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Abstract. In statistical field Box-Jenkins Time Series is a linear method widely
used to forecasting. The linearity makes the method inadequate to forecast real
time series, which could present irregular behavior. On the other hand, in
artificial intelligent field FeedForward Artificial Neural Networks and
Continuous Machine Learning Systems are robust handlers of data in the sense
that they are able to reproduce nonlinear relationships. Their main disadvantage
is the selection of adequate inputs or attributes better related with the output or
category. In this paper we present a methodology that employs Box-Jenkins
Time Series as feature selector to Feedforward Artificial Neural Networks
inputs and Continuous Machine Learning Systems attributes. We also apply this
methodology to forecast some real time series collected in a power plant. It is
shown than Feedforward Artificial Neural Networks performs better than
Continuous Machine Learning Systems, which in turn performs better than
Box-Jenkins Time Series.

1. Introduction

Time series are widely analyzed and forecasted by means of Box-Jenkins Time Series
(BJTS). This method considers that the time series has been generated by a stochastic
process and all techniques which obtain them are conducted to identify this generator.
Then, the model is estimated and verified and finally once it has been accepted it is
applied to forecast future values of the time series. The model identifies some
characteristics of the time series, as the trend and the seasonality and gives an
expression which relates the actual value of the time series data with its historical
ones which are more relevant. The main disadvantage is that these relations are linear
which often conducts to inadequate predictions when treating with real world time
series. They also are not able to explain sudden changes in the time series.

Alternatively, the use of artificial intelligent techniques, like Feedforward Artificial
Neural Networks (FANN) and Continuous Machine Learning Systems (CMLS), to
forecast time series results promising due to its capacity to handle amounts of data
and to reproduce nonlinear relations between inputs and output in FANN and between



attributes and category in CMLS. They are also capable to predict sudden variations.
The main difficult task is to find out which inputs or attributes better define the output
or category.

Taking advantage of the best properties of BJTS on one hand and of FANN and
CMLS on the other we propose a methodology which combines them in the way that
BJTS are used to identify adequate inputs or attributes for FANN and for CMLS
respectively. We apply this methodology to several real physical time series collected
in a power plant.

The remainder of this paper is as follows: In section 2 BJTS, FANN and CMLS are
briefly detailed, in section 3 the combination of the latter methods are explained, the
application of the methodology and the discussion of the results is made in section 4
and finally the conclusions and future work are exposed in section 5.

2. Box-Jenkins Time Series, Neural Networks and Machine
Learning Systems

In this section BJTS, FANN and some CMLS and their combination are briefly
detailed.

2.1. Box-Jenkins Time Series

The most general BJTS are Seasonal Autoregressive Integrated Moving Average
(SARIMA(p*,d*,q*,P*,D*,Q*,s*)), which assume that the mean is zero. The expression
of a SARIMA  time series is given by eq.(1):
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where *** ,, qPp θφ Φ  and *QΘ  are the autoregressive p*-order, the seasonal

autoregressive P*-order, the moving average q*-order and the seasonal moving
average Q*-order operators, B is the backward shift operator, yt is the original time
series and at is white noise time series.

The seasonality s* is taken by means of the periodogram as the frequency whose
amplitude is significantly greater. The parameters d* and D* are simultaneously varied
until the trend and the seasonality are removed. Then, a new time series called
differenced time series xt  is obtained and given by eq.(2).
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The autocorrelation and the partial autocorrelation functions (ACF and PACF) are
used to choose p* and q* (for the differenced time series) and P* and Q* (for the
differenced time series taking the values corresponding to s*-multiples indexes) [2].

The autoregressive, seasonal autoregressive, moving average and seasonal moving
average operators are given by eqs. (3)-(6):
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The coefficients bi,j  are estimated based on the methodology shown in [3] and [13].
The ACF and PACF of the residual time series are used to validate the model to

check that the residual time series can be regarded as a white noise time series [19].

2.2. Neural Networks

The most common neural networks are FANN, which have the neurons structured in
layers. The neurons of a layer can only be connected to neurons of the following layer
but not to neurons of the same layer. The incorporation of hidden layers and a transfer
function furnishes these neural networks with enough flexibility to solve difficult
problems, thus reproducing the nonlinear dependence of the variables.

The logistic function was taken as node function, because it is bounded,
monotonous increasing and differentiable and these properties assure the convergence
of the weight estimation method [8]. One hidden layer was also chosen since the data
partially defines a continuous function and one hidden layer is sufficient to
approximate this kind of function [6]. The number of neurons in the hidden layer was
obtained by iteratively constructing a sequence of FANNs mddd SSS ++ ⊂⊂⊂ ...1 ,

where d  is the number of inputs and m is the maximum number of neurons in the
hidden layer, which was fixed at 10 and Si is the set of FANNs with a hidden layer and
i neurons in this layer. The mean squared error adding and without adding an
additional term, which improves the forecasting error, was taken as the error function.
The addition of this term is called regularization [15]. The mean of the squared
weights was chosen as the additional term. The expression of the resulting error
function is given by eq.(7).
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where wj are the weights to be estimated, Nde is the number of data used to obtain
the model, dj is the desired neural network output, oj is the actual neural network
output and Npe is the number of weights

The method chosen for the weight estimation was the conjugate gradient method
[4], [10], [16] and [11] with the Fletcher-Reeves update [9] combined with
Charalambous’ search [5] for unidimensional minimization. In the conjugate gradient



algorithms a search is performed along conjugate directions, which produces faster
convergence than the basic steepest descent algorithm. These methods require only a
little more storage than the simpler algorithms, so they are often a good choice for
networks with a large number of weights. An iteration of the method is shown in
eq.(8) and eq.(9):
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where kw  is the vector ( )
peN1 w,...,w  in the kth -iteration, kp  is the conjugate

gradient direction in the kth-iteration, kg  is the gradient direction in the kth -iteration

and ka  is the optimal size step after linear minimization in the kth-iteration.

