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Abstract. In this paper, an architecture for image segmentation and labelling 
obtained in real conditions is proposed. The model is based on the texture 
identification of the scene's objects by means of comparison with a database 
that stores series of each texture perceived with successive optic parameter 
values: collection of each perceived texture at successive distances, collection 
with successive light intensities, etc. As a basis for the architecture, self-
organizing maps (SOM) have been used in several phases of the labelling 
process. The SOMs' discrimination capacity enables us to work on information 
extracted from the images, which has a low calculation cost. On the other hand, 
the reconfiguration possibilities of the neuronal network permit the systematic 
application of the proposed architecture, demonstrating the interest of its 
hardware implementation as a basis for an architecture with realistic vision. The 
article ends with an application of the architecture for labelling scenes in 
images when the distance at which the scene was captured is unknown. 

1 Introduction 

During the last few years, considerable advances have been made in vision 
techniques, however, there are still very few studies aimed at dealing with situations 
in natural environments, taking the scenes' realism into account; where natural light is 
changeable or isn't uniform; the scene's different planes become unfocused; the scale 
of an object's perception can change according to its distance; etc. [1], [2], [3]. The 
majority of studies have solved these problems with generally specific pre-processing 
methods, catalogued as enhancement or restoration methods [4], [5], [6]. 

When the aim is the segmentation and interpretation of the objects in a real scene, 
the task can be made easier if the configuration at surface texture level is known [7], 
[8], [9], [10]. Many techniques highlight the classification capacity of the 
characterizers extracted from images [11], [12] searching for properties that are 
invariable or tolerant with the variation of optic parameters [13], [14], [15], [16]. 

In the context of the research project Vision system for autonomous navigation1, 
one of the study's aims is the development of a light and realistic autonomous vision 
device. To this effect, this paper proposes a general segmentation and labelling model 
for real conditions acquired scenes, which could be systematically used in a wide 
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range of real situations (illumination, scale, focus variations...). The proposal tackles 
the problem by means of texture identification of the scene's objects, highlighting the 
simplicity of the characterizers used in the model, which will result in low computing 
costs and the possibility of formulating iterative algorithms aimed at solving real time 
problems. 

Texture classification in real scenarios is carried out by consulting databases that 
store series of each surface captured with successive optical parameter values: the 
collection of each texture perceived at successive distances, the collection with 
different light intensities, etc. This approach implies the handling of large volumes of 
images. Consequently, the use of self-organizing maps [17], [18] to organize 
knowledge bases enables its discrimination capacity to be exploited and 
spatiotemporal costs to be reduced. On the other hand, the possibilities for hardware 
implementation of the self-organizing maps [19], will permit the model's systematic 
application by means of hardware reconfigurations 

2 Problem Formulation 

A given device, with a given calibration and in environmental conditions, has 
sensitivity around a value of the variable on which it operates, which is the so-called 
calibration point. The function that describes the device's behaviour acquires values at 
an interval around the calibration point. Generally speaking, we can assume that for 
another calibration point (and even for another device), the calibration function is 
different. For each device there will be a calibration point that generates an optimum 
calibration chart. 

If Ψ is the value of an input magnitude to a sensor and, generally speaking, to a 
system, and Λα=Λ(αxj) is the function that represents the calibration to the values αxj 
of the n variables that characterize the sensor (environmental conditions or the 
system's characteristics). The sensor (system) output could be expressed as: 

, inf sup( , ) 1j j jf f x x x j nα αΨ = Ψ Λ ∀ ≤ ≤ = �

 
(1) 

For another calibration, the system output will be:  
, inf sup( , ) 1j j jf f x x x j nβ βΨ = Ψ Λ ∀ ≤ ≤ = �

 
(2) 

With an input Ψ and the system output α,ψƒ for one of the calibrations known; the 
output β,ψƒ for another calibration could be synthesized. 

