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Abstract. Genetic Based Machine Learning (GBML) systems tradi-

tionally have evolved rules that only deal with discrete attributes. There-

fore, some discretization process is needed in order to teal with real-

valued attributes. There are several methods to discretize real-valued

attributes into a �nite number of intervals, however none of them can

eÆciently solve all the possible problems. The alternative of a high num-

ber of simple uniform-width intervals usually expands the size of the

search space without a clear performance gain. This paper proposes a

rule representation which uses adaptive discrete intervals that split or

merge through the evolution process, �nding the correct discretization

intervals at the same time as the learning process is done.

1 Introduction

The application of Genetic Algorithms (GA) [10, 8] to classi�cation problems is

usually known as Genetic Based Machine Learning (GBML), and traditionally it

has been addressed from two di�erent points of view: the Pittsburgh approach,

and the Michigan approach, early exempli�ed by LS-1 [20] and CS-1 [11], re-

spectively.

The classical knowledge representation used in these systems is a set of rules

where the antecedent is de�ned by a pre�xed �nite number of intervals to handle

real-valued attributes. The performance of these systems is tied to the right

election of the intervals.

In this paper we use a rule representation with adaptive discrete intervals.

These intervals are splitted and merged through the evolution process that drives

the training stage. This approach avoids the higher computational cost of the

approaches which work directly with real values and �nds a good discretiza-

tion only expanding the search space with small intervals when necessary. This

representation was introduced in [1] and the work presented in this paper is

its evolution, mainly focused on generalizing the approach and simplifying the

tuning needed for each domain.

This rule representation is compared across di�erent domains against the

traditional discrete representation with �xed intervals. The number and size of



the �xed intervals approach is obtained with two methods: (1) simple uniform-

width intervals and (2) intervals obtained with the Fayyad & Irani method [7],

a well-known discretization algorithm. The aim of this comparison is two-fold:

measure the accuracy performance and the computational cost.

The paper is structured as follows. Section 2 presents some related work.

Then, we describe the framework of our classi�er system section 3. The adaptive

intervals rule representation is explained in section 4. Next, section 5 describes

the test suite used in the comparison. The results obtained are summarized in

section 6. Finally, section 7 discusses the conclusions and some further work.

2 Related work

There are several approaches to handle real-valued attributes in the Genetic

Based Machine Learning (GBML) �eld. Early approaches use discrete rules with

a large number of pre�xed uniform discretization intervals. However, this ap-

proach has the problem that the search space grows exponentially, slowing the

evolutionary process without a clean accuracy improvement of the solution [2]

Lately, several alternatives to the discrete rules have been presented. There

are rules composed by real-valued intervals (XCSR [22], [4], COGITO [18]).

MOGUL [5], uses a fuzzy reasoning method. This method generates sequentially:

(1) fuzzy rules, and then (2) fuzzy membership functions. Recently, GALE [15]

proposed a knowledge independent method for learning other knowledge rep-

resentations like instance sets or decision trees. All those alternatives present

better performance, but usually they also have higher computational cost [18].

A third approach is to use a heuristic discretization algorithm. Some of

these methods work with information entropy [7], the �2 statistic [14] or multi-

dimensional non-uniform discretization [13]. These algorithms are usually more

accurate and faster than the uniform discretization. However, they su�er a lack

of robustness across some domains [1].

3 Framework

In this section we describe the main features of our classi�er system. GAssist

(Genetic Algorithms based claSSI�er sySTem) [9] is a Pittsburgh style classi-

�er system based on GABIL [6]. Directly from GABIL we have borrowed the

representation of the discrete rules (rules with conjunctive normal form (CNF)

predicates), the semantically correct crossover operator and the �tness compu-

tation (squared accuracy).

Matching strategy: The matching process follows a \if ... then ... else if ... then..."
structure, usually called Decision List [19].

Mutation operators: The system manipulates variable-length individuals, mak-

ing more diÆcult the tuning of the classic gene-based mutation probability. In

order to simplify this tuning, we de�ne pmut as the probability i of mutating

an individual. When an individual is selected for mutation (based on pmut), a

random gene is chosen inside its chromosome for mutation.



Control of the individuals length: Dealing with variable-length individuals arises

some serious considerations. One of the most important ones is the control of the

size of the evolving individuals [21]. This control is achieved ins GAssist using

two di�erent operators:

{ Rule deletion This operator deletes the rules of the individuals that do not

match any training example. This rule deletion is done after the �tness com-

putation and has two constraints: (a) the process is only activated after a

prede�ned number of iterations, to prevent a massive diversity loss and (b)

the number of rules of an individual never goes below a lower threshold. This

threshold is assigned to the number of classes of the domain.

{ Selection bias using the individual size Selection is guided as usual by the

�tness (the accuracy). However, it also gives certain degree of relevance to

the size of the individuals, having a policy similar to multi-objective systems.

