
A theory of modular and dynamic knowledge
representation

Ján Šefránek

Institute of Informatics, Comenius University, Mlynská dolina, 842 15 Bratislava,
Slovakia, phone: (421-7) 6029 5436, e-mail: sefranek@fmph.uniba.sk

Paper Track
Conference Topics: AI Foundations of Knowledge Representation, Rea-

soning Models: Non-monotonic Reasoning, Belief Revision.
Keywords: knowledge representation, belief revision, nonmonotonic rea-

soning, nonmonotonic/dynamic/modular knowledge base, multidimensional dy-
namic logic programming, dynamic preferences, stable model semantics, Kripke
structure

Abstract. A logic-based theory of modular and dynamic knowledge rep-
resentation is presented in the paper. The theory has its origin in the
paradigm of multidimensional dynamic logic programming. A knowl-
edge base (KB) may be viewed as a multidimensional dynamic logic
program (MDyLoP). MDyLoP consists of a set of generalized logic pro-
grams (modules) and of a preference relation (defined on the modules).
Knowledge evolution is modeled according to a causal rejection principle
(if there is a conflict between rules, then more preferred rules override
those less preferred).
The paper is devoted to the semantic foundations of modular and dy-
namic knowledge representation. The semantics is focused on the con-
flicts between belief sets instead of the conflicts between rules. We do
not intend to construct and study a syntactic variant of the modular
knowledge base P, which represents a changed situation, the change is
represented on semantic level. The meaning of each module is repre-
sented by a Kripke structure. An update operation on Kripke structures
is defined.
We assume that a modular KB is embedded in an environment. The
events in the environment are reflected by a dynamics of the KB. An
event determines the dominant module and exerts an influence on the
preference relation. The meaning of the whole KB is changed, if the dom-
inant module or the preference relation is changed. The changed meaning
is specified by the update operation on Kripke structures. Question an-
swering is based on the semantics.

1 Introduction

Logic programming has been proved as a powerful framework suitable for theo-
retical investigation of knowledge representation, see for example [4, 5]. However,
first attempts to give a logical characterization of modularity and dynamics of
knowledge representation (undoubtedly the features of crucial importance) ap-
peared only recently. Multidimensional dynamic logic programming (MDyLoP)
[3, 8] seems to be a promising candidate for a logic-based theory of modular and
dynamic knowledge representation.

A knowledge base in the frame of MDyLoP may be seen as a set of modules
P = {Pi : i = 1, 2, . . . }. Moreover, a preference relation is defined on P. Suppose
that a unique dominant (current) module Ps is activated after an event (in a time
moment).1 The content of P should be revised from the viewpoint of Ps. The
revision is “implemented” in [3, 8] by a syntactic transformation and it respects
the causal rejection principle, [7]: if there is a conflict between rules, then more
preferred rules override those less preferred. The result of this transformation is
denoted by ⊕sP.

Our approach is different. While the attention of MDyLoP is focused on
the conflicts between rules (syntactic objects), our attention is focused on the
conflicts between belief sets (semantic objects). A Kripkean semantics of dynamic
knowledge bases has been proposed. It was introduced in [10], a modified version
was presented in [11]. The semantics enables to express dependencies between
sets of literals (belief sets). An update operation is defined on Kripke structures,
it resolves the conflicts between belief sets and it is sensitive to the dependencies
between belief sets. The semantics of [11] is improved and a also its general
version is presented first time in this paper.

This paper is devoted to an application of this semantics to a characteriza-
tion of modular and dynamic knowledge representation. We assume that a KB
(a set of modules together with a preference relation) is embedded in an envi-
ronment (similarly as in [2]). A dynamics of the modular KB reflects the events
in the environment: an event determines the dominant module, moreover, the
preference relation on modules may be modified, too. The dynamics of the KB is
represented only on the semantic level: The meaning of the whole KB is changed
if the dominant module or the preference relation is changed. The queries ad-
dressed to an evolving knowledge base are responded (in a given situation) with
respect to the (changing) semantics.

