A Minimal Cover for Declarative Expressions

Margaret Miré-Julia! and Josep Miré?

Departament de Ciéncies Matematiques 1 Informatica
Universitat de les llles Balears
07071 Palma de Mallorca, SPAIN
margaret.miro@uib.es’
dmijmn0@uib.es?

Abstract. Descriptive knowledge about a multivalued data table or
Object Attribute Table (OAT) can be expressed in declarative form by
means of a binary Boolean based language.

This paper presents a contribution to the study of an arbitrary multi-
valued OAT by introducing an array algebra (not binary) that allows
the treatment of multiple valued data tables with systematic algebraic
techniques.

An OAT can be described by means of an algebraic array expression.
Furthermore, the same OAT can be described by several distinct, but
equivalent, array expressions. Among these, the all-prime-ar expression is
singled out. The all-prime-ar expression is a unique expression, although
it is not necessarily minimum in the number of prime-ars.

Finally, a completely intensional technique that determines a minimal
declarative expression (cover) is presented.

Keywords: artificial intelligence, multivalued algebra, symbolic compu-
tation, cover.

1 Introduction

Much of the knowledge one has about its environment is descriptive and can be
expressed in declarative form by means of a language. Assuming that the objects
to be described are elements of the domain D, different levels of declarations
can be established. A first level declaration or itemized description describes
one element of the domain. A second level declaration or declarative description
refers to subsets of the domain not in terms of the elements of the subset but in
terms of the attributes and the values these attributes take. Therefore the idea
of attributes and attribute values is equivalent to the idea of a subset of objects
having these attribute values. Thus, declarative expressions describe aspects of
the reality in terms of subsets of objects described by the attribute values that
define them.

The transfer of knowledge from the declarative level to the itemized level
is very simple. Given a domain D = {a1,22,...,2,} and an arbitrary subset
A={z;,x;,...,xx} the problem consists in finding a definition of the type

A={zeD|P(x)}.

In general the problem is not trivial because it may have multiple solutions.
The need to establish computer programs has brought the problem back to the
surface and several groups have designed approaches to 1t. Directly or indirectly,
work by Michalski [1], Quinlan [2], Pawlak [3], Skowron [4], Miré [5], Wille [6] and
Fiol [7] has to do with this problem. However, their efforts are mainly directed
to binary descriptions.

The starting point of this research are the itemized descriptions, usually
represented by an Object Attribute Table.

Definition 1. Let D = {dy,ds,... ,d;, ..., dm} be an ordered set called domain,

of elements d; representing the m objects, let R = {ry,... ,re,...,7q} be a set
of the g attributes or properties of the objects. The set of values of attribute ¢
is represented by C' = {[en.], ..., [¢;], ..., [c1]}. The elements of set C, [c;], are

called 1-spec-sets since the elements are defined by means of one specification.
An Object Attribute Table (OAT) is a table whose rows represent the objects,
and whose columns represent the attributes of these objects. Each element [c;]
represents the value of attribute r. that corresponds to object d;.

dl [91] [Cl] [Cll]
d2 [92] [02] [Cl2]

d] o] . [ad]

dnllgm] - [em] - Tam]

Table 1. Object Attribute Table

In order to handle the multivalued OAT a new multivalued algebra is needed.

2 Theoretical Background

2.1 Symbolic Representation of a Subset

The initial objective is to offer a general and compact symbolic representation
of an arbitrary subset C} C (' and of the set operations between subsets.

It is well known that the set of all subsets of a given set C' (the power set
of (), p(C), constitutes a Boolean algebra < p(C),U,N,”,#,C >. If a symbolic
representation of the subsets is considered, there i1s a parallel Boolean algebra
< 8,4,y Ve, Ac > defined on the set S, of all possible symbols representing
subsets of C'. The zero of this algebra is V. (the symbol representing the empty
set). The identity is A, (the symbol representing set C').

