
On Learning Control Knowledge for a
HTN-POP Hybrid Planner

Susana Fernández, Ricardo Aler, and Daniel Borrajo

Departamento de Informática, Universidad Carlos III of Madrid, 28911 Leganés
(Madrid), Spain email:{sfarregu@inf aler@inf dborrajo@ia}.uc3m.es

Abstract In this paper we present a learning method that is able to
automatically acquire control knowledge for a hybrid HTN-POP plan-
ner called Hybis. Hybis decomposes a problem in subproblems using
either a default method or a user-defined decomposition method. Then,
at each level of abstraction, generates a plan at that level using a POCL
(Partial Order Causal Link) planning technique. Our learning approach
builds on Hamlet, a system that learns control knowledge for a total
order non-linear planner (Prodigy4.0). In this paper, we focus on the
operator selection problem for the POP component of Hybis, which is
very important for efficiency purposes.

1 Introduction

In this paper we present a system that learns control knowledge by generating a
bounded explanation of the problems solving episode applied to a planner which
solves real world problems from manufacturing systems (Hybis [5]). Hybis is an
hierarchical and nonlinear planner with an automata-based representation of op-
erators, which is able to obtain control sequences for manufacturing processes. It
mixes hierarchical (HTN) [7] and Partial Order Planning (POP) techniques [15].
The description of the problems that appear in a manufacturing system consists
of a set of transformations which must be performed on raw products in order
to obtain the manufactured ones. A domain is a knowledge-based model of the
manufacturing system. The model is divided into: a set of agents, which repre-
sents the set of actuators (devices); their operations and their interconnections
described by the model of actions; and a set of axioms, which describe facts
that are always true. Every agent is described hierarchically according to the
different parts it is made of, which can also be other agents. In this context, a
planning problem consists of: an initial state, which represents a conjunction of
literals which describe both the manufacturing system and the raw products;
and a goal, which is a conjunction of literals that describe the transformations
needed to obtain the manufactured products from the raw ones.

As it is the case for all domain-independent planners, Hybis does not always
finds the best plan fast, since it can spend time studying non valid alternatives,
until it reaches the right solution. To avoid this, we propose to automatically ac-
quire knowledge to guide the planning process. This knowledge is based on the



experience in solving previous real problems. In planning, several approaches
have been used successfully in order to guide the search process by adding
control knowledge to the planning procedure, either by learning this control
knowledge [11,8,9,12,4,1], or by adding it directly by a human [3]. Perhaps, the
most basic scheme for learning control knowledge has been deductive learning
techniques that generate control rules from a single or a set of problem solving
episodes and a correct underlying domain theory. This is the case of pure ebl
techniques [11,10], and techniques built on top of it [1]. These rules are used
in future situations to prune the search space. They allow to improve both the
search efficiency of the problem solver and, in some cases, the quality of the
generated plans.

The paper is organised in six sections. Section 2 overviews the planner and
the manufacturing domains to which it can be applied. Section 3, discusses the
learning process. Finally section 4 draws conclusions and future work.

2 The planner. Hybis

The planner hybis mixes hierarchical and POCL techniques to approximate
planning techniques to the way that control engineers reason to design control
programs [5]. These control programs obtain real world solutions for manufac-
turing systems. The design of a correct and complete industrial control program
is very complex, even for human programmers. Traditionally control engineers
have been using different methodologies, standards, formal tools and computer
utilities to carry out this task. The ISA-SP88 [2] standard is one of such method-
ologies used to hierarchically design control programs for manufacturing systems.
This standard allows for a hierarchical specification of physical, process and con-
trol models of a manufacturing system. In this sense, the planner employs hybrid
POCL and hierarchical planning techniques in order to:

– represent an industrial plant as a device hierarchy at different levels of gran-
ularity, which accepts SP88 descriptions, providing a friendly input level for
control engineers, and

– autonomously develop control programs for manufacturing systems following
a hybrid planning process (POCL+hierarchical), which results in a hierarchy
of control sequences (plans) at different levels of detail, closer to the way that
humans develop modular industrial control programs and, thus, providing a
more understandable output.