It was shown in [11] that our approach handles the conflicts between rules
correctly, moreover it is able to handle the conflicts not distinguishable by the
traditional approach of MDyLoP.

The main contributions of this paper: a purely semantic characterization of
modular and dynamic knowledge representation, an improved and generalized
approach to updates on Kripke structures which enables to recognize the conflicts
between belief sets and to deal with the dependencies between the belief sets.

1 This decision may be modified: a set of dominant modules can be considered.

The paper is structured as follows. First, a model (an idealization) of mod-
ular and dynamic knowledge representation is presented in the Section 2. The
Kripkean semantics of generalized logic programs is described in the Section 3.
The updates on Kripke structures are presented in 4. Finally, the results of the
paper are summarized and open problems are sketched in the Conclusions.

2 Modular and dynamic knowledge base

In this Section we outline (an idealization of) a modular and dynamic knowledge
representation.

A set A of propositional atoms is assumed. The set Anot is defined as A ∪
{not A : A ∈ A}. Each member of Anot is called literal.

A generalized clause is a formula c of the form L← L1, . . . , Lk, where L,Li
are literals. We will denote L also by head(c) and the conjunction L1, . . . , Lk
by body(c). A non-empty set of generalized clauses is called a generalized logic
program. In the following, whenever we use “clause” or “program” we mean
“generalized clause” and “generalized logic program”, respectively.

The language L is the set of all clauses (over A).
Multidimensional dynamic logic program is defined as a set of generalized

logic programs together with a preference relation on the programs [8]. The
relation enables to represent dynamic aspects of knowledge.

Definition 1 ([8]) A multidimensional dynamic logic program is a pair (P, G),
where G = (V,E) is an acyclic digraph, |V | ≥ 2, and P = {Pv : v ∈ V } is a set
of generalized logic programs.

We denote by vi ≺ vj that there is a directed path from vi to vj and vi � vj
means that vi ≺ vj or i = j. If vi ≺ vj , we say that Pvj is more preferred than
Pvi .

Remark 2 If |V | = 2 and E = {(v1, v2)}, we get an important basic case:
Pv1 may be considered as an original program and Pv2 as an updating (new)
program. Similarly, an idea of a temporal evolution of a knowledge base can be
modeled by |V | = k and E = {(v1, v2), . . . , (vk−1, vk)}.

An addition of new programs (modules) and a removal of some programs can
be modeled by changing (“dynamic”) sets V and E. 2

Possible conflicts between the rules of different programs are solved according
to a causal rejection principle – the rules from more preferred programs override
those from less preferred, [7].

One of the programs, say Ps, from P is dominant in a time moment, it is
assumed that Ps represents the current viewpoint (or current situation).

Our goal is to specify – on a semantic level – the current meaning of P with
respect to Ps and to the preference relation E. In consequence, if the current
viewpoint is changed or the preference relation is changed, the meaning of P is
changed.

A (modular) knowledge base may be represented by a multidimensional dy-
namic logic program.

It is assumed that a multidimensional logic program KB = (P, G) is situated
in an environment. The environment is represented by a subset of L, too. The
clauses in he environment are of two types: events (of the form L←) and queries
(of the form← L1 . . . , Lk). We denote the set of events by E and the set of queries
by Q.

The events do not persist by inertia, similarly as in [1]. The set of events E
is changing in a discrete and linear time. We assume that in each time moment
t ∈ Nat , where Nat is the set of natural numbers, there is a non-empty set Et
of events. Only the events recorded in Et holds in the time moment t. For each
pair of subsequent time-moments t, t + 1 holds that Et 6= Et+1. And conversely,
each modification of E “increments the time”: if E ′ is the immediate result of a
modification of E , then there is a time moment t such that Et = E and Et+1 = E ′.

