Domain-independent On-line Planning for
STRIPS Domains

Oscar Sapena, Eva Onaindia

Departamento de Sistemas Informdticos y Computacidn,
Universidad Politécnica de Valencia, Spain
{osapena,onaindia}@dsic.upv.es

Abstract. SimPlanner is an integrated tool for planning and execution-
monitoring which allows to interleave planning and execution. In this
paper we present the on-line planner incorporated in SimPlanner. This
is a domain-independent planner for STRIPS domains. SimPlanner par-
ticipated in the IPC 2002, obtaining very competitive results.

Introduction

Off-line planning generates a complete plan before any action starts its execution
[18]. This forces to make some assumptions that are not possible in real environ-
ments like, for example, that actions are uninterruptable, that their effects are
deterministic, that the planner has complete knowledge of the world or that the
world only changes through the execution of actions.

On the other hand, on-line planning allows the execution to begin while the
planner is still planning, to improve the combined planning and execution time
[18]. Nowadays there are only some few approaches for planning in dynamic
environments and/or with incomplete information [9]:

— Conditional planning: there exists two approaches in conditional planning.
The first one is based in those problems where the next action to be executed
in a plan can depend on the result of previous sensing actions, that is, on
information obtained by means of actions during execution time [13]. The
second approach tries to consider all the possible contingencies which can
happen in the world [2]. Although this solution is untractable in complex
environments, it is interesting for particularly dangerous domains. Proba-
bilistic planning is a more moderate variant, since it generates conditional
plans only for the most likely problems [4] [6]. The appearance of unpre-
dictable or unlikely situations is usually handled by means of replanning
algorithms.

— Parallel planning and execution: this approach separates the planning pro-
cess from the execution [7]. The execution module is able to react to the
environment without the necessity of a plan. The planner is in charge of
modifying the behavior of this module in order to increase the satisfaction
probability of the objectives.

— Interleaving planning and execution: this approach allows quick and effective
responses to changes in the environment, and it has been adopted by many
researchers [1] [15].

2 Oscar Sapena, Eva Onaindia

SimPlanner is an integrated tool for planning and execution, and it is based
on this latter approach. The on-line planner generates a sequence of actions to
reach the goals, while the execution module carries out these actions and provides
the planner with sensing information. With this new incorporated information,
the planner updates its beliefs about the world.

Objectives

SimPlanner is aimed to be an integrated tool for planning and execution moni-
toring. SimPlanner has been developed to work under several domains and not
only for particular robot environments. Because SimPlanner is thought to be
a domain-independent tool, we have chosen PDDL 2.1 [8] as the planning lan-
guage for domain and problem specification. SimPlanner only uses level one of
PDDL ! (without disjuntive preconditions neither conditional effects), although
extending it to support levels two and three? is quite simple.

Our second objective is to design a fast planner so that SimPlanner was able
to react rapidly to exogenous events. Also, planning should spend less time than
the execution since, otherwise, the behavior of the system could demean and
even to lose the chance to reach the goals [14]. If this objective is accomplished,
the planner will have additional time to optimize the part of the plan that has
not been executed yet. Plan quality is not so relevant in dynamic environments.
It is not worth spending lots of time in computing a good plan when it may get
invalid shortly after execution starts [12].

The objective of this work is to illustrate the working of the on-line planner
integrated in SimPlanner. For this reason, the rest of the SimPlanner modules
will only be briefly commented in the following section.

SimPlanner overview

The SimPlanner tool is thought to be used in real environments as, for example,
the intelligent control of robots. However, it has been implemented initially as
a simulator in order to check its behavior without the necessity of integrating it
in different particular domains.

The on-line planner takes charge of generating, in an incremental way, a plan
to achieve the goals. As soon as the planner calculates the first action, the plan
can begin to be executed. Starting from this moment, the planning and the
execution continue working in parallel.

Monitoring is the process of the world observation, trying to find discrepan-
cies between the physical reality and the beliefs of the planner [5]. Contrary to
the classic planning, monitoring is needed for different reasons [13]:

— The planner can have an incomplete knowledge of the world in the initial
state.
— The effects of the actions can be, sometimes, uncertain.

! Corresponding to the ADL level of the McDermott’s PDDL.
2 Levels 2 and 3 extend level 1 through numeric variables and durative actions.

Domain-independent On-line Planning for STRIPS Domains 3

— Exogenous actions produced by external agents or by the nature can take
place.

