show better performance than the PPA 
tested in the past. Particularly, the MLPs efficiency was always superior. This 
behavior is remarkable since more than 85% of the original data was shown to be 
unnecessary. Therefore, it is to be expected that the variables which determine the 
automated prognosis are followed more simply and efficiently. Furthermore, when 
attempting better generalization by augmenting the learning the SOMs suffered a 
relative setback, while MLPs retained their high yields. As usual, we have to stress 
the fact that neural networks have no explanatory properties and this is, perhaps, their 
only shortcoming. 

We may safely state that NNs and, particularly, MLPs are resilient and reliable 
tools which, in this instance,  will allow the physicians to partially automate and 
improve their work. Also, a new line of study opens, since these methods are 
susceptible to application on a greater scale. We expect to report on this enhanced 
possibility in the near future. 
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