The dynamics of the environment exerts influence on the (dynamics of the)
knowledge base:

– the dominant (current) module may be changed,
– the preference relation on the modules may be changed.

This influence may be modeled again by a program M. The role of M is to
specify the dominant module Ps and to modify the set of edges E of the graph
G (the relation of preference). M is considered as a meta-knowledge base (a
control mechanism) and predicates current/1 and edge/2 are defined in M. Of
course, M contains the postulate

not edge(X,Y)← current(X),

for each module Y : if X is a current (dominant) module, then X is not less
preferred than Y .

The events are matched against the bodies of the rules in M. Each possible
event determines a current module. Moreover, the preference relation on the
modules may be (re)defined when an event occurs. The graph G = (V,E) is a
dynamic one, the set of edges depends on the current event(s).

We do not intend to construct and study a syntactic variant of the modular
knowledge base KB = (P, G), which represents the current situation. We are
aiming to represent the change (of the current module and of the preference
relation) on the semantic level. Similarly, the (correct) answers to the queries
are specified on the semantic level. The queries (in Q) are answered with respect
to a (dynamic) semantics assigned to (P, G) and Ps. We are now aiming to
present the basic features of the semantics.

The meaning of KB = (P, G), where G = (V,E), depends on the current pro-
gram (module) Ps and the information from less preferred modules (programs)
is inherited if it is not in a conflict with the information from more preferred
modules. It is important to emphasize: when the current module is changed or
the preference relation is changed, also the meaning of P is changed.

We are going to specify the conditions for the semantic characterization of
P. First, some preliminaries: For each A ∈ A, A and not A are called conflicting
literals. There is a function (bijection) assigning to each literal L the conflicting
literal: A = not A and not A = A. A set of literals is consistent, if it does not
contain a pair of conflicting literals. Partial interpretation (of a language L) is a
consistent subset of Anot. Total interpretation is a partial interpretation I such
that for each A ∈ A either A ∈ I or not A ∈ I.

Let σ be an assignment of a set of total interpretations to a of programs
P, to corresponding preference relation E and to the current module Ps. We
may consider σ as a semantic characterization of P (w.r.t. Ps and E), slightly
adapting the concept of [6]. The corresponding set of interpretations is denoted
by σ(P, Ps, E).

The queries addressed to the KB (in a time-moment t) are responded with
respect to σ(P, Ps, E). The set represents the current meaning of the knowledge
base.

Let L be a literal, then σ(P, Ps, E) |=cred L iff there is I ∈ σ(P, Ps, E) such
that L ∈ I and σ(P, Ps, E) |=scept L iff for each I ∈ σ(P, Ps, E) holds that
L ∈ I.

If we abstract from local changes2 of modules, then the changing environment
is mirrored by the changing semantic representation of the knowledge base. The
semantics σ enables to respond in each state of the environment Et each query
Q =← L1, . . . , Lk. We respond to Q by true w.r.t. σ(P, Ps, E) iff for each Li
holds σ(P, Ps, E) |=scept Li, w.r.t. the skeptical attitude (similarly w.r.t. the
credulous attitude).

A policy of defining σ is considered in the Section 4. The power of the policy
is in the ability to record dependencies between belief states and, in consequence,
in the ability to specify updates on a semantic level. The definition of |= and of
query answering may be viewed only as an appendix of the proposed semantics.

3 Kripke structure associated with a program

We recap the basic concepts and results from [10] (with some modifications from
[11]), in order to make this paper self-contained.

If w is a set of literals, then by w we mean the set of literals {l : l ∈ w} and
w− = {not A : not A ∈ w}. The set {not A : A ∈ A} will be denoted by D.

We accept a convention as follows: All programs considered below use only
propositional symbols from A. Similarly, we assume a common set of (partial)
interpretations. We denote the set by IntA. It means, an interpretation of a pro-
gram P may contain a propositional symbol not occurred in P . Our specification
of updates uses the convention.

