Learning on BDI Multiagent Systems

Alejandro Guerra Hernandez, Amal El Fallah-Seghrouchni, and Henry Soldano

Université Paris 13, Laboratoire d’Informatique de Paris Nord, UMR 7030 CNRS,
Institut Galilée, Av. Jean-Baptiste Clément, Villeteanuese 93430, France.
{agh,elfallah,soldano}@lipn.univ-parisi3.fr

Abstract. We describe the design of BDI learning agents, using first-
order induction of logical decision trees to learn when their plans are
executable (plans’ context). This design enable BDI agents to learn com-
municating in a Multiagent System (MAS). Learning in MAS has been
motivated by the interest of MAS community on Machine Learning (ML)
techniques to deal with the complexity inherent to such systems, and the
possibility for the ML, community to improve the understanding of learn-
ing principles, thanks to the extended view of ML dealing with MAS. Our
research goes on these two directions considering i) the way a BDI agent
should be designed; and ii) the way a BDI agent can build a set for in-
ductive learning, and iii) the way a BDI agent can learn in a MAS.
Key words: Multiagent Systems, BDI agents, inductive learning.

1 Introduction

We are interested in MAS composed by intentional learning agents, e.g. BDI
learning agents. We describe the design of a BDI architecture extended with
learning competences considering that i) the behavior of BDI agents is explained
in terms of propositional attitudes, e.g. beliefs, desires, and intentions, as pro-
posed in practical rationality theories [2]; and ii) such agents are characterized
as autonomous, reactive, proactive, and social systems [16].

Learning in MAS has been characterized as the intersection of MAS and
ML [15]. Motivations for this are reciprocal: i) MAS community is interested on
learning because it seems to be a way to deal with the complexity inherent to
MAS; and ii) ML community considered that dealing with MAS will improve our
understanding of learning principles. Our research goes on these two directions
as explained here.

A learning agent [13] can be conceptually divided into four components: i) a
learning component responsible for making improvements executing a learning
algorithm;ii) a performance component responsible of taking actions; iii) a critic
responsible for providing feedback; and iv) a problem generator responsible for
suggesting actions that will lead to informative experiences.

The design of the learning component, and consequently the choice of a partic-
ular learning method, is usually affected by five major issues: i) which elements
of the performance component are to be improved? ii) what representation is
used for these elements? iii) what feedback is available? iv) what prior infor-
mations is available? and v) is it a centralized or decentralized learning case?



In the case of agents, their characterization as autonomous, reactive, proactive,
and social systems, should be considered while answering these questions, and
particularly when deciding what, when and how, the agent will learn.

In this paper we show how a BDI architecture inspired in dMARS [8] can be
used to conceive intentional learning agents, able to learn in a MAS. Organization
of the paper is as follows: Section 1 introduces the BDI terminology necessary
to explain our approach. Section 2 describes the design of the BDI learning
architecture, including the learning method —induction of first-order decision
trees. Section 3 describes different settings for learning in a MAS using our
architecture. Section 4 opens discussion.

2 BDI agency

BDI theories of agency are well known. Different aspects of intentionality and
practical reasoning have been formally studied (for a roadmap see [14, 16]). This
section sketches a BDI architecture inspired on dMARS [8], using a very simple
scenario proposed by Charniak and McDermott [4]. This scenario (Fig. 1) is
composed by a robot with two hands, situated in an environment where there
are a board, a sander, a paint sprayer, and a vise. Different goals can be proposed
to the robot, i.e. sand the board, or even get self painted! which introduces the
case of incompatible goals, since once painted the robot is not operational (its
state change from ok to painted) for a while. The robot has different options,
e.g. plans, to achieve its goals. It is possible to introduce other robots in the
environment to experiment social interactions. This scenario will be used in the
exemples of the rest of the paper.

Environment Plan: p0
Trigger: (! p-sanded(X))
> | Context: (p-freehand(Y)) and

(p-at (X,somewhere))
I:] board Body:

sander
vise pickup(X)
ﬁ o put-in-vise(X)

robot r2
! sand-in-vise(X)
robot rl

Fig. 1. An scenario for examples and a typical plan.