A planning domain is represented as a hierarchy of agents where the root
(a dummy agent) represents the whole plant, leaf nodes are primitive agents
corresponding to the field devices of the plant, and intermediate nodes are ag-
gregate agents. The structure and behaviour of the aggregate agents represent
a composition of a set of agents at lower levels of abstraction. Each aggregate
agent has knowledge on different alternatives for performing its activity at the
next level of detail, so this is equivalent to the different methods used in HTN for
decomposing a given operator. Each agent follows a finite automaton behaviour.



They are in a state, that can be changed through the actions (operators) that
are defined inside the agent. A problem description is a specification of a process
on products, i.e., a recipe. A problem is represented as an ordered set of literals
which represents the process to be carried out by the aggregate agents of the
highest abstraction level.

The planning process is a generative and regressive planning algorithm at
different levels of detail. Each plan at a given level of abstraction is refined into
lower level plans, until no aggregate activities exist on the lowest abstraction level
of a hierarchical plan. At each level, the plans are generated by machine [6]
using a POP approach. The input to the whole hybis planner is a domain
description (hierarchy of agents) and a problem to be solved (recipe at the highest
abstraction level, or procedure level recipe in SP88). That recipe is preprocessed
in order to build a hierarchical plan H-Plan with a single abstraction level,
containing a set of literals which represent the problem stated by the recipe.
Then, the inputs to Hybis are the hierarchical Domain, the initial abstraction
Level (the highest one is 1), an initialised task Agenda and the initial hierarchical
H-Plan. Then it proceeds as follows:

– First, by means of a generative POP process it obtains a sequence of control
activities to be carried out by the highest level agents.

– Second, if the sequence obtained is only composed by primitive activities,
then the problem is solved. Otherwise, the sequence is hierarchically refined,
that is, the algorithm expands every aggregate activity, according to its agent
interface and its default method or any other method specifically defined,
obtaining a new lower level problem.

– Third, the algorithm recursively proceeds to solve the new problem by the
agents at the next level.

Therefore, the final plan obtained by this algorithm is a hierarchy of control
sequences at different granularity levels. The reader is referred to [5] for more
details on the planning algorithm.

2.1 Example of domain definition

An industrial plant is conceived as a multi-agent domain where every agent
represents the knowledge about the relevant properties and behaviour of every
factory device. In the planner, the behaviour of every agent is described as an
automaton, and every transition of the automaton is represented as a control
activity. The planner uses an expressive and rich language in order to represent
actions as intervals and, in addition, to handle different kinds of conflicts and
interferences which may arise in complex domains like manufacturing systems.

The ITOPS domain, extracted from [14], can be used as an example of domain
definition. Figure 1 shows a high level diagram of the plant. This domain contains
the following primitives agents and products:

– Products: R1 to R5. They are initially in the tanks S1 to S5. I1 to I4 are the
intermediate products obtained by the reaction of these products, following
the scheme:



S1 S2 S3 S4 S5

S1

FILTER

PT1

V17 V18 V19 V20 V21

V15

V11 V10

V16

V1

V2
V7

V8
V12

V9

V13

V14

TANK1

MIX1

V23

STILL1

HEAT1

STILL2

HEAT2

Figure 1. ITOPS Plant. An example of domain for Hybis.

• Mix R1, R2, and R3 to result in I1
• Filter I1 results in I3
• Heat R4, R5 and I3 resulting in I4

– Valves: V1 to V23
– Mixers: MIX1
– Heaters: HEAT1, HEAT2
– Distillers: DISTILER1, DISTILLER2
– Filters: FILTER

The description of the hierarchical composition of the system is shown in
Figure 2. It has three levels of abstraction and the highest level is composed by
the following agents:

– Transports: TRANS-1 and TRANS-3. The components are valves and cir-
cuits. Both agents can perform two actions: transport and stop-transport.
But, while TRANS-1 only transports one product, TRANS-3 transports any
combination of three products

– Transformers: TANK1, STILL1, STILL2 and FILTER

The agents that appear in the next hierarchical level are: circuits, LINE1
to LINE9; and transformers, the same as the higher level but with different
primitive agents. The process to carry out consist in obtaining product I4 from
the distiller STILL1.