Let I be a partial interpretation. A literal L is satisfied in I iff L ∈ I. A
conjunction of literals of the form L1, . . . , Lk is satisfied in I iff each Li is satisfied

2 A (local) modification of modules Pi ∈ P is allowed. We do not devote an attention
to this topic in this paper, however.

in I. A clause c of the form L ← L1, . . . , Lk is satisfied in I iff L is satisfied in
I whenever each Li is satisfied in I. Notation: I |= L, I |= L1, . . . , Lk, I |= c. A
partial interpretation I is a model of a program P iff for each clause c ∈ P holds
I |= c.

Notice that propositional generalized logic programs may be treated as Horn
theories. The least model of the Horn theory H we denote by least(H).

Definition 3 Let P be a program. A Kripke structure KP associated with P is
a pair (W,ρ), where:

– W = IntA ∪ {w⊥}, W is called the set of possible worlds, w⊥ is the repre-
sentative of the set of all inconsistent sets of literals,

– ρ is a binary relation on W ×W , it is called the accessibility relation and
it contains the set of all pairs (w,w′) such that w 6= w′, and it holds either
w′ = w⊥ or w′ = w ∪ u, where u is a set of literals.

– ρ = ρ1 ∪ ρ2 ∪ ρ3, where
1. (w,w′) ∈ ρ1 iff w′ = w∪{head(c)} for some c ∈ P such that w |= body(c),
2. (w,w′) ∈ ρ2 iff w′ is consistent, w′ = w ∪ u, where ∅ 6= u ⊆ D, and there

is no rule r ∈ P such that w |= body(r), but there is a rule r′ ∈ P such
that w′ |= body(r′) and u ⊆ body(r′),

3. (w,w′) ∈ ρ3 iff w is not a total interpretation, there is no pair (w, v) ∈
ρ1 ∪ ρ2, w′ = w ∪ u, where ∅ 6= u ⊆ D and w′ is a total interpretation.

Three types of edges enable to distinguish three types of default negations:

1. the derived default negations (occurring in the heads of the rules),
2. the used default negations (occurring in the bodies of the rules), they may

be called what-if nonmonotonic assumptions,
3. and default negations, which may be called completion-based nonmonotonic

assumptions.

Remark 4 Suppose that w ∈ W,w 6= w⊥, r ∈ P , w |= body(r), and head(r) ∈
w. Then (w,w⊥) ∈ ρ1.

Definition 5 Let τ be a binary relation. Then τ -path is a sequence σ of pairs
(w0, w1), . . . , (wn−1, wn) (denoted by 〈w0, . . . , wn〉), if each (wi, wi+1) ∈ τ .

We say that this σ is rooted in w0. If there is no pair (wn, w) ∈ τ , we say
that σ is terminated in wn.

We are now ready to state (in terms of nodes and paths in KP) conditions of
being a stable model of a program P .

Definition 6 Let P be a program, σ be a ρ-path 〈w0, w1, . . . , wn〉 in KP . We
say that σ is correctly rooted, if w0 = ∅.

Definition 7 (Stable model, [3]) Let P be a generalized logic program and
w be an interpretation of P . It is said that w is a stable model of P iff w =
least(P ∪ w−).

Definition 8 (Distinguished paths, good worlds) A correctly rooted ρ-path
σ terminated in a total interpretation w is called a distinguished path and w is
called a good world.

Theorem 9 Let P be a program, KP be the Kripke structure associated with P ,
σ = 〈w0, w1, w2, . . . , wn−1, wn〉 be a distinguished ρ-path in KP .

Then (a good world) wn is a stable model of P .

Theorem 10 Let S be a stable model of a generalized logic program P and KP
be a Kripke structure associated with P .

There is a distinguished ρ-path σ = 〈w0, . . . , wn, S〉 in KP .

Theorem 11 Let P and KP be as in the Theorem 10. If wn is a total interpre-
tation and (wn, w⊥) 6∈ ρ, then wn is a model of P .