We use tournament selection because its local behavior lets us implement

this policy. The criterion of the tournament is given by an operator called

\size-based comparison" [2]. This operator considers two individuals similar

if their �tness di�erence is below a certain threshold (dcomp). Then, it selects

the individual with fewer number of rules.

4 Discrete rules with adaptive intervals

This section describes the rule representation based on discrete rules with adap-

tive intervals. First we describe the problems that traditional discrete rules

present. Then, we explain the adaptive intervals rules proposed and the changes

introduced in order to enable the GA to use them.

4.1 Discrete rules and unnecessary search space growth

The traditional approach to solve problems with real-valued attributes using

discrete rules has been done using a discretization process. This discretization

can be done using algorithms which determine the discretization intervals ana-

lyzing the training information or we can use a simple alternative like using an

uniform-width intervals discretization.

In the latter method, the way to increase the accuracy of the solution is to

increase the number of intervals. This solution brings a big problem because the

search space to explore grows in an exponential degree when more intervals are

added. The improvement in accuracy expected increasing the number of intervals

does not exist sometimes, because the GA spends too much time exploring areas

of the search space which do not need to be explored.

If we �nd a correct and minimal set of intervals, the solution accuracy will

probably increase without a huge increase of the computational cost.

4.2 Finding good and minimal intervals

Our aim is to �nd good discretization intervals without a great expansion of the

search space. In order to achieve this goal we de�ned a rule representation [1]



with discrete adaptive intervals where the discretization intervals are not �xed.

These intervals are evolved through the iterations, merging and splitting between

them.

To control the computational cost and the growth of the search space, we

de�ne the next constraints:

{ A number of \low level" uniform and static intervals is de�ned for each

attribute called micro-intervals.
{ The adaptive intervals are built joining together micro-intervals.
{ When we split an interval, we select a random point in its micro-intervals
to break it.

{ When we merge two intervals, the value of the resulting interval is taken

from the one which has more micro-intervals. If both have the same number

of micro-intervals, the value is chosen randomly.
{ The number and size of the initial intervals is selected randomly.

The adaptive intervals as well as the split and merge operators are shown in

�gure 1.

Fig. 1. Adaptive intervals representation and the split and merge operators.
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To apply the split and merge operators we have added to the GA cycle

two special phases applied to the o�spring population after the mutation phase.

For each phase (split and merge) we have a probability (psplit or pmerge) of

applying a split or merge operation to an individual. If an individual is selected

for splitting or merging, a random point inside its chromosome is chosen to apply

the operation.

Finally, this representation requires some changes in some other parts of the

GA:

{ The crossover operator can only take place in the attribute boundaries.
{ The \size-based comparison" operator uses the length (number of genes) of

the individual instead of the number of rules, because now the size of a rule

can change when the number of intervals that it contains change. This change

also makes the GA prefer the individuals with fewer intervals in addition to

fewer rules, further simplifying them.



4.3 Changes to the adaptive intervals rule representation

One of the main drawbacks of the initial approach was the sizing of the number

of micro-intervals assigned to each attribute term of the rules. This parameter

is diÆcult to tune because it is domain-speci�c.

In this paper we test another approach (multi-adaptive) which consists in

evolving attribute terms with di�erent number of micro-intervals in the same

population. This enables the evolutionary process to select the correct number

of micro-intervals for each attribute term of the rules. The number of micro-
intervals of each attribute term is selected from a prede�ned set in the initial-

ization stage.

The initialization phase has also changed. In our previous work the number

and size of the intervals was uniform. We have changed this policy to a total

random initialization in order to gain diversity in the initial population.

The last change introduced involves the split and merge operators. In the

previous version these operators were integrated inside the mutation. This made

the sizing of the probabilities very diÆcult because the three operators (split,

merge and mutation) were coupled. Using an extra recombination stage in this

version we eliminate this tight linkage.

5 Test suite

This section summarizes the tests done in order to evaluate the accuracy and

eÆciency of the method presented in this paper. We also compare it with some

alternative methods. The tests were conducted using several machine learning

problems which we also describe.

5.1 Test problems

The selected test problems for this paper present di�erent characteristics in order

to give us a broad overview of the performance of the methods being compared.

The �rst problem is a synthetic problem (Tao [15]) that has non-orthogonal

class boundaries. We also use several problems provided by the University of Cal-

ifornia at Irvine (UCI) repository [3]. The problems selected are: Pima-indians-

diabetes (pima), iris, glass and breast-cancer-winsconsin (breast). Finally we will
use three problems from our own private repository. The �rst two deal with the

diagnosis of breast cancer based of biopsies (bps [17]) and mammograms (mamm
[16]) whereas the last one is related to the prediction of student quali�cations

(lrn [9]). The characteristics of the problems are listed in table 1. The partition

of the examples into the train and test sets was done using the strati�ed ten-fold
cross-validation method [12].