( ), ,,sf fβ β αΨ Ψ= Τ Λ
 

(3) 

The interest of this research consists of proposing a general method that carries out 
transformation Ts, independently of the studied variables xj of the calibration function 
Λ(αxj). This approach enables us to achieve our aim of proposing a general 
architecture for image treatment. The arguments could reflect, for example, lighting 
conditions of the acquisition: with an image α,ψƒ captured with deficient lighting 
Λα=Λ(αxillumination), the method will allow us to synthesized a new image β,ψƒ with  
improved lighting conditions Λβ. The same can be said for other variables, such as 
image resolution, which is the case in question in this paper. 



Other transformation models could be dealt with, such as the estimate of the 
calibration function value Λβ that generates the image β,ψƒ for an input Ψ, we will call 
TΛ. 

( ), fβ βΛ ΨΛ = Τ
 

(4) 

Another transformation model TΨ of fundamental interest consists of obtaining the 
region labelling function ψθ of the image β,ψƒ, acquired with values of the calibration 
function Λβ. 

( ), fψ βθΨ Ψ= Τ
 

(5) 

The region labelling function ψθ must be independent of the calibration function 
values, that is, invariable to the context.  

( ) ( ) ( ), ,f fβ αθ θ θ θΨ Ψ Ψ Ψ Ψ= Ψ = =
 

(6) 

In this paper, we will focus on the use of the transformations expressed in (4) and 
(5) to deal with the segmentation and labelling of a scene from an image. 

3 Solution proposal 

The formulation of the problem that has been carried out in the previous section is 
open and depending on the transformation functions characteristics T (3) (4) and (5) 
and on the knowledge we have of these functions, different methods can be proposed 
to solve the problem. 

In the simplest cases, the result could be obtained analytically if the functional 
expressions for T are known. In the specific case of image treatment, as these 
functional expressions are not known, we will have to work in explicit terms resorting 
to databases that contain the magnitude values. To be more specific, this work is 
based on the use of textures. Labelling is obtained by comparing the descriptor of an 
unknown texture with the descriptors previously stored in a database for different 
materials and different calibrations. Consequently, the proposed general model of 
transformation T uses knowledge bases to infer the calibration function values Λα (4) 
or provide the region labelling function ψθ (5). In any case, the inference from image 
β,ψƒ, with the image α,ψƒ being known for different calibration values Λα, is suggested. 
We will call these databases DB(α,ψƒ,Λα). Consequently, we could formulate the 
expressions thus:  

( )( ), ,, ,DB f DB fβ β α αΛ Ψ ΨΛ = Τ Λ
 

(7) 

( )( ), ,, ,DB f DB fψ β α αθΨ Ψ Ψ= Τ Λ
 

(8) 

The consultation of databases in (7) and (8) can be simplified by previously 
estimating the values Λα or Ψ and the subsequent consultation of the partial view of 
the databases for the known values of Λα or Ψ, we will call DBΛα(α,ψƒ,Λα) or 
DBΨ(α,ψƒ,Λα). In the proposal, the prior estimate of Λα is carried out for several 
reasons: we assume that the calibration function Λα  values present a low spatial 



dispersion with regard to the dispersion of the function ψθ, on the other hand, the 
main aim of this study is to obtain region labelling and to a lesser extent, the estimate 
of the calibration parameters. Consequently, the calibration function Λα  will be 
previously estimated by means of (7), which will enable us to obtain more precisely 
the region labelling function ψθ via consultation of the partial view of the databases 
DBΛα(α,ψƒ,Λα) (9). 