If M is a model of P , then (M,w⊥) 6∈ ρ.

4 Updated Kripke structures

This Section is based on [11], however some important modifications are pre-
sented. In what follows we suppose only programs with a stable model.

4.1 The basic case

It is assumed in this Subsection that P = {P,U}, and that the Kripke struc-
tures, KP = (W,ρP) and KU = (W,ρU), associated with P and U , respectively,
are given. Moreover, U (the updating program) is more preferred than P (the
original program).

We intend to define an operation ⊕ on Kripke structures. The resulting
Kripke structure KU⊕P = KU ⊕KP = (W,ρU⊕P) should be based on KU while
a reasonable part of KP is preserved. Notice that the set of nodes, W , remains
unchanged, but some edges should be rejected. The main goal of the rest of the
paper is to motivate and to explain the “strategy of rejections”.

A removal of some edges may be interpreted as overriding the correspond-
ing dependencies between belief sets. On the other hand, connecting the edges
from one Kripke structure to the edges from another may be interpreted as a
(semantic) construction based on the compatible dependencies between belief
sets.

Definition 12 (Attacked edges, [9]) Let τ1, τ2 ⊆W×W be binary relations.
Let u, v, v′ ∈ IntA and e = (u, v) ∈ τ1, e′ = (u, v′) ∈ τ2.

We say that e is attacked by e′ iff (v \ u) ∩ (v′ \ u) 6= ∅.

Of course, there is a symmetry: if e is attacked by e′ then e′ is attacked by
e, too. Nevertheless, we want prefer “one side”. We usually prefer ρU to ρP ,
however, a more detailed analysis is needed. First, it is suitable to extend the
definition of attacked edges in order to catch also w⊥:

Definition 13 If e′ = (w,w′) ∈ ρU1 , where w′ 6= w⊥, and e = (w,w⊥) ∈ ρP1 ,
then e is attacked by e′.

Our (general) decision is to reject all ρ3-edges from both Kripke structures KU
and KP . Intuitively, we don’t preserve the (too strong) completion-based non-
monotonic assumptions.

A strategy concerning rejections of the ρ1- and ρ2-edges may be expressed in
terms of some postulates (for a rational ρU⊕P). Clear cases are as follows (notice
that a set of edges RejectedρU (ρP) is defined as a side-effect):

Definition 14 (Postulates P1 – P3) Let L be a literal, w,wi, u, v possible
worlds.

P1 ρU1 ⊆ ρU⊕P1 ,
P2 if (u,w) ∈ (ρP1 \ ρU1), then (u,w) ∈ RejectedρU (ρP) iff (u,w) is attacked by

(u,w′) ∈ ρU1 ,
P3 if (u,w) ∈ (ρP2 \(ρU1 ∪ρU2)), then (u,w) ∈ RejectedρU (ρP) iff (u,w) is attacked

by (u,w′) ∈ ρU1 .

Complications arise when ρU2 -edges are in a conflict with ρP1 -edges. The com-
plications are illustrated and analyzed in [11]: it is shown that the preference of
ρU2 -edges to ρP1 -edges has to be formalized carefully.3 Unfortunately, according
to our current knowledge, a kind of global view is needed. The global view will
be expressed in terms of independent literals.

Definition 15 (Dependent literal) A literal L is dependent on a literal L′ in
KU iff for each ρU1 ∪ ρU2 -path σ = 〈∅, . . . , wj , . . . , wn〉 terminated in wn 6= w⊥
such that L ∈ wj and L 6∈ wj−1 holds L′ ∈ wj−1.

Definition 16 (Complementary literals) Atoms A and A′ are complemen-
tary in a Kripke structure K iff both A is dependent on the nonmonotonic as-
sumption A′ and A′ is dependent on the nonmonotonic assumption A in K.