3 The learning mechanism

In order to learn control knowledge for this HTN-POCL planner, we follow a
three step approach:



ROOT

TRANS−3

STILL1

LINE1

LINE2

LINE3

STILL1 STILL2

DISTILLER1HEAT1

TRANS−1

STILL2 FILTER TANK1

LINE4

LINE5

LINE9

LINE6

LINE7

LINE8

FILTER TANK1

V1,V2

V16

V8,V9,V11,V17

V8,V9,V11,V18

V8,V9,V11,V19

V8,V9,V10,V20

V8,V9,V10,V21

V7,V8,V9,V10

V8,V9,V10,V23

LINE7−1

V9,V11,V12 V8,V12

MIX1 V15DISTILLER2HEAT2 V14 FILTER

Figure 2. ITOPS Plant. Hierarchy of agents for this domain and problem.

1. The planner is run on a planning problem. Then the planning search tree is
labelled so that the successful decision nodes are identified.

2. At successful decision points, control rules are created in such a way that
were the planner to be run again on this problem, only the right decision
would be tried.

3. Constants in the control rules are generalized, so that they can be applied
to other problems involving other objects with different names.

In the future, we plan to extend this learning scheme so that control rules
can be inductively specialized, generaliced, and combined by using new planning
problems.

Finally, learning can take place at two different moments:

1. Just before a downward refinement so that rules are learned only for one
level of abstraction, the one before the refinement (and the highest).

2. After the planner finds a complete solution. In that case, the planner returns
a complete search tree involving all levels in the hierarchy, and control rules
can be learned for all of them.

In this paper, we have followed the first approach, although it is not difficult
to use the whole search tree in a similar way.

3.1 Labelling the search tree

In order to label the whole search tree, the leaf nodes are labelled first. The
algorithm assigns four kinds of labels to the leaf nodes:

– success, if the node belongs to a solution path
– failure, if it belongs to a failed path
– abandoned, the planner started to expand this node but the heuristic pre-

ferred other nodes and it was abandoned



– unknown, if the planner did not expand the node.

After labelling the leaf nodes, it labels the rest of the nodes bottom-up re-
cursively:

– If a node has a successful succesor, then it is considered successful.
– If all its successor nodes have failed, then it is labeled as faillure
– Otherwise, it is considered unknown

Once the search tree has been labelled, two kind of decisions points (i.e.
nodes) are considered as candidates for learning control rules:

– Failure-Success: these are nodes which have at least two branches, one with
a success node and other with a faillure node

– Abandoned-Success: the same as above but instead of a failure node it has
an abandoned node

Obviously, if all successor nodes are successful, no control knowledge is re-
quired. When it finds any of these decisions points a control rule is generated,
as explained next.

3.2 Generating control rules

At decision nodes with some non-successful succesors, control rules are generated
so that the planner always selects the successor node. More generally, control
knowledge, can either select a node, reject it, or prefer one over another [13]. In
this paper, we have focused on the most direct sort, namely select rules.

In hybrid HTN-POCL planners, there are also different types of nodes where
rules can be learned:

1. HTN points: how to downward refine (which expansion method should be
used?)

2. POCL points:
(a) Whether to use an already existing operator or a new one to achieve a

goal
(b) In both cases, which operator should be selected?
(c) Whether to promote or demote an operator to solve a threat

In this paper we have studied the operator selection problem. Particularly, we
learn SELECT OPERATOR (to select an operator already present in the plan
to achieve an unsolved goal) and SELECT NEW-OPERATOR-PLAN (to select
a hitherto unused operator to achieve a goal). The kind of rule to be learned
depends on what the planner did.

The control rule has a template for describing its preconditions. The tem-
plates share a set of common features for both kinds of control rules, but each
one has certain local features. Examples of common features, which become
predicates, or rather metapredicates, 1 of the control language, are:
1 Actually, they are called metapredicates, because their arguments are predicates

themselves.



– True-in-state <assertion>: tests whether the <assertion> is true in the ini-
tial state of the planning problem.

– Current-goal <goal>: tests whether the <goal> is the one that the planner
is trying to achieve.

– Some-candidate-goals <goals>: tests whether any of the goals in the <goals>
set is a pending goals.