In general, a BDI architecture contains four key data structures: beliefs, de-
sires or goals, intentions, and a plan library:



Beliefs represent information about the world. Each belief is represented
as a ground literal of first-order logic. Two activities of the agent update its
beliefs: i) the perception of the environment, and ii) the execution of intentions.
The scenario show in Fig. 1 can be represented with the following beliefs: (p-
at (sander,there)), (p-at (board,there)), (p-at (sprayer,there)), (p-state (rl,0k)),
(p-handfree (rl,left)), (p-handfree (r1,right)).

Desires, or goals, correspond to the tasks allocated to the agent and are
usually considered as logically consistent among them. Two kinds of desires are
usually adopted i) to achieve a desire, expressed as a belief formula (a literal
not necessarily grounded), i.e. (! p-sand (board)); and ii) to test a situation
expressed as a disjunction and/or conjunction of belief formulae, i.e. (? (AND
(p-state (r1,ok)) (p-freehand (ri,X)))).

Our architecture uses an event queue to process perceptions. Events are
of four kinds: the acquisition or removal of a belief, i.e. (add-bel (p-sand
(board)));the reception of a message, (told r2 (! (p-sand (board))));and
the acquisition of a new (sub)goal.

Plans have several components. The invocation condition is a trigger event
specifying the event a plan is supposed to deal with. The context specifies, as a
situation formulae, the circumstances under which a plan execution may start.
The body represents possible courses of action. It is a tree which nodes are
labeled as states and arcs with actions or subgoals. The maintenance conditions
describe the circumstances that must remain to continue the execution of the
plan. Finally, a set of internal actions is specified for the cases of success and
failure of the plan. Fig. 1 shows a simplified plan to sand an object in the vise,
when the robot has a hand free, and the object is somwhere there. The last arc of
the plan body is a subgoal that will be posted to the event queue, when executing
the plan. Then other plans to deal with the event (! (p-sandinvise(7x))) will
be considered, and so on.

An ntention is implemented as a stack of plan instances. In response to an
event, the agent must find a plan instance to deal with it. Two cases are possi-
ble: i) If the event considered is an external one, and emtpy stack is created and
the plan instance selected is pushed on it, i.e. the event (! (p-sand(board)))
triggers the plan p0, possibly among others. The substitution (board/X, left/Y)
makes p0 executable. So this substitution and p0 form a new intention stack; ii) If
the trigger event is an internal one, then the plan instance is pushed on an exist-
ing stack, i.e. the plan instance selected for the event (! (p-sandinvise(7x)))
will be pushed on the stack genereated by pO.

A BDI interpreter implemented in Lisp, manipulates these structures, select-
ing appropriate plans based on beliefs and desires, structuring plans as inten-
tions, and executing them.

3 BDI learning agents

The performance component of our BDI learning agents is the interpreter de-
scribed in the previous section. All the elements of the interpreter are represented



using first-order logic, and this discards learning methods using propositional
representations. The feedback component is provided by the interpreter too, de-
tecting failure and success in the execution of intentions. The problem generator
has to collect examples of these executions.

Obviously, the elements of the performance component to improve are plans.
The relationship between planing and learning has been studied [5] and also the
relevance of the order in which plans are executed [3]. Following these works,
we decided to extend the BDI architecture, enabling it to learn about the con-
text of its plans, e.g. when plans are executable. Since plans are transformed in
plan instances to be executed, context determine the way they are pushed in the
structure of intentions. If an agent can learn such a context, there is an impact
on reactivity (plans are executed under conditions learned from the environ-
ment) and autonomy (the agent itself determining such conditions). Context is
represented as a conjunction and/or disjunction of belief formulae, so we decided
to use decision trees as the target language for the learning method. Another
consideration was that belief formulae are expressed in first-order logic.