Throughout this paper, the symbol ~» may be read as: “is described by”.
Therefore, C} ~» ¢, expresses: “subset C} is described by symbol ¢;”. The
symbolic representations of regular set operations complement (), union (U)
and intersection (N) are:

@WC}L CrLuCy ~cp +cp CpoNCy ~ ey o

This symbolic representation has been carefully studied in [9], tables providing
operations 4+, - and ~ on symbols in hexadecimal representation are also given.

2.2 Fundamental Concepts

All the concepts and operations introduced above make reference to only one
set, that is, one attribute. A multivalued OAT has more than one attribute.

Let R = {r¢,7p, 7o} be a set of 3 attributes whose attribute values are C' =
{[Cnc]’ SRR [62]a [Cl]}a B = {[bnb]’ SRR [b2]a [bl]} and A = {[ana]’ ce [aZ]a [al]}'
The elements of sets C, B, A are l-spec-sets (one specification). A 3-spec-set,
[ex, bj, a;], is a chain ordered description of 3 specifications, one from set C', one
from set B and one from set A. Each spec-set represents itself and all possible
permutations. Therefore,

ler, bj, ai] = [ex, as, bj] = [bj, cx, ai] = [b, az, cp] = [ai, ek, b;] = [ai, by, cx)

This idea can be generalized for g attributes. In all definitions that follow, R =
{rg,..., b, 7a} is the set of g attributes whose attribute values are given by
non-empty sets G, ... B, A respectively.

Definition 2. The cross product G ® --- @ B ® A is the set of all possible g-
spec-sets formed by one element of G, ..., one element of B and one element of

A.
Go - @B@A={[¢ge,...,bj,ai] | [9o) € G,... [b;] € B,[ai] € A}

It is important to mention that the cross product 1s not the cartesian product. A
g-spec-set represents itself and all possible permutations whereas the elements
of the cartesian product are different if the order in which there are written
varies. There is a need to determine an order in a g-spec-set. The basis T is
an ordered chain < G,... B, A >= T which establishes the sequential order
in which the spec-sets are always written. The basis considered in this paper is
T=<d,..., BJA>.

The set of all possible g-spec-sets induced by sets GG, ..., B, A is called the
universe and every subset of the universe is called a subuniverse.

Definition 3. Let G; C G, ..., B; C B, A; C A, an array |t;| = |gs, - .. , b, a;]
1s the symbolic representation of the cross product G; @ ... ® B; ® A; where
G ~ i, .., B wbi, and A; ~ a;.

Gi@"'®Bi®Ai:{[gm~~abjaai]|[gx]EGia""[bj]EBi’[ai]EAi}
Gi@- @B @Ay ~ [ti| = |gi, ..., by, aq

An array [{;] is a symbolic representation of a subuniverse. In 2 dimensions
(2 attributes) an array can be represented graphically as shown in Fig. 1.

The arrays describe subuniverses (subsets), therefore regular set operations
may be performed with them. The following operations between arrays are in-
troduced. Let |t;| = |gi, ..., b, a;| and |t;]| = |g;, ..., b;, a;] be two arrays.

Gi® @B @ A; ~ |t Gj®~~~®Bj®Aj«»->|tj|
1.- ~ complement of an array respect to the universe
~ (G @@ B @A)~ ~ [t

where ~ is the symbolic representation of the complement respect to the universe
(set of all g-spec-sets). In 2 dimensions, the ~ complement of an array can be
represented as shown in Fig. 2.

|t:] = [bs, as ~]
B B B
7 Bz
] |2
A A,
A A
Fig. 1. Arrays in 2-dimensions Fig. 2. ~ complement of an array

2.- I sum of arrays
(Gi @ @B @A) U(Gj @+ @ Bj @ Aj) ~ [ti] 1 |t]

where the I sum is the symbolic representation of the union of subuniverses. If
only 2 attributes are considered, the I sum of arrays can be represented graphi-

cally as shown in Fig. 3.
3.- o product of arrays

(Gi@ @B ®A)N(G; @ ©B; @ Aj) ~ [ti] o[t

|ti|o |tj| = |gi,~~~ ,bi,ai|o |gj,... ,bj,aj| = |gi /IR ,bi~bj,ai ~Clj|
where the o product is the symbolic representation of the intersection of subuni-
verses. Furthermore, the o product is a closed operation in the set of all arrays.
If only 2 attributes are considered, the o product can be graphically represented
as can be seen in Fig. 4.