Examples of local features for each one of the two kinds of control rules are:

– Operator-in-plan <action>: tests whether the <action> is already in the
plan (for OPERATOR-PLAN)

– Operator-not-in-plan <action>: tests whether the <action> is not in the
plan (for OPERATOR-NEW)

Variables may appear in the conditions of the control rules. Every variable
can only match with a certain kind of objects, a type, which is coded as a prefix
in the variable name (what appears before the mark %%). Typing preserves
semantics and makes the matching process more efficient.

Finally, the condition part of a control rule is made of three main parts:

– A CURRENT-GOAL metapredicate to identify which goal the planner is
trying to achieve

– A SOME-CANDIDATE-GOALS metapredicate to identify what other goals
need to be achieved

– A OPERATOR-NOT-IN-PLAN metapredicate so that an OPERATOR-
NEW rule is activated only if the operator to insert was not already present.
Similary, OPERATOR-PLAN rules include the OPERATOR-PLAN metapred-
icate to make sure the action to be reused is already in the plan.

– Finally, there is a TRUE-IN-STATE metapredicate for every literal which is
true in the planning initial state. Actually, in order to make the control rules
more general and reduce the number of TRUE-IN-STATE metapredicates,
a goal regression is carried out. Only those literals in the initial state which
are required, directly or indirectly, by the preconditions of the operator are
included. The regression of the preconditions is done by using the causal-link
structure.

A control rule following the previous template would become activated only
at the appropriate nodes. However, all the arguments of the predicates of the
TRUE-IN-STATE metapredicates are constants, because only particular objects
appear in the initial state literals. To avoid that the rule depends on the names
of the particular planning problem used for learning, constants are generalized
into variables that belong to the same type as the constant.

Actually, not all constants are parameterized as explained. In some cases,
it makes no sense to generalize them. For instance, let us consider the literal
(STATE TRANSPORTER-3 OFF). TRANSPORTER-3 is a good candidate for
parameterization, but OFF is not, because in that case, the meaning that a
transporter object is off would be lost. Currently, we do not generalize the second



argument of STATE predicates. In the future, we would like to detect such cases
automatically, although it does not seem an easy task.

The next control rule is an actual example that have been generated after
this process. It is an OPERATOR-NEW control rule that selects to use a new ac-
tion not in the partial plan, filtrate(<filter>,<result>), when the planner
decides to work on goal contains(<I3>,<?SRC330>), and it is true in the initial
state the literals that appear as arguments of the metapredicate true-in-state.

(control-rule regla-1

(if (and (current-goal (contains <i3> <?src330>))

(some-candidate-goals ((state <line-3prod%%trans-3> off)

(state <still%%still1-agg> off)

(state <still%%still1-agg> ready)))

(operator-not-in-plan (filtrate

<filter-agg%%filteragg-agg>

<?result>))

(true-in-state (state <line-3prod%%trans-3> off))

(true-in-state (state <tank%%tank1-agg> off))

(true-in-state (state <filter-agg%%filteragg-agg> off)))

(then select operator-new

(filtrate <filter-agg%%filteragg-agg> <?result>))))

So far, we have tested our approach in the ITOPS domain, and observed that
they prune the search tree as expected. In the near future we intend to carry
out experiments to check that the control rules generalize to unseen planning
problems in the same domain and similar domains (i.e. industrial plants that
have more (or less) agents of the same type as in the original plant, or that
some levels in the agent hierarchy are preserved). We also want to measure the
effectiveness of the rules in terms of time and plan quality.

4 Conclusions and future work

Nowadays, it is often claimed that the most commonly used planners in industry
are HTN planners. In this approach, plans are built at different levels of a hier-
archy, starting with a high level one and refining them towards the bottom, more
specific, level. It is the task of the users to provide methods to step from one level
to a lower level. Systems with higher autonomy can be devised. For instance,
hybis is a hybrid hierarchical planner which provides a default method to step
from one level to another. This plan refinement requires to solve a new plan-
ning problem, which is performed by a partial order planner (POP). However,
although using a hierarchy limits the computational complexity, the process is
still inefficient. Moreover, in a hybrid planner like hybis, efficiency can be gained
both at HTN and POP decision points. Machine learning techniques have been
used in older planners to improve the search process by means of previous expe-
rience. In this paper, we discuss some of the issues on machine learning applied
to this kind of planners. We have extended some machine learning ideas, to deal



with hybrid HTN-POP planners. In particular, we have focused in a decision
point where the planner has to decide whether to apply an operator already in
the plan or not, and in any case, which operator to apply.