, ,
, ( , , ( , ))DB f DB fα

ψ β β α αθΨ Ψ Ψ
Λ Λ

= Τ Λ Λ
 (9) 
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Fig. 1. Model for image labelling in real conditions 

The steps are the following: 
1. Pre-processing. Calibration estimation (7) 
- Scan the unknown image with a window and classify each of the image's elements 
of the size of the window according to the best match found in the database, label the 
region with the calibration of the database element DBΛα(α,ψƒ,Λα).  
- Using the elemental calibrations, estimate the image calibration. Assumptions can be 
made on calibration uniformity in the whole image or in some parts. General 
calibration or calibration of the parts can be estimated as a statistical parameter of the 
elemental calibrations obtained for each position of the scan window. Other heuristics 
can also be used according to the knowledge and nature of the problem to be tackled; 
for example, the support of a complementary segmentation technique. 
2. Processing. Image labelling (9) 
Scan the unknown image again with a window and classify each image element of the 
window size according to the best match found in the view of the specific database for 
that calibration DBΛα(α,ψƒ,Λα). 

4 Architecture based on a reconfigurable SOM model 

In order to tackle the scan windows' classification task of the unknown image by 
comparison with different images stored in databases, self-organizing maps have been 
used due to their discriminating capacity and high degree of parallelism inherent to 
connectionist methodologies. These self-organizing maps enable the discriminating 



capacity of different features extracted from the images to be evaluated, that is, their 
suitability for grouping the unknown images together in accordance with different 
classification criteria, such as region labelling or the calibration value. On the other 
hand, these self-organizing maps will serve as the basis for a general architecture for 
the vision system in realistic conditions. The architecture will be general and will 
enable the problems of realism introduced by the different calibration variables to be 
dealt with by means of simple reconfigurations of the self-organizing maps neurons.  
To do this, we will use reconfigurable hardware, which has the ideal features for the 
proposed requirements, providing low level implementations with a high degree of 
parallelism and with reconfiguration capacity. 

The self-organizing maps have been constructed from features extracted from the 
images τ(α,ψƒ) from the database DB(α,ψƒ,Λα) (different materials ψθ for different 
calibration function values Λα). According to the classification criterion for this set of 
features τ(α,ψƒ) different self-organizing maps are obtained; classified according to 
material ψθSOM(τ(α,ψƒ),Λα) or to calibration function values ΛαSOM(τ(α,ψƒ),Λα). 

The labelling of self-organizing maps per surface ψθSOM(τ(α,ψƒ),Λα) may provide 
success levels that indicate the suitability, in certain cases, of the central part of 
processing to carry out region labelling ψθ. 

( )( )( ), ,, ,SOM f SOM fβ θ α αθ τ
ΨΨ Ψ Ψ Ψ= Τ Λ

 
(10) 

As we have previously mentioned, consultation of databases can be simplified by 
the prior estimation of the calibration values Λα and the subsequent consultation of the 
partial view of the databases DBΛα(α,ψƒ,Λα). These database partial views will be 
classified per material ψθSOMΛα(τ(α,ψƒ),Λα). Once the calibration value Λβ has been 
estimated, the map corresponding to this value is activated, as expressed in (11). 
These partial maps separated by calibration levels Λβ do away with the overlapping of 
some patterns and thus offer better results.  

( )( )( ), ,
, , , ,SOM f SOM fα

β β θ α αθ τ
ΨΨ Ψ Ψ Ψ

Λ Λ
= Τ Λ Λ

 
(11) 

In the pre-processing phase, the calibration Λβ, is also estimated by means of 
consulting the databases DB(α,ψƒ,Λα). We also use self-organizing maps labelled 
according to calibration values ΛαSOM(τ(α,ψƒ),Λα), as seen in (12). 

( )( )( ), ,, ,SOM f SOM f
αβ β α ατΛ Ψ Λ ΨΛ = Τ Λ

 
(12) 

As previously mentioned, database consultations can be simplified by prior 
estimation, in this case, of the values Ψ and the subsequent consultation of the partial 
view of the database for the known values of Ψ, we will call DBΨ(α,ψƒ,Λα). On the 
other hand, not all materials have the same suitability for calibration estimation, so, 
the complete database is used to carry out prior region labelling ψθ (10), after which 
the surfaces suitable for estimating will be selected Λβ . By separating the databases, 
in this case per surface, DBΨ(α,ψƒ,Λα), we can label the maps per calibration and 
select the ones that offer a higher degree of success (13). 