We propose to handle the conflicts between nonmonotonic assumptions in KU
and atoms in KP as follows: a ρU2 -edge justifying the nonmonotonic assumption
not A is preferred to a ρP1 -edge justifying the atom A if there is an atom B
complementary to A in KU , but B and A are compatible in KP .

Definition 17 (Preference on ρU2 - and ρP1 -edges) Let A be an atom, eP =
(w,w ∪{A}) ∈ ρP1 and eU = (w,w ∪ u) ∈ ρU2 , where A ∈ u. Then eU is preferred
to eP if there is an atom B such that A and B are complementary in KU , but
there is a ρP1 -path in KP from w ∪ {A} to a possible world v such that B ∈ v.

Definition 18 (Postulate P4) Let A be an atom.

3 It seems, there is a space for a variety of semantic decisions.

P4 if eP = (w,w∪{A}) ∈ ρP1 , eU = (w,w∪u) ∈ ρU2 , A ∈ u, then (w,w∪{A}) ∈
RejectedρU (ρP) iff eU is preferred to eP .

We are going to define the update on Kripke structures. It should be (again) em-
phasized that there is a space for a variety of semantic decisions. The conflicts be-
tween ρU2 -edges and ρP1 -edges represent the critical point. The set RejectedρU (ρP)
contains only ρP1 -edges (according to the decision accepted in this paper).

Definition 19 (Update on Kripke structures)

ρU⊕P1 = ρU1 ∪ (ρP1 \ RejectedρU (ρP))

ρU⊕P2 = ρU2 ∪ (ρP2 \ RejectedρU (ρP))

ρU⊕P = ρU⊕P1 ∪ ρU⊕P2 ∪ ρU⊕P3

KU ⊕KP = KU⊕P = (W,ρU⊕P)

The relation ρU⊕P3 is defined according to the definition 3. The definition of
KU⊕P is sound in a sense – special cases of the facts 22, 23, 24 from the Subsec-
tion 4.2 shows that

– the rejected rules (according to the causal rule rejection principle) do not
“generate” edges in the updated Kripke structures,

– the information of U is represented in the good worlds of the updated Kripke
structure KU⊕P ,

– finally, an update on “reasonable” Kripke structures provides a reasonable
Kripke structure.

4.2 The general case

We present now the definition of the Kripke structure K⊕sP , which is the result
of the update operation on Kripke structures associated with programs in a
multidimensional dynamic logic program (P, G), where G = (V,E). We denote
for each Pi ∈ P the associated Kripke structure by KPi = (W,ρPi). A current
(dominant) program is denoted by Ps.

Definition 20 Let Pu ∈ P. An accessibility relation below(ρPui), where i = 1, 2,
is defined as follows:

– ∅, if there is no v such that (v, u) ∈ E,
–
⋃
v

(ρPvi \ RejectedρPu (ρPv)) ∪ below(ρPvi), where v ∈ V , (v, u) ∈ E.

Definition 21 (Update on P w.r.t. Ps)

ρ⊕sPi = ρPsi ∪ below(ρPsi), i = 1, 2

ρ⊕sP = ρ⊕sP1 ∪ ρ⊕sP2 ∪ ρ⊕sP3

K⊕sP = (W,ρ⊕sP).

Notice (again) that ρ⊕sP3 is defined by the definition 3.
Rejected rules according to the causal rejection principle do not generate

edges in ρ⊕sP :

Fact 22 Let w |= body(r), head(r) 6∈ w, where r ∈ Pj. Suppose that there is
r′ ∈ Pi, where i ≺ j such that head(r) = head(r′), w |= body(r′), head(r) 6∈ w.
Then (w,w ∪ {head(r′)}) ∈ RejectedρPj (ρPi).

Good worlds from K⊕sP respect the information of the dominant program:

Fact 23 Let Ps be the dominant program in P. If w is a good world in K⊕sP ,
then w is a model of Ps

An update on “reasonable” Kripke structures provides a reasonable Kripke struc-
ture:

Fact 24 Let Ps be the dominant program in P and it has a stable model. If each
Pi accessible by E from Ps has a stable model, then there is a good world in
K⊕sP .