There are many other issues that we would like to address in the future. In
particular, we intend to learn control knowledge for all the decision points of
hybis, including the HTN points, for which we plan to use case based learning
techniques. In addition, hybis is an agent-based planner, where some agents
are made of some other agents. Capturing this part-of information would be
useful to include more semantics into the control rules. Also, there is some other
information about the conections between agents which is distributed in the
domain description that would be interesting to capture as well. Finally, hybis
has been extended to be able to generate conditional plans, which offers new
learning opportunities.

Acknowledgements

This work was partially supported by a grant from the Ministerio de Ciencia y
Tecnoloǵıa through project TAP1999-0535-C02-02. The authors would also like
to thank Luis Castillo and Juan Fernández for their help on using Hybis.

References

1. Ricardo Aler, Daniel Borrajo, and Pedro Isasi. Using genetic programming to learn
and improve control knowledge. Artificial Intelligence, 2002.

2. ANSI/ISA. Batch Control Part I, Models & Terminology (S88.01), 1995.
3. Fahiem Bacchus and Froduald Kabanza. Using temporal logics to express search

control knowledge for planning. Artificial Intelligence, 116:123–191, 2000.
4. Daniel Borrajo and Manuela Veloso. Lazy incremental learning of control knowl-

edge for efficiently obtaining quality plans. AI Review Journal. Special Issue on
Lazy Learning, 11(1-5):371–405, February 1997. Also in the book ”Lazy Learning”,
David Aha (ed.), Kluwer Academic Publishers, May 1997, ISBN 0-7923-4584-3.

5. Luis Castillo, Juan Fernández-Olivares, and Antonio González. A hybrid
hierarchical/operator-based planning approach for the design of control programs.
In ECAI Workshop on Planning and configuration: New results in planning,
scheduling and design, 2000.

6. Luis Castillo, Juan Fernández-Olivares, and Antonio González. Mixing expres-
siveness and efficiency in a manufacturing planner. Journal of Experimental and
Theoretical Artificial Intelligence, 13:141–162, 2001.

7. Ken Currie and Austin Tate. O-Plan: the open planning architecture. Artificial
Intelligence, 52(1):49–86, 1991.

8. Tara A. Estlin and Raymond J. Mooney. Learning to improve both efficiency and
quality of planning. In Martha Pollack, editor, Proceedings of the 15th International
Joint Conference on Artificial Intelligence (IJCAI-97), pages 1227–1232. Morgan
Kaufmann, 1997.

9. Yi-Cheng Huang, Bart Selman, and Henry Kautz. Learning declarative control
rules for constraint-based planning. In Pat Langley, editor, Proceedings of the
Seventeenth International Conference on Machine Learning, ICML’00, Stanford,
CA (USA), June-July 2000.



10. Subbarao Kambhampati. Improving graphplan’s search with ebl & ddb techniques.
In Thomas Dean, editor, Proceedings of the IJCAI’99, pages 982–987, Stockholm,
Sweden, July-August 1999. Morgan Kaufmann Publishers.

11. Steven Minton. Learning Effective Search Control Knowledge: An Explanation-
Based Approach. PhD thesis, Computer Science Department, Carnegie Mellon
University, 1988. Available as technical report CMU-CS-88-133.

12. Manuela Veloso. Planning and Learning by Analogical Reasoning. Springer Verlag,
December 1994.

13. Manuela Veloso, Jaime Carbonell, Alicia Pérez, Daniel Borrajo, Eugene Fink, and
Jim Blythe. Integrating planning and learning: The prodigy architecture. Journal
of Experimental and Theoretical AI, 7:81–120, 1995.

14. S. Viswanathan, C. Johnsson, R. Srinivasan, V. Venkatasubramanian, and K-E.
Arzen. Procedure synthesis for batch processes: Part I. knowledge representation
and planning framework. Computers and Chemical Engineering, 22:1673–1685,
1998.

15. Daniel S. Weld. An introduction to least commitment planning. AI Magazine,
15(4):27–61, 1994.