( )( )( ), ,
, , , ,SOM f SOM f

αβ β α α
ψ θ τΛ Ψ Ψ Λ Ψ

ΨΛ = Τ Λ
 

(13) 
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Fig. 2. The diagram shows the whole architecture for image labelling in real conditions based 
on reconfigurable SOMs 

5. Architecture application in scale treatment 

The model presented in the previous sections is general and could be used for the 
treatment of different calibration parameters such as lighting, scale, focusing 
conditions etc. In this section, its application will be specified on the analysis of the 
scaling level Λβ. 

An extensive collection of images capturing 14 materials (6 fabrics, 2 woods, 
marble, cork, 2 earthenware, terrazzo) with 150 scale values has been created, that is, 
2100 captured images. In order to obtain these images, a programmable calibration 
capture system has been developed using a motorized optics Computar M10Z1118 
and a high-resolution camera Hitachi KPF100 1300x1030. These collections have 
been obtained while maintaining a stable environment for the rest of the optical 
parameters. The numbers of pixels of each of the images, containing the materials, are 
dependent on the real world area in the scene. That is, the real world area captured for 
the construction of the database is the same for all the images, on all the scales, which 
means that more distant images have fewer pixels (86x86) than the nearest ones 
(783x783). After the previous cutting of the material surfaces of the 2100 images, 
these images have been cut into smaller samples of 80x80 pixels each, for reasons of 
coherence with the scan window size of the labelling algorithms. Number of samples 
ranges from 1 (the image with the least scale) to 81. Total samples is 29.890. 

Table 1. Some of the samples of the database of different materials for different scale values 

Scale (pix./cm) fabric cork wood 1 wood 2 terrazzo … 
 
0 (2,81) 

     

…. 

       

 
149 (25,67) 

    

…. 



5.1 Self-organizing maps 

The use of self-organizing maps has been proposed to classify features extracted from 
images in the database previously described. Below, we will describe the properties of 
each of the maps used in the process (characterizers used, number of neurons, success 
rates ...). We have previously mentioned that one of the model's advantages is the use 
of simple characterizers, which permit its iterative implementation as a basis for a 
generic architecture aimed at the tackling of problems with real time restrictions. The 
instances of the function τ(α,ψƒ) have been different according to the labelling aims. 
For surface labelling of the functions (10) and (11), a generic characterizer such as the 
brightness histogram was used. With regard to scale value labelling (12) and (13), the 
characterizer used is the morphological coefficient histogram [20]. 

a) Classification rate of the self-organizing map to classify the complete database 
according to materials, expression (10): A classification rate of over 85% was 
obtained, that is, 85% of the patterns of the database (29.890) were correctly 
classified, the remaining 15% activated neurons linked to several materials. This 
enables us to approach region labelling, using exclusively this part of the process, in 
applications with relaxed requirements. The Number of neurones was 40 x 40. 

b) Classification rates of the SOM for partial views of the database per scale values 
and labelling per surface, expression (11). The brightness histogram was used again 
for these databases. We observed improved results with regard to the classification of 
the complete database, as a result of dividing the problem. The 150 scale values are 
grouped into 15. The high scale values, from 9 to 14, were seen to offer slightly lower 
results as a result of insufficient areas of the materials being reflected. 