There exists mainly two types of execution monitoring of a plan [9]: action
monitoring checks that preconditions are valid before the action execution and
its effects have taken place as expected. The environment monitoring tries to
acquire information of the world that can condition the rest of the planning
process. Monitoring is, therefore, domain-dependent. Since SimPlanner is being
used at the moment as a simulator, this information is introduced in the system
by the user. The user is the one that decides what information the robot receives
and which are the unexpected events that happen in the world.

When an unexpected event is detected, the calculated plan is checked in
order to assure that it is still valid [5]. If this is the case, the execution simply
continues. Otherwise the replanning module is called [16]. The replanner tries to
take advantage of most of the calculated plan without losing the quality of the
final plan. After this step, the on-line planner starts again.

The on-line planner

This work is focus to illustrate the on-line planner integrated in SimPlanner.
SimPlanner planner is an incremental sequential planner [17]. It is based on a
depth-first search, with no provision for backup. The planning decisions (inferred
actions) are consequently irrevocable. This approach speeds up the planning
process, but presents two shortcomings:

— Dead-ends: it is possible to reach a state which it is impossible to achieve
the goals from [5].

— Loops: in spite of the mechanisms for detecting loops, the planner can get
stuck in a loop which prevents the planner from finding a solution.

Therefore, the planner is not complete, but this shortcomings are acceptable
in lots of cases due to the advantages it offers against classical off-line planners.
Moreover, it is possible to improve the planning success rate by taking advantage
of the time won by the planner during the execution, in order to optimize the
final plan.

The overall working scheme is shown in Figure 1. A planning problem P =
(0,1,Q) is a triple where O si the set of actions, I the initial state and G the
top-level goals. This algorithm starts from the current state Sy, which initially
corresponds to I. The planner calculates the next action to be executed. The
current state Sy is updated through applying this action. This algorithm will be
executed repeatedly until all the goals are achieved (G C Sp).

The SimPlanner planner algorithm can be divided into four main steps:

1. Non-achieved goals selection: the non-achieved goals are those which are not
true in the current state ({g; : g € GA g; € So}).

2. Calculation of the approzimate plans: an approximate plan is computed for
each non-achieved goal g; separately, i.e., P is decomposed in m planning
subproblems P, = (0, Sy, ¢91), P> = (0, S0,92), ---s P = (0, S0, gm)-

4 Oscar Sapena, Eva Onaindia

non-achieved possible

goals Approximate branches

plans for
goal 1

next
action to be
executed

Step Step Step Step

Approximate
plans for
goal m

S

Fig. 1. SimPlanner planner working scheme

3. Grouping of the approximate plans: approximate plans are grouped according
to their initial actions. Each of this groups is called a branch and, all the
approximate plans in a branch share, at least, the same first action.

4. Selection of the action to be executed: the branches are ordered according to
a conflict checking criteria. The next action to be executed will be the first
action of the branch ordered in the first place.

Steps two and four are the most complex tasks, so they are fully detailed in
the next sections.

Calculation of the approximate plans

The computation of an approximate plan is incrementally performed in three
stages. The starting point is to build a Relazed Planning Graph (RPG). The
second stage generates a special type of graph named Backward Graph (BG)
and the final stage is aimed at extracting the approximate plans from the BG.

First stage: RPG

The RPG is a graph based on a GraphPlan-like expansion [3] where delete
effects are ignored. The first level of the RPG is a literal level which contains
all the literals that are true in the current state Sp. The expansion of the RPG
finishes when a literal level containing all top-level goals is reached, or when it
is not possible to apply any new action. This type of relaxed graph is commonly
used in heuristic search based planners [10] [11] as it allows to easily extract
admissible heuristics to guide the search.
Second Stage: BG

The BG is a graph whose nodes represent sets of subgoals and whose edges
denote clusters of actions. SimPlanner uses a regression process to create a BG
for each non-achieved top-level goal g;.

Definition 1 A cluster for a literal l; (C(l;)) is the set of actions of the RPG

which produce l;:
C(l,) = {ai :a; € RPGAI; € Add(a,)}

In this regression process, clusters of actions are applied over subgoals, i.e.,
the application of a cluster C(l;) in a subgoal set yields a situation in which [;
is achieved [19].