5.2 Con�gurations of the GA to test

The main goal of the tests are to evaluate the performance of the adaptive inter-

vals rules representation. In order to compare this method with the traditional



Table 1. Characteristics of the test problems.

Dataset Number of examples real attributes discrete attributes classes

tao 1888 2 - 2

pima 768 8 - 2

iris 150 4 - 3

glass 214 9 - 6

breast 699 - 9 2

bps 1027 24 - 2

mamm 216 21 - 2

lrn 648 4 2 5

discrete representation, we use two discretization methods, the simple uniform-

width intervals method and the Fayyad & Irani method [7].

We analyze the adaptive intervals approach with two types of runs. The �rst

one assigns the same number of micro-intervals to all the attribute terms of

the individuals. We call this type of run adaptive. In the second one, attributes

with di�erent number of micro-intervals coexist in the same population. We well

call this type multi-adaptive.

The GA parameters are shown in table 2. The reader can appreciate that the

sizing of both psplit and pmerge is the same for all the problems except the tao

problem. Giving the same value to pmerge and psplit produce solutions with too

few rules and intervals, as well as less accurate than the results obtained with

the con�guration shown in table 2. This is an issue that needs further study.

Another important issue of the psplit and pmerge probabilities for some of

the domains is that they are greater than 1. This means that for these domains

at least one split and merge operation will be surely done to each individual

of the population. Thus, psplit and pmerge become expected values instead of

probabilities. The tuning done produces a reduction of the number of iterations

needed.

6 Results

In this section present the results obtained. The aim of the tests was to compare

the method presented in the paper in three aspects: accuracy and size of the

solutions as well as the computational cost. Foreach method and test problem

we show the average and standard deviation values of: (1) the cross-validation

accuracy, (2) the size of the best individual in number of rules and intervals per

attribute and (3) the execution time in seconds. The tests were executed in an

AMD Athlon 1700+ using Linux operating system and C++ language.

The results were also analyzed using the two-sided t-test [23] to determine if

the two adaptive methods outperform the other ones with a signi�cance level of

1%. Finally, for each con�guration, test and fold, 15 runs using di�erent random

seeds were done. Results are shown in table 3. The column titled t-test show a

� beside the Uniform or Fayyad & Irani method if it was outperformed by the

adaptive methods. The adaptive methods were never outperformed in the tests

done, showing a good robustness.



Table 2. Common and problem-speci�c parameters of the GA.

Parameter Value

Crossover probability 0.6

Iter. of rule eliminating activation 30
Iter. of size comparison activation 30
Sets of micro-intervals in the multi-adaptive test 5,6,7,8,10,15,20,25

Tournament size 3
Population size 300

Probability of mutating an individual 0.6

Code Parameter

#iter Number of GA iterations

dinterv Number of intervals in the uniform-width discrete rules
ainterv Number of micro-intervals in the adaptive test

dcomp Distance parameter in the \size-based comparison" operator
psplit Probability of splitting an individual (one of its intervals)

pmerge Probability of merging an individual (one of its intervals)

Problem Parameter

#iter dinterv ainterv dcomp pmerge psplit

tao 600 12 48 0.001 1.3 2.6
pima 500 4 8 0.01 0.8 0.8

iris 400 10 10 0.02 0.5 0.5
glass 750 4 8 0.015 1.5 1.5

breast 325 5 10 0.01 3.2 3.2
bps 500 4 10 0.015 1.7 1.7
mamm 500 2 5 0.01 1 1

lrn 700 5 10 0.01 1.2 1.2

The results are summarized using the ranking in table 4. The ranking for

each problem and method is based on the accuracy. The global i rankings are

computed averaging the problem rankings.

Table 3 shows that in two of the tests the best performing method was the

Fayyad & Irani interval discretization technique. However, in the rest of the tests

its performance is lower, showing a lack of robustness across di�erent domains.

The two adaptive tests achieved the best results of the ranking. Nevertheless, the

goal of improving the rule representation with the multi-adaptive con�guration

has not been achieved. It is only better than the original adaptive con�guration

in three of the eight test problems. The computational cost is clearly the main

drawback of the adaptive intervals representation. The Fayyad & Irani method

is in average 2.62 times faster than it.

7 Conclusions and further work

This paper focused on an adaptive rule representation as a a robust method

for �nding a good discretization. The main contribution done is provided by

the used of adaptive discrete intervals, which can split or merge through the

evolution process, reducing the search space where it is possible.

The use of a heuristic discretization method (like the Fayyad & Irani one)

outperform the adaptive intervals representation in some test problem. Never-

theless, the performance increase is not signi�cant. On the other hand, when

the adaptive intervals outperform the other methods, the performance increase

is higher, showing a better degree of robustness.