Table 2. Classification rates of self-organizing maps for the expression (11) 

Scale (pix./cm) C. rate Scale (pix./cm) C. rate Scale (pix./cm) C. rate 
0 (2,91) 100% 5 (5,18) 100% 10 (10,78) 96% 
1 (3,18) 100% 6 (5,86) 100% 11 (12,88) 90% 
2 (3,57) 100% 7 (6,75) 100% 12 (15,57) 95% 
3 (4,03) 100% 8 (7,80) 100% 13 (18,95) 93% 
4 (4,55) 100% 9 (9,11) 92% 14 (23,21) 87% 

 
c) Classification rates of the SOM for the classification per scale value of the 

whole database (12): From the features studied, the best results regarding the labelling 
of this map correspond to the use of morphological coefficient histograms, although 
the total database doesn't offer sufficiently interesting results (20% classification 
rate). The characterizers studied, which are not specified in this paper, have sought 
the size of geometrical shapes in the materials' textures. The dimension of these 
shapes depends on the scale, as well as on the material studied, which makes scale 
classification difficult without prior knowledge of the nature of the material (12). 

d) Classification rates of the self-organizing maps for the classification per scale 
value of the database separated according to surface (13): We found that the 



separation of the database according to surface improved image classification with 
regard to scaling. Morphological coefficient histograms were also used for these 
maps. The classification rates of the SOM of the expression (13) grouped into 15 
scale values, ranges from 68% of terrazzo to 48% of black wood. Assuming a low 
spatial dispersion of the scale in all the scene with regard to dispersion of the 
materials, the scale's general value could be estimated, as a statistical parameter of the 
elemental scale values obtained for each position of the scan window. The use of 
these maps in the more precise construction of scene depth maps requires the search 
for characterizers that provide better classification rates. These characterizers are not 
included in this study. However, as a low dispersion of scale in the scene is assumed, 
a high success rate, applying the mode as the statistical parameter, is obtained. 

5.2 Scenario labelling 

Once the classification capacities of the process's different maps have been reviewed, 
a series of tests with scenarios has been designed, based on the composition of real 
images not included in the database. Each of these scenarios contains the different 
surfaces corresponding to one of the scale values (from 2,91 pix/cm to 23,21 pix./cm). 

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Differe nt scenes  for different scale values

Su
cc

es
s i

nd
ex

With preproces sing
Without preproces sing

2,
91

 

3,
18

 

3,
57

 

4,
03

 

4,
55

 

5,
18

 

5,
86

 

6,
75

 

7,
80

 

9,
11

 

10
,7

8 

12
,8

8 

15
,5

7 

18
,9

5 

23
,2

1 

Scale (pixels/cm) With preprocessing 
Without preprocessing 

100 
90 
80 
70 
60 
50 
40 
30 
20 
10 

0 

Su
cc

es
 ra

te
 (%

) 

earth. 1 
earth. 2 
wood 1 
wood 2  
marble 

wall 

cork fabric 1 
fabric 2 
fabric 3 
fabric 4 
fabric 5 
fabric 6 
terrazzo 

a) 

b) 

 
Fig. 3. a) In the following graph we can see the success rates of the use of the complete model 
as opposed to the model without pre-processing. b) One of the scenarios used as benchmark 
with its labelling results 
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6. Conclusions 

This work offers an architecture for the segmentation and labelling of images 
acquired in realistic environmental conditions. The architecture has been conceived to 
systematically deal with the different causes that make vision difficult and allows it to 
be applied in a wide range of real situations: changes in lighting, changes in scale, 
faulty focusing, etc. The proposal is based on texture classification using self-
organizing maps for the organization of databases that store series of each texture 
perceived with successive optical parameter values. More specifically, the results of 
the architecture applications in the labelling and segmentation of real scenes, 
perceived with different scale values, are reflected. .The results show high success 
rates in the labelling of real scenes captured in different scale conditions, using very 
simple describers, such as different histograms of textures. This fact shows that self-
organizing maps are suitable for solving this problem and can be used as a basis for a 
general, robust vision architecture. From the results obtained, our interest is directed 
towards systematizing the proposal and experimenting on the influence of the other 
variables of the vision process that have yet to be tested. Subsequently, we will 
propose an integral system for robust artificial vision that jointly considers all the 
parameters that can present difficulties for artificial visual perception. We will also 
tackle the implantation of the classifier module so that the different causes can be 
dealt with by the reconfiguration of the same hardware. To do this, we will use 
reconfigurable hardware, which has the ideal features for the proposed requirements, 
providing low level implementations with a high degree of parallelism and with 
reconfiguration capacity. 