Domain-independent On-line Planning for STRIPS Domains 5

Definition 2 The application of a cluster C(1;) to a subgoal set S returns a new
subgoal set S' defined as:
S’ = Result(C(l;),S) = S — Add(C(l;)) + Prec(C(l;)), where
Add(C(ll)) = ﬂAdd(ai),Vai € C(l,), and
Prec(C(l;)) = NPrec(a;) & So,Va; € C(1;)

Definition 3 A BG is defined as a tuple (N, E) where nodes are sets of subgoals
and edges represent clusters of actions between two subgoal sets S and S'. An

c(l;
edge is represented as S’ LQ S.

The first level of a BG is formed by a single node, corresponding to the top-
level goal g;. Each node in the BG is expanded by applying clusters of actions
to each literal in the node. The BG expansion continues until an empty node is
reached. The following algorithm shows, in a more formal way, the BG creation
process for a particular goal g;:

o)

no = {gi}
N =NUng
End = false
while = End do:
N =N
for every non-expanded node n € N' do:
for every subgoal [€ n do:
Npew = Result(C(1),n)
if Npew = 0 then End = true endif

N = N U npew
E =FEUnpew ﬂ; n
endfor
endfor
endwhile

return (N, E)

N

Third stage: extracting approximate plans

Once the BG is created, our next goal is to select a single action from each
cluster. The BG can be viewed as a set of independent sequences of clusters
which reversely applied to a top-level goal g; lead to an empty set of subgoals.

Definition 4 A path in a BG = (N,E) (BGpath) is defined as a possible se-
quence of clusters in the BG. The reverse application of this sequence to a top-
level goal leads to an empty set of subgoals:

BGpath = {C(11),C(l2),...,C(g:)} :
s s, e f) WS, ek
For each BGpath in a BG, SimPlanner creates as many sequences of actions

as possible combinations can be formed with the actions in the clusters of the
BGpath. Each sequence of actions is called an approximate plan.

6 Oscar Sapena, Eva Onaindia

Definition 5 An approzimate plan (AP) is a possible sequence of actions ez-
tracted from a BGpath. Any action in the AP belongs to the cluster located in
the same position within the sequence:

AP = {ai,as,...,an} : aj € C(l;) ANC(l;) € BGpath

Because the number of APs obtained from a BGpath can be very large,
SimPlanner applies a heuristic function to select the best-valued approximate
plans. This heuristic function uses a conflict-checking procedure to set a value to
each possible AP. A conflict (Conflict(a;,a;)) occurs when an action a; ordered
before a; deletes a precondition of a; and there is no intermediate action which
restores that literal.

The heuristic function (k) is incrementally applied while the approximate
plans are being computed. Initially, the function is applied over the first action
of each AP, following over the first two actions of each AP and so on. The
application of h over a partial AP, which is made up of the first i actions, is
defined as follows:

i— 7, if 3a; : (aj < a; A Conflict(aj,a;))A
h(AP; ;) = (Bay, : a; < ar < a; A Conflict(ay,a;))
00, if Va; < a;, #Conflict(a;,a;)

The algorithm used to return the best-valued APs is detailed below. Notice
that all the APs have the same length (length(BGpath)), i.e. the same number
of actions. This is due to all the APs are obtained from paths in the same BG,
which also have the same length.

/L = set of all first partial APs = {AP1. 1} \

for i = 2 to length(BGpath) do:

for all AP; ;1 € L do: // Ezpansion of each partial AP in L
L=L—- AP ;1
APy = APy ;_1 U ComputeNextAction(AP:. . i—1)
L=LUAP, ;

endfor

mazwvalue = max(h(AP:.;)),VAP, ; € L

L=L—-{AP,.;: AP ; € LAh(AP:. ;) < mazwvalue}

endfor

\return L /

The resulting set L only contains a small set of all approximate plans obtained
from a BG. Additionally, some further criteria are used to reduce even more the
number of APs generated for each goal:

— Actions in the plans are reordered, as some plans are sometimes permutations
of the same sequence of actions.

— The executability of each AP is checked, adding auxiliar actions if it is nec-
essary. Those plans with a lower number of executable actions are rejected.

Domain-independent On-line Planning for STRIPS Domains 7

Selection of the action to be executed

Approximate plans are grouped into branches forming a tree topology. All the
APs in a branch begin with the same action, which is the root node of the tree.
Gradually, APs in a branch diverge to reach their own objectives.