[t £ 1251 [t:] o [¢]

It51 I¢5]
B; B;
Bl W Bl
B: It B: It
A; Ay A; Aj
7 \ 7 \
A A
Fig. 3. 1 sum of arrays Fig. 4. o product of arrays

All the results obtained by use of operations ~, and o on arrays are symbolic
representations of subuniverses. There are two subuniverses that deserve special
consideration. First, the identity array A, which is the array representing the
universe:

U~ \=1Ag - Aoy Al

Second, the zero array \/, the array representing the empty universe:

0\ =1IVg ... Vs, Val

3 Array Expressions

Subuniverses can be symbolically represented by arrays or by algebraic expres-
sions of arrays. An expression is a symbolic representation of a subuniverse. An
expression represents the reality described by an OAT.

Definition 4. Any combination of arrays using operations ~, I and o (well
formed formula) is called an expression E;.

By =~ [l £ 150 1] - .

Generally, a subuniverse can be represented by more than one expression. Ex-
pressions that describe the same subuniverse are said to be equivalent (declar-
atively). The comparison of two distinct expressions, as far as their declarative
describing capability, has been studied in [9] and [10].

Expressions represent subuniverses, therefore an order relation that symbol-
ically represents set inclusion may be introduced:

(Uing)wEijEj.

This order relation has been studied in [9] and has been used to find simplified
equivalent expressions.

Definition 5. An expression E; is called an array expression if it is written as
a i sum of arrays.
Bo= Lttt 1]t

An array expression in 2 dimensions is shown in Fig. 5.

Definition 6. Given an array expression E; = |[t,| 1§ [ty 11 [ta], [ty] ts
a prime array or prime-ar of expression E; if there is no other array |t;| such
that:

lty| = It;] = B

A prime-ar is a “largest” array contained in F;.

Consider the array expression given in Fig. 5. Both |¢;| and |¢2] are prime-ars,
however |t3] is not a prime-ar since |t3| < [¢;] < Ej, see Fig. 6. The prime-ars of
expression FEj; are [t1], [t2] and |¢;].

BEi = |t1] § |t2] 1 |ts] B = |ti] 1 [t2] £]¢;]
[£2] 12
o) o o
Fig. 5. Array expression Fig. 6. Prime-ars of expression F;

4 The All-prime-ar Expression

Definition 7. The i sum of all the prime-ars of an expression E; is called the
all-prime-ar expression of E;.

The same subuniverse can be described by more than one prime-ar expres-
sion. The all-prime-ar expression is a unique expression, but the number of prime-
ars may not be minimal.

Fig. 7 offers a two dimensional insight to these remarks. The unique all-prime-
ar expression is By = [t1|f[t2]1[ts|[ta]. Since [t1] < |t2|f|ts] and [ts] < [t1]f[ta],
two equivalent prime-ar expressions can be found:

Ei = [ta| 1 [ts] 1 [t4] Ei = [t1] 1 [t2] 1 [t4]

The same subuniverse can be described by more than one prime-ar expres-
sion. How can the equivalency between expressions be studied? A possible way
to know if two prime-ar expressions are equivalent is to compare their all-prime-
ar expression. An algorithm that provides all the prime-ars of an expression is
given in [9] together with different theorems that simplify the execution of the
algorithm.