Query answering based on a modular and dynamic knowledge base is specified
as follows.

Definition 25 Let L be a literal.
K⊕sP |=cred L iff there is a good world w in K⊕sP and L ∈ w.
K⊕sP |=scept L iff for each good world w in K⊕sP holds that L ∈ w.

5 Conclusions

A semantic theory of a modular and dynamic knowledge representation was
presented in this paper. The theory has its origin in the paradigm of multidi-
mensional dynamic logic programming. This paradigm focused the attention to
the logical foundations of crucial problems of knowledge representation - to the
problems of dynamics.

The contributions of the paper are as follows: The dynamic aspects of knowl-
edge representation are represented on the semantic level. The syntactic form
of a knowledge base is (relatively) stable and the dynamics is mirrored by the
changing meaning of the knowledge base. The semantic representation of a KB
is changed when the current module is changed or the preference relation on
modules is changed. It is important that the attention has been shifted from
the conflicts between rules to the conflicts between belief sets. A semantic char-
acterization of dependencies between literals and between belief sets has been
introduced. The dependencies are used as a basis for a semantic specification of
updates. A set of postulates characterizing reasonable updates has been speci-
fied. The queries addressed to the KB are responded (in a given situation) with
respect to the (changed) semantics.

Some goals for the future research: An elaboration of the postulates on more
abstract level. Computational aspects of this approach. Computation of updates
via compilation. Extensions to the well-founded semantics and to the extended
logic programs. There is a variety of semantic decisions concerning the updates
of Kripke structures in the frame of stable model semantics, therefore the well-
founded semantics could introduce a minimal common basis for a description of
the variety. A more deep study of the variety of various possible semantic charac-
terizations of the updates of Kripke structures. Applications of the approach to a
multi-agent theory of quick, but erroneous reasoning combined with a sound and
complete reasoning, when it is needed. The reasoning specified by our semantics
has been characterized in a draft of this paper as prioritized default reasoning.
This characterization has been omitted because of the limited size of the paper.
It will be presented in a future paper.
M (the metaknowledge base, the control mechanism) is in this paper a single

program. The current semantic representation of KB depends on the current
state of the environment. If the control mechanism itself is a multidimensional
dynamic logic program, then the current semantic representation of KB may
depend on the history of the environment.

Acknowledgment: I would like thank Martin Baláž for valuable comments.

References

1. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M. Evolving logic programs. 2002
2. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M. Environment-aware computations

via program updates. LOPSTR’01
3. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C. Dy-

namic Logic Programming. Proc. KR’98, 1998
4. Baral, C., Gelfond, M. Logic Programming and Knowledge Representation. Journal

of Logic Programing 1994:19, 20: 73-148
5. Dix, J., Brewka, G. Knowledge Representation with Logic Programs. Universität

Koblenz-Landau, 1996
6. Dix, J. A classification theory of semantics of normal logic programs I: Strong

properties. Fundamenta informaticae, XXII (3):227-255, 1995
7. Eiter, T., Fink, M., Sabbatini, G., Tompits, H. On properties of update sequences

based on causal rejection. 2001
8. Leite, J.A., Alferes, J.J., Pereira, L.M. Multi-dimensional dynamic knowledge rep-

resentation. In: Eiter, T., Faber, W., Truszczynski (Eds.): LPNMR 2001, Springer,
365-378

9. Mariničová, E. Semantic Characterization of Dynamic Logic Programming.
Diploma Thesis, Comenius University, Bratislava, 2001

10. Šefránek, J. A Kripkean Semantics for Dynamic Logic Programing. Logic for Pro-
gramming and Automated Reasoning, Springer, 2000

11. Šefránek, J. Considerations on dynamic knowledge bases.
http://www.ii.fmph.uniba.sk/ sefranek/recent/conSem.ps