References 

1. Jan Flusser and Tomáš Suk. Degraded Image Analysis: An Invariant Approach. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 6, June 1998. 

2. J. Biemond, R.L. Lagendijk, and R.M. Mersereau, “Iterative Methods for Image Deblurring,” 
Proc. IEEE, vol. 78, pp. 856-883, 1990. 

3. J.G. Moik. Digital Processing of remotely sensed images. NASA SP-431, Washington DC 
1980 

4. A Rosenfeld and AC Kak. Digital picture processing. Academic Press. New York, 2nd 
edition. 

5. Rafael C. González, Richard E. Woods. Digital Image Processing. Addison-Wesley 
Publishing Company Inc. 1992. 

6. M. Sonka, V. Hlavac y R. Boyle. Image Processing, Analysis, and Machine Vision (2nd 
edition). Brooks/Cole Publishing Company, 1998. 

7. Chee Sun Won. Block-based unsupervised natural image segmentation. Optical Engineering, 
December 2000, Vol. 39(12). 

8. Abhir Bhalerao y Roland Wilson. Unsupervised Image Segmentation Combining Region and 
Boundary Estimation. Image and Vision Computing, volume 19 (2001), number 6, pp. 353-
368. August 2000. 

9. N. W. Campbell, W. P. J. Mackeown, B. T Thomas, and T. Troscianko. Interpreting Image 
Databases by Region Classification. Pattern Recognition (Special Edition on Image 
Databases), 30(4):555--563, April 1997. 

10. James G. Shanahan, James F. Baldwin, Barry T. Thomas, Trevor P. Martin, Neill W. 
Campbell, Majid Mirmehdi. Transitioning from Recognition to Understanding in Vision 
using Cartesian Granule Feature Models. Additive Proceedings of the Intn’l conference of 
the North American Fuzzy Information Processing Society, NAFIPS 1999, New York, pp 
710-714. (Fritzke, 1997) 

11. R.M. Haralick. Statistical and structural approaches to texture. Proceedings of IEEE. Vol 
67. Pag 786-804. 1979. 

12. H. Tamura, S. Mori and T.Yamawaki. Textural features corresponding to visual perception. 
IEEE Transactions on SMC. 8(6): 460 473, 1978. 

13. F.S. Cohen, Z. Fan and M.A. Patel. Classification of rotated and scaled textured images 
using Gaussian Markov random field models. IEEE Transactions on PAMI. 13(2): 192-
202,1991. 

14. W.K. Leow and S.Y. Lai. Scale and orientation-invariant texture matching for image 
retrieval. Texture Analysis in Machine Vision. World Scientific 2000. 

15. D.G. Sim, H.K. Kim and D.I. Oh. Translation, scale, and rotation invariant texture 
descriptor for texture-based image retrieval. Proceedings ICIP,2000. 

16. A. Teuner, O.Pichler, J.O. Santos Conde, and B.J. Hosticka. Orientation-and scale-invariant 
recognition of textures in multi-object scenes. In Proc, ICIP, pages 174-177. 1997. 

17. B. Fritzke. Some Competitive Learning Methods. Draft Paper, System Biophysics, Institute 
for Neural Computation, Rurh-Universität Bochum, 1997. 

18. T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin Heidelberg, 1995. 
19 D. Hammerstrom and N. Nguyen. An Implementation of Kohonen's Self-Organizing Map 

on the Adaptive Solutions Neurocomputer, in Artificial Neural Networks, T. Kohonen et al., 
(Eds.), Elsevier Science Publishers, 1991,pp. 715-719. 

20. Juan Manuel García Chamizo, Francisco Ibarra Pico et al. Segmentation of defects in textile 
fabric using semi-cover vector and self-organization. Proceedings of the International 
Conference on Quality Control by Artificial Vision, France, 1995. 