5 Covers of an Expression

The all-prime-ar expression is unique and achievable by means of an algorithm.
However, the number of arrays appearing in the expression is not necessarily
minimal. In set theory, where sets are extensionally given, a cover is easily ob-
tained. But, can a minimal cover be obtained using a declarative treatment?
Algorithmic techniques that provide a minimal declarative expression are pre-
sented.

Definition 8. Given a set of arrays A = {|t1], |tal, ..., |[tn]} an array |t;] is said
to be covered by A or is called a covered array respect to A if and only if

i) 2 [l § to] 3o -1 [

An array that is not a covered array respect to A s called an uncovered array
respect to A.

Definition 9. Given an array expression E = |t1| 1 1|61 -1 [tel T - 11ts]
an array |t;| of the expression is called a redundant array respect to E if and
only if
21 B 2 B SR L ZER) [F2Y I S o 1 4
In other words, |t;| is covered by A — {|t;|} = {|t1],-- -, [tiz1l, ltixal, - -, |E2]}-
An array that is not a redundant array respect to F s said to be an essential
array respect to E.

Ei = [t1| §t2] 1 [ts] 1 |ta] E = ta] tlta| §|ta] 1 |ta]

—

[£2]

Fig. 7. The all-prime-ar expression Fig. 8. Redundant and essential arrays

Examining Fig. 8, it can be easily seen that |¢t;| and |t4] are essential arrays
respect to expression E, whereas |{3| and |{3]| are redundant.

o = [tal £ [ts| £ MEal [Es] 2 [Ea] £ [E2] T [ta]

Definition 10. Given an expression I, whose arrays form set A, a subset A, C
A is a cover of F if and only if

E = Zjea.lti

A cover is formed by all the essential arrays of the expression and some of the
redundant arrays. The two covers C'4 and Cp of expression E represented on
Fig. 8 are given in Fig. 9.

Ca = {|ta], |t2], [ta]} Cp = {|t1], [ta], ta]}

[t1] [t2] [t4]

[¢]

[1t l [t4]

Fig. 9. Covers of an expression

In order to find a cover of an array expression, the essential arrays must be
determined.

5.1 Determination of essential arrays

In order to determine the essential arrays, the redundancy of the array will be

checked.

Definition 11. Given an array expression E = |t1]$-- {61 1|t] -1t

the remainder of |t;| respect to |t1|, R; 1, is defined as:
Riq = [til o (~ [t1])
the remainder of R; 1 respect to |ta] is defined as
Ripp = Rigo(~ [ta]) = [til o (~ [t1]) o (~ [t2])
The remainder of |t;| respect to [t1], |t2|, ..., |[ta]| is defined as
Ritz..n = [til o (~ [ta]) o -0 (~ [tica]) o (~ [tiga]) o -+ o (~ [ta])

Given an array expression £ = |t1]|f---I|t;|1---1[t;]1---1]t.] an array |t;] of
the expression is redundant if and only if the remainder R;15. , =/, an array
|ti| of the expression is essential if and only if the remainder Ri1a. », # V.

The following algorithm finds the essential arrays of an array expression. The
procedure consists in determining if an array |¢;| is covered by all other arrays of
the expression. The algorithm uses ARRAYLIST formed by all the arrays of the
expression and generates REDLIST and ESSLIST. Initially, all lists are empty.

1. Create ARRAYLIST with all arrays from the expression (delete repeated
arrays, if any).
2. For all [¢;| belonging to ARRAYLIST,
a) remove [t;| from ARRAYLIST.
b) obtain the remainder R;12.. , of [t;| respect to ARRAYLIST.
- if Rina. » =V, include [t;| in REDLIST;
- if Rina. . n #V, include [t;] in ESSLIST.

The ESSLIST is formed by all the essential arrays of the expression, the redun-
dant arrays appear in REDLIST.

5.2 Determination of a cover

All the essential arrays are included in a cover but only some of the redundant
arrays are necessary. The following algorithm determines whether a redundant
array can be dispensed with in a cover. The algorithm uses the REDLIST and
ESSLIST generated by the previous algorithm, and generates a NEWREDLIST
and a NEWESSLIST. The procedure consists in determining whether an array
in REDLIST is covered by the arrays in ESSLIST.