3.1 First-Order Induction of Logical Decision Trees

Decision trees learning is a widely used and very successful method for inductive
inference. As introduced in the ID3 algorithm [11] it approximates discrete value-
target functions. Learned functions are represented as trees and instances as a
fixed set of attribute-value pairs. Trees represent in general, a disjunction of
conjunctions of constrains on the attribute values of the instances. Each path
from the tree root to a leaf corresponds to a conjunction of attribute tests, and
the tree itself is the disjunction of these conjunctions. Decision trees are inferred
by growing them the root downward, greedily selecting the next best attribute
for each new decision branch added to the tree.

A first-order representation for decision trees, known as learning from inter-
pretations paradigm [12], is defined as follows. Given i) a set of classes C; ii) a
set of classified examples E, where each example e € F is a set of facts; and iii)
a background theory B. Find a hypothesis H, s.t. Ve € E,H Ae A B = ¢ and
H AeA B, where ¢ is the class of the example e, and ¢/ € C — {c}. Exam-
ples are partial interpretations that are completed taking the minimal Herbrand
model of each example and the background theory B.

Tilde [12] is a learning from interpretations system, operating on logical de-
cision trees. It uses the same heuristics that C4.5, a successor of ID3 (gain-ratio
and post-pruning heuristics), but computations of the tests are based on the
classical refinement operator under @-subsumption. We are using Tilde version
5.5.1, our BDI interpreter configure the learning set, as illustrated in the follow-
ing subsection.

3.2 An exemple of our approach

Suppose that the agent in the scenario proposed in Fig. 1 is identified as r1 and
its event queue contains this trigger event: (! (p-sand (board))), so that ri



selects the plan p0 as described above. Eventually, the execution of the intention
composed by p0 leads to a success or failure situation. Then, the agent can build
models as these:

begin(model(1)). begin(model(2)). begin(model(3)).
success. success. failure.
p-state(ri,ok). p-state(ri,ok). p-state(ril,painted).
p-handfree(ri,left). p_handfree(ri,right). p_handfree(ri,left).
p-at(board,there). p-at(board,there). p-handfree(ri,right).
plan(ri,poO). plan(ri,p0). p-at(board,there).
end(model(1)). end(model(2)). plan(ri,p0).

end(model(3)).
begin(model(4)). begin(model(5)). begin(model(6))
failure. success. success.
p-state(rl,painted). p_state(ri,ok). p-state(ri,ok).
p-handfree(ri,right). p.handfree(ri,left). p_handfree(ri,left).
p-at(board,there). p-at(board,there). p-at(board,there).
p-at(sander,vise). plan(ri,p0). plan(ri,p0).
plan(ri,po0). end(model(5)). end(model(6))
end(model(4)).

Models are labeled by the success or failure of the plan execution, in this
case the plan p0 of agent ri1. The rest of the models are beliefs the agent had
when executing p0. Models are recovered from a log file keeping the last 30 pairs
beliefs - plan executed. We will test to delay the learning process attending for
n executions after the first failure of the plan. Models are stored in a file with
the name of the agent and the extension kb, for knowledge base, i.e. r1.kb

The agent can create a background theory file (r1.bg), containing information
about the plan executed, i.e. the current context of the plan.

plan_context(Agent,Hand,Object) :- p_handfree(Agent,Hand),
p_at(0bject,there).

Finally, a language bias file (r1.s):

output_options([c45,1p]).
classes([succes,failure]).

rmode(1: p_state(-A,+S)).
rmode(1: #(30%2*S: p_state(A,S), p_state(4,S))).

The first lines are the default options for Tilde. The output file will containthe
tree learned represented in C4.5 format, and a the equivalent logic progral (see
below). The classes are default too, plans finishes with success or failure. The
rmode instructions are used to define de predicates that will be considered in



the tests by Tilde. For each precicate appearing in the knowledge base and the
background theory, the agent will test i) the predicate with free variables as
arguments (first rmode); and ii) the predicate with variables instantiated by the
examples. The second rmode determines that the variable S in the predicate
p-state, can be instantiated with 2 values using a maximum of 30 examples to
do that. The values in this case are ok and painted.

The following pruned tree and logic program are obtained running Tilde on
this learning set:

p_state(A,painted) 7
+-—yes: failure [2 / 2]
+--no: succes [4 / 4]

nil :- p_state(A,painted).
class(failure) :- p_state(A,painted).
class(succes) :- not ni.