Then, these branches are ordered in order to find out which branch must be
executed in the first place. A branch B; is ordered before a branch Bs in the
following situations:

— Flexible orders: let’s suppose that the first action of branch B; produces
literal p, and this literal is not deleted throughout the rest of the branch. If
the first action of branch Bs needs and also deletes literal p, then branch B; is
ordered before branch Bs. This type of situations often occurs in domains like
Logistics®, Zeno-Travel*, DriverLog*, etc. Flexible orders are very useful,
for example, to order the load and unload actions in transportation domains
before moving the involved vehicle.

— Non-flexible orders: let’s suppose that both branches have an action that
needs and deletes literal p. This is a non-flexible order since it is not possible
to order these actions unless an additional action which restores p is inserted
between them. If this additional action is found in only one of the branches,
then this branch is ordered before the other one. This type of situations often
occurs in domains where there exists very strong interactions between the
goals like, for example, BlocksW orld®, Depots*, FreeCell?, etc.

After applying this process, SimPlanner rejects those branches which are not
ordered at first place. If there is more than one branch left, some additional
criteria are applied in order to select a single branch. For example, if the goals
achieved by a branch Bj is a subset of the goals achieved by another branch Bs,
Bj is discarded. Another rule is to reject those branches with a lower number of
executable actions, etc.

The first action of the selected branch is inserted at the end of the final plan.
The plan generation finishes when all the goals are achieved.

Results

SimPlanner planner participated in the 2002 International Planning Competition
(IPC2002). All the data shown in this section are extracted from the results of
this competition °. The most similar planner to SimPlanner in the competition
was FF-Speed [11] as it is designed to return sequential plans very quickly. In
fact, FF-Speed is probably the fastest planner in its category, at the expense of
a loss in the quality of the generated plans.

The following graphics (Figures 2 and 3) show a comparative between Sim-
Planner planner and FF-Speed for the Depots and Satellite domains. An addi-
tional serie showing the time that SimPlanner takes to compute the first action

% Domains used in the TPC 2000 (http://www.cs.toronto.edu/aips2000)
* Domains used in the TPC 2002 (http://www.dur.ac.uk/d.p.long/competition.html)
5 Full results of TPC2002 available at http://www.dur.ac.uk/d.p.long/competition.html

8 Oscar Sapena, Eva Onaindia

to execute (SP 1st action) is also included in these graphics. The times obtained
by SimPlanner and FF-Speed are quite similar. FF-Speed is, in general, a bit
faster than SimPlanner, although its behaviour is more unpredictable (SimPlan-
ner scales up very well as the size and complexity of the problems increase). But
the main contribution of SimPlanner is that it is able to compute the first action
of a plan very quickly (only a few tenths of seconds in relatively big problems).
As the problem resolution is close to the goals, computation time for deducing an
action is shorter and shorter. This feature allows the planner to quickly interact
in dynamic environments and get the plan adapted to the new situations which
can arise (unexpected events, changes in the goals, etc.)

Depots - Time

250000 —

200000 A

150000 -

=——t— SimPlanner
O FF-Speed
- - & - -SP (1st action)

milliseconds

100000 - o =}

50000 A m}

73 0 =
16 17 18 19 20 21 22

7y 4 7 \ A g
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 2. Time for the Depots domain

Satellite - Time

18000

16000

14000

12000 -

=——— SimPlanner
O FF-Speed
- - & - -SP (st action)

10000 A

8000

milliseconds

6000

4000 A

2000 4

A\ GRS A G A R A-- e, -
9 10 11 12 13 14 15 16 17 18 19 20

Fig. 3. Time for the Satellite domain

With regard to the quality of plans, in general SimPlanner produces longer
plans than FF-Speed (Figure 4). The planning approach used by SimPlanner
makes difficult to compute high quality plans.

Domain-independent On-line Planning for STRIPS Domains 9

However, since execution usually takes longer than planning, SimPlanner
can take advantage of this extra time to optimize the remaining plan. Also it is
possible to adjust the heuristics used by the planner to minimize the error rate in
the action selection process. What we have presented here is still a preliminary
version of the on-line planner so it can be improved in many different ways.

Satellite - Steps

120

100 A

80 o

60

Plan length

=—— SimPlanner
O~ FF-Speed
40

20 4 ﬁnﬁ_ﬂ

Fig. 4. Quality of the plans for the Satellite domain

Conclusions and future work

SimPlanner is a planning tool for working in dynamic environments or with
incomplete information. It allows to monitor a plan execution, to recover from
changes in the environment and to adapt the plan to the new needs in fractions
of a second. The results of the first version of the integrated on-line planner show
that it is able to work very efficiently in a wide range of domains.