1. Remove those arrays in REDLIST covered by other arrays of REDLIST. For
all |t;] and [{;] belonging to REDLIST, if R; ; = |t;| o (~ [¢;]) = V remove
[t;] from REDLIST.

2. For all |¢;| belonging to REDLIST,

a) remove [t;| from REDLIST.

b) obtain the remainder R;12 x of |¢;] respect to ESSLIST.
- if Rina. . x =V, include [¢;| in NEWREDLIST;
- if Rina . x # V, include |¢;| in NEWESSLIST.

3. Create COVERLIST with all arrays from ESSLIST and NEWESSLIST.

A cover is formed by all essential arrays respect to ARRAYLIST and those
redundant arrays respect to ARRAYLIST that are essential respect to ESSLIST.

The results obtained suggest the following comments:

— The cover of an array expression (or set of arrays) has been found without
making use of the extensional description of sets.

— The cover is not unique. The ordering of the arrays in the sets and the order
in which calculations are performed may change the final outcome.

— A shorter cover may be possible if one (or more) of the remainders Rj12. .«
is covered by the rest of them.

— If the initial array expression is the all-prime-ar expression then the cover is
minimum (no smaller cover can be found).

6 Conclusion

An algebra of arrays that allows the description of an arbitrary OAT by means
of an array expression has been presented. The proposed array algebra does
not handle raw data, it handles declarative descriptions of the data. Declarative
expressions from a multivalued OAT can be obtained using arrays and declarative
expressions can be transformed by application of computational techniques.

These array expressions are not unique. In order to find a unique array ex-
pression the concept of prime-ar is introduced. The all-prime-ar expression is
an unique expression, however the number of prime-ars in the expression is not
minimal.

From the many equivalent expressions describing an OAT some may be more
economic or elegant. A completely intensional technique has been provided to
converge on them. The algorithms presented here find a cover of an expression,
by determining the essential arrays and which of the redundant arrays need to
be included in the cover.

The procedure presented has a feature that should be mentioned. The com-
putation may be interrupted at any time. The results obtained up to the inter-
ruption will always allow to a find a cover. In general the latter the computation
has been interrupted, the closer the solution will be to the optimum one.

References

1. Michalski, R.S.: A Theory and Methodology of Inductive Learning. Artificial In-
telligence 20 (1983) 111-161

2. Quinlan, J. R.: Induction of Decision Trees. Machine Learning 1 (1986) 81-106

3. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer
Academic Publisher (1991)

4. Bazan, J. and Skowron, A. and Synak, P.: Discovery of Decision Rules from Ex-
perimental Data. Proceedings of the Third International Workshop on Rough Sets
and Soft Computing (1994) 346-355

5. Miré, J. and Miré-Julia, J.: Uncertainty and Inference through Approximate Sets.
Uncertainty in Intelligent Systems. North Holland (1993) 203-214

6. Wille, R.: Restructuring Lattice Theory: an Approach based on Hierarchies of
Concepts. Ordered Sets, Reidel Publishing Company (1982) 445-470

7. Fiol, Gabriel and Miré Nicolau, José and Miré-Julia, José: A New Perspective in the
Inductive Acquisition of Knowledge from Examples. Lecture Notes in Computer
Science 682 (1992) 219-228

8. Miré, J. and Mir6-Julia, M.: A Numerical Computation for Declarative Expres-
sions. Lecture Notes in Computer Science 1333 (1997) 236-251

9. Miré-Julia, M.: A Contribution to Multivalued Systems. Ph.D. thesis. Universitat
de les Illes Balears (2000)

10. Miré, J. and Mir6-Julia, M.: Equality of Functions in CAST. Lecture Notes in
Computer Science 1030 (1995) 129-136