Fractions of the form [i/j] indicate that there where i examples in the class,
and that j where well classified. This example used 6 models and the time
of induction 0.03 seconds, running on a Sun Ultra 4, with SunOS 5.6. The
agent can read this file output (rl.ptree) and add the predicate (not (p-state
(7A,painted))) to the context of p0. In this way, the learning process is coupled
together with the BDI interpreter. Particularly, learning is executed in response
of events and based on information the agent itself processes. The result of the
learning process is incorporated by the agent in the BDI architecture. For a more
detailed explanation of the learning set see [7].

4 Learning in MAS

We have observed that the challenges of MAS to ML are indicative of a hierarchy
of MAS of increasing complexity, which could be useful to adopt a incremen-
tal approach to MAS learning. Levels are as follows: i) Agents learning from
the interactions with their environment without direct interactions with other
agents. This level corresponds roughly to the BDI learning agent presented in
previous section; ii) In the second level, direct interaction among agents using
exchange of messages is considered; iii) The third level consider agents learning
from the obsevation of other agents actions. For the moment, we are working on
the second level of this hierarchy.

Communication is very important when learning in a MAS, but in order to
exploit it, the design of the agent should determine when, how, and with what
purpose should an individual agent communicate [1].

Our agents are intended to communicate after the execution of a learning
process. Two situations determine the purpose of communication: i) the trigger
event considered has not been modified, e.g. the agent asks for help; and ii)
the trigger event has been successfully modified, e.g. the agent offers help. The



subject of this help is one or more elements of the learning set to other agent.
In this way agents are proactive towards learning.

The concept of competence is used to address communications. Competence
is defined as the set of all the trigger events an agent can deal with (the union of
the trigger events of all the agent’s plan library). Two kinds of communications
are possible: 1) the agent broadcast its message composed by the plan instance
considered (observe that it includes the trigger event), and the rest of the agents
accept the message if the trigger event is on their competences; ii) Competence
is used to build a directory for each agent, associating with each event in the
competence of the agent, the agents dealing with the same event.

Competence and plans determine what to communicate. If two agents have
the same plan for the same event, they can be engaged in a process of distributed
data gathering, e.g. they can share the examples they have collected. In this case
agents are involved in collecting data, but each agent learns locally. We have test
this in our scenario, forcing one agent to paint itself, so that the models 3 and
4, in the previous section, are models provided by an agent r2.

We are still testing the case where agents have the same competence, e.g.
they can deal with the same event, but have different plans to do it. Intuitively,
in this case they have to exchange plans too, but our results are not conclusive
yet.

5 Conclusions

We have used a BDI architecture to explain how intentional agents can learn
in a MAS. Using this architecture, we explained different considerations about
choosing a learning method for an agent. Once we adopted First-Order Induction
of Logical Decision Trees as the learning method, we explained how to integrate
it to the BDI architecture. Different sets for learning were there introduced, at
the mono agent level and the multi agent one. These cases exemplify different
uses of communication among agents while learning, and how the BDI agents
can focus its messages.

Perhaps the decision of doing our own implementation of a BDI interpreter
needs some justification. Even when we knew that different implementations for
BDI architecture existed, i.e. PRS, dMARS, !JAM (See [16] for an overview),
we decided to implement our own BDI interpreter because we had access only
to formal specifications of them, ignoring if we could modify or extend them
accordingly to our needs. The specification of AMARS we used [8] suggested
immediately the use of Lisp. Tilde was provided by Blokeel.

Some works in the same direction that ours include: Olivia and co-authors
[10] present a Case-Based BDI framework applied to intelligent search on the
web. Their interpreter is not properly a BDI interpreter, being closer to a Case-
Based system. We preferred to force the agents to integrate what they learn
in the BDI components of the architecture, so that they continue operating
under BDI principles. Grecu and Brown [6] have a similar position about the
way agents learn, but their agents are not intentional and used propositional



representations. Jacobs and co-authors [9] presents the use of Inductive Logic
Programming for the validation of MAS systems. This lead us to Tilde.