We are currently extending SimPlanner to handle numeric variables and func-
tions. This is a very important feature in those domains in which distances and
consumable resources (like batteries, fuel, etc.) are necessary. In these domains
(like, for example, intelligent control of robots) is also important to be able to
handle actions with different durations.

On the other hand, we are working on the integration of SimPlanner in a
real environment of mobile robots. Aspects that arise in real environments (like
what variables to monitor, how to react when the execution is interrupted, etc.)
should be handled, producing a more complex and versatile tool.

References

1. J.A. Ambros-Ingerson and S. Steel, ‘Integrating planning, execution and monitor-
ing’, Proceedings of the 7th National Conference on Artificial Intelligence AAAI-88,
83-88, (1988).

10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Oscar Sapena, Eva Onaindia

E.M. Atkins, E.H. Durfee, and K.G. Shin, ‘Detecting and reacting to unplanned-for
world states’, Plan Ezecution: Problems and Issues: Papers from the 1996 AAAI
Fall Symposium, 1-7, (1996).

A. Blum and M. Furst, ‘Fast planning through planning graph analysis’, Artificial
Intelligence, 90, 281-300, (1997).

J. Blythe, ‘Planning with external events’, Proceedings of the 10th Conference on
Uncertainty in Artificial Intelligence, 94-101, (1994).

G. De Giacomo and R. Reiter, ‘Execution monitoring of high-level robot programs’,
Proceedings of Principles of Knowledge Representation and Reasoning, 453-465,
(1998).

T.L. Dean and M. Boddy, ‘An analysis of time-dependent planning’, Proceedings
of the 7th National Conference on Artificial Intelligence AAAI-88, 49-54, (1988).
M. Drummond, K. Swanson, J. Bresina, and R. Levinson, ‘Reaction-first search’,
Proceedings of the 13th International Joint Conference on Artificial Intelligence
IJCAI-98, 1408-1414, (1993).

M. Fox and L. Derek, ‘Pddl2.1: An extension to pddl for expressing temporal plan-
ning domains’, available at http://www.dur.ac.uk/d.p.long/IPC/pddl.html, (2002).
K.Z. Haigh and M. Veloso, ‘Interleaving planning and robot execution for asyn-
chronous user requests’, Planning with Incomplete Information for Robot Problems:
Papers from the 1996 AAAI Spring Symposium, 35-44, (1996).

P. Haslum and H. Geffner, ‘Admissible heuristics for optimal planning’, Interna-
tional Conference on AI Planning and Scheduling, 140-149, (2000).

J. Hoffman and B. Nebel, ‘The ff planning system: Fast planning generation
through heuristic search’, Journal of Artificial Intelligence Research, 14, 253-302,
(2001).

Y. Lespérance and H.K. Ng, ‘Integrating planning into reactive high-level robot
programs’, Proceedings of the 2nd International Cognitive Robotics Workshop, 49—
54, (2000).

H. Levesque, ‘What is planning in the presence of sensing?’, Proceedings AAAI
1139-1146, (1996).

T.S. Li and J.C. Latombe, ‘On-line manipulation planning for two robot arms in
a dynamic environment’, In Proceedings of the 12th Annual IEEE International
Conference on Robotics and Automation, 1048-1055, (1995).

LR. Nourbakhsh, Interleaving Planning and Ezecution for Autonomous Robots,
Kluwer Academy Publishers, 1997.

E. Onaindia, O. Sapena, L. Sebastia, and E. Marzal, ‘Simplanner: an execution-
monitoring system for replanning in dynamic worlds’, Proceedings of EPIA-01,
Lecture Notes in Computer Science, 393-400, (2001).

Z. Shiller, ‘On-line sub-optimal obstacle avoidance’, International Journal of
Robotics Research, 480-497, (2000).

F. Terpstra, A. Visser, and B. Hertzberger, ‘An on-line planner for marie’, Proceed-
ings of the 12th Irish Conference on Artificial Intelligence and Cognitive Science
(AICS2001), 199-209, (2001).

D.S. Weld, ‘An introduction to least commitment planning’, AI Magazine, 15(4),
(1994).