Table 3. Mean and deviation of the accuracy (percentage of correctly classi�er ex-

amples), number of rules, intervals per attribute and execution time for each method

tested. Bold entries show the method with best results for each test problem. A � mark

a signi�cant out-performance based on a t-test

Problem Con�guration Accuracy Number of Rules Intervals per Rule Time t-test

tao

Uniform 93.7�1.2 8.8�1.6 8.3�0.0 36.0�3.5

Fayyad 87.8�1.1 3.1�0.3 3.4�0.1 24.2�1.4 �

Adaptive 94.6�1.3 22.5�5.6 7.7�0.4 96.6�14.7

Multi-Adaptive 94.3�1.0 19.5�4.9 6.0�0.6 94.5�13.9

pima

Uniform 73.8�4.1 6.3�2.2 3.7�0.0 23.2�2.8

Fayyad 73.6�3.1 6.6�2.6 2.3�0.2 26.4�3.0
Adaptive 74.8�3.5 6.2�2.6 2.0�0.4 56.2�9.4

Multi-Adaptive 74.4�3.1 5.8�2.2 1.9�0.4 59.7�8.9

iris

Uniform 92.9�2.7 3.8�1.1 8.2�0.0 5.2�0.7

Fayyad 94.2�3.0 3.2�0.6 2.8�0.1 5.5�0.1
Adaptive 94.9�2.3 3.3�0.5 1.3�0.2 9.2�0.4

Multi-Adaptive 96.2�2.2 3.6�0.9 1.3�0.2 9.0�0.8

glass

Uniform 60.5�8.9 8.7�1.8 3.7�0.0 13.9�1.5

Fayyad 65.7�6.1 8.1�1.4 2.4�0.1 14.0�1.1
Adaptive 64.6�4.7 5.9�1.7 1.7�0.2 35.1�5.2

Multi-Adaptive 65.2�4.1 6.7�2.0 1.8�0.2 38.4�5.0

breast

Uniform 94.8�2.6 4.8�2.5 4.6�0.0 6.5�1.0

Fayyad 95.2�1.8 4.1�0.8 3.6�0.1 5.8�0.4

Adaptive 95.4�2.3 2.7�1.0 1.8�0.2 15.7�2.1

Multi-Adaptive 95.3�2.3 2.6�0.9 1.7�0.2 17.4�1.5

bps

Uniform 77.6�3.3 15.0�7.0 3.9�0.0 50.8�9.0

Fayyad 80.0�3.1 7.1�3.8 2.4�0.1 37.7�6.0

Adaptive 80.3�3.5 4.7�3.0 2.1�0.4 106.6�21.1

Multi-Adaptive 80.1�3.3 5.1�2.0 2.0�0.3 115.9�20.5

mamm

Uniform 63.2�9.9 2.6�0.5 2.0�0.0 7.8�1.0

Fayyad 65.3�11.1 2.3�0.5 2.0�0.1 8.5�0.7
Adaptive 65.8�5.3 4.4�1.7 1.8�0.2 27.6�4.9

Multi-Adaptive 65.0�6.1 4.4�1.9 1.9�0.2 27.4�5.5

lrn

Uniform 64.7�4.9 17.8�5.1 4.9�0.0 29.2�4.0

Fayyad 67.5�5.1 14.3�5.0 4.4�0.1 26.5�3.4

Adaptive 66.1�4.6 14.0�4.6 3.6�0.3 58.9�7.9

Multi-Adaptive 66.7�4.1 11.6�4.1 3.4�0.2 53.9�7.2

The overhead of evolving discretization intervals and rules at the same time is

quite signi�cant, being its main drawback. Beside the cost of the representation

itself (our implementation uses twice the memory of the discrete representation

for the same number of intervals) the main di�erence is the signi�cant reduction

of the search space achieved by a heuristic discretization.

Some further work should use the knowledge provided by the discretization

techniques in order to reduce the computational cost of the adaptive intervals

representation. This process should be achieved without losing robustness. An-

other important point of further study is how the value of psplit and pmerge

a�ect the behavior of the system, in order to simplify the tuning needed for each

domain.

Finally, it would also be interesting to compare the adaptive intervals rule

representation with some representation dealing directly with real-valued at-

tributes, like the ones described in the related work section. This comparison

should follow the same criteria used here: comparing both the accuracy and the

computational cost.



Table 4. Performance ranking of the tested methods. Lower number means better

ranking.

Problem Fixed Fayyad Adaptive Multi-Adaptive

tao 3 4 1 2
pima 3 4 1 2
iris 4 3 2 1

glass 4 1 3 2
breast 4 3 1 2

bps 4 3 1 2
mam 4 2 1 3
lrn 4 1 3 2

Average 3.25 2.625 1.625 2

Final rank 4 3 1 2
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