Experimental results are very promising. Up to now, we have deal with agents
that have contexts already defined, and modify them when plans are not exe-
cuted correctly. We will experiment the case of agents learning contexts without
previous specifications. Also, as mentioned, more experiments are needed at the
multi agent level.

6 Acknowledgments

Discussion with David Kinny and Pablo Noriega, had been really helpful in our
research. The first author is supported by Mexican scholarships from Conacyt,
contract 70354, and Promep, contract UVER-53.

References

1. Bradzil, P., et.al.: Learning in Distributed Systems and Multi-Agent Environments.
In: Kodratoff (ed.): Machine Learning - EWSL-91, European Working Session on
Learning. Lecture Notes in Computer Science, Vol. 482. Springer-Verlag, Berlin
Heidelberg New York (1991)

2. Bratman, M.: Intention, Plans, and Practical Reasoning. Harvard University Press,
Cambridge MA., USA (1987)

3. Cayrol, M., Regnier, P., Vidal, V.: LGCP: une amélioration de graph-plan para
relachement de contraintes entre actions simultanées. In: 12éme Congres Franco-
phone AFRIF-AFIA de Reconnaissance des Formes et Intelligence Artificiel. Paris,
France (2000)

4. Charniak, E., McDermott D.: Introduction to Artificial Intelligence. Addison-
Wesley, USA (1985)

5. Garcla, F.: Apprentissage et Planification. In: Proceedings of JICAA’97 USA (1997)
15-26

6. Grecu, D.L., Brown, D.C.: Guiding Agent Learning in Design. In: Tomiyama, T.,
Mantyla, M. (eds.): Proceedings of the Third IFIP Working Group 5.2 Workshop
on Knowledge Intesive CAD. Tokio, Japan (1998) 237-250

7. Guerra-Herndndez, A., El Fallah-Seghrouchni, A., Soldano, H.: BDI Multiagent
Learning based on First-Order Induction of Logical Decision Trees. In: Zhong, N.,
Liu, J., Ohsuga, S., Bradshaw, J. (eds.): Intelligent Agent Technology, research and
developement. Proceedings of the 2nd Asia-Pacific Conference on TAT. World Sci-
entific, New Jersey London Sigapore Hong Kong (2001) 160-169

8. D’Inverno, M., Kinny, D., Luck, M., Wooldridge M.: A Formal Specification of
dMARS. In: Intelligent Agents IV. Lecture Notes in Artificial Intelligence, Vol. 1365.
Springer-Verlag, Berlin Heidelberg New York (1997) 155-176

9. Jacobs, N., et.al.: Using ILP-Systems for Verification and Validation of Multi-Agent
Systems. In: Lavrac, N., Dzeroski,S. (eds.): Inductive Logic Programming. Springer-
Verlag, Berlin Heidelberg New York (1997)

10. Olivia, C., et.al.: Case-Based BDI agents: An Effective Approach to Intelligent
Search on the WWW. In: AAAT Symposium on Intelligent Agents. Stanford Uni-
versity, Stanford CA., USA (1999)



11. Quinlan, J.R.: Induction of Decision Trees. Machine Learning bt1:81-106 (1986)

12. De Raedt, L., Blockeel, H.: Top-Down Induction of Logical Decision Trees. Tech-
nical Report, Department of Computer Science, Katholieke Universiteit Leuven,
Belgium (1997)

13. Russell, S.J., Norvig, P.: Artificial Intelligence, a modern approach. Prentice-Hall,
New Jersey NJ, USA (1995)

14. Singh, M., Rao, A.S., Georgeff, M.P.: Formal Methods in DAI: Logic-based rep-
resentations and reasoning. In: Weiss, G. (ed.): Multiagent Systems, a modern
approach to Distributed Artificial Intelligence. MIT Press, Cambridge MA., USA
(1999)

15. Weiss, G., Sen, S.: Adaptation and Learning in Multiagent Systems. Lecture Notes
in Artificial Intelligence, Vol. 1042. Springer-Verlag, Berlin Heidelberg New York
(1996)

16. Wooldridge, M.: Reasoning about Rational Agents. MIT Press, Cambridge MA.,
USA (2000)