The various versions of conjugate gradient are distinguished by manner in which
the constant kß  is computed. For the Fletcher-Reeves update, the procedure is given
by equation (10):
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This is the ratio of the squared of the norm of the current gradient to the squared of
the norm of the previous gradient. The storage requirements of this update are lower
than others.

The validation model is carried out by taking some data that is not used to obtain
the model and checking that the error committed in the forecasting is lower than a
given value.

2.3. Continuous Machine Learning Systems

CMLS take a set of examples and learn a set of regression rules or a regression trees
from them. The examples are described as a sequence of pairs attribute-value and a
category.

These techniques are widely applied to different areas with excellent results; an
example can be found in [12]. The versatility, robustness and accuracy of these
systems make them adequate to be applied to forecasting.

One of the most important problems of applying this kind of systems is to select a
set of informative attributes [1]. Although it is supposed that they are able to deal with
irrelevant attributes if its number is high it is recommended to carry out an attribute
selection.

The CMLS employed in this paper are m5’ [20], Cubist [17] and RT [18]. m5’ is “a
rational reconstruction of m5”, which produces regression trees. Cubist is a
commercial system that produces regression rules. RT is a learning system that can
handle multiple regression problems based on samples of data and the resulting
models have the form of a regression tree.



3. Combination of Box-Jenkins Time Series, Feedforward Artificial
Neural Networks and Continuous Machine Learning Systems

In this section it is explained the methodology that combines BJTS, FANN and
CMLS.

As it was previously exposed the most general BJTS is SARIMA, whose parameters
p*,d*,q*,P*,D*,Q*,s*. These parameters are employed to identify the inputs or attributes
of FANN and CMLS. Firstly of all the meaning of these parameters is briefly detailed:
• The parameter p* is the relevant delays of the time series respect to the actual

instant.
• The parameter d* is the order of differentiation which allows remove the trend of

the time series.
• The parameter q* is the relevant delays of the white noise time series respect to the

actual instant (this time series appear in the model of BJTS)
• The parameter s* is the seasonality.
• The parameter P* is the relevant delays with s*-multiples indexes of the time series

respect to actual instant.
• The parameter D* is the order of differentiation which allows remove the

seasonality of the time series.
• The parameter Q* is the relevant delays with s*-multiples indexes of the white

noise time series respect to the actual instant (this time series appear in the model
of BJTS)
In most time series P* and Q* are rarely positive [3]. Besides, the parameters

associated to the white noise are not taken into account due to FANN and CMLS
already deal with noise. On the other hand, in Neural Networks and Machine
Learning it is accepted the fact that it is desirable that the distribution of the train and
the test data be the same. This occurs only when the time series does not have trend,
although it has seasonality. This is the reason why D* is not necessary to be
considered. Then, our methodology only takes into account p*, d* and s*.

First of all it is necessary to remove the trend, so the time series is differentiated
according to eq. (11).

t
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Then, p* delays respect to the actual instant and p* delays respect to the
seasonality s* are considered as inputs or attributes of the FANN and CMLS as
expressed in eq. (12).

(t-cp*, t- cp*-1,,...,c1, t-cs*+p*-1, t- c s*+p*-2,,...,c s*,) (12)

4. Model Application and Results

Pressures, temperatures and mass flow rates simultaneously registered every 10
minutes from a seawater refrigerated power plant condenser subject to tide effects.



between 8-6-98 and 14-6-98 (1008 data) are used to evaluate the model. The last two
days (288 data) were removed from the test.

Model implementation was carried out using the Matlab 5.3 NAG Foundation
Toolbox [14] and Neural Network Toolbox [7] and Cubist [17], M5’ [20] and RT [18].

Table 1 shows the BJTS and the inputs or attributes of FANN and CMLS.

Table 1. BJTS and the inputs or attributes of FANN and CMLS. The value ci  in (c1, c2,..., cm)  is
the number of delays with respect to the actual instant t

Time Serie
(p*,d*,q*,P*,D*,Q*,s*)

FANN and CMLS
(c1, c2,..., cm)

cM& (1,0,0,0,1,0,144) (1,144)
Td1 (1,0,0,0,1,0,144) (1,144)
ptes1 (1,0,0,0,1,0,144) (1,144)
pstlp (2,0,0,0,1,0,144) (1,2,144,145)
Tstlp (1,0,0,0,1,0,144) (1,144)
pcp (1,0,0,0,1,0,144) (1,144)
Thot (1,0,0,0,1,0,144) (1,144)
∆p (1,0,0,0,1,0,144) (1,144)
Lch (2,0,0,0,1,0,144) (1,2,144,145)
Tw,i (2,0,0,0,0,0,0) (1,2)
Tw,o (1,0,0,0,1,0,144) (1,144)

In the BJTS, the seasonality obtained from the periodogram was a day (s* =144).
The seasonality is removed by differencing the original time series (D*=1). However,
it was not necessary to remove the trend (d*=0). The moving averaged components
are zero (q*=0 and Q*=0). Only nonseasonal, autoregressive components were
identified (p*>0 and P*=0).

The Medium Average Deviation (MAD) is a common measure of the performance,
but it is adequate to use the Relative Medium Average Deviation (RMAD) which is
the MAD divided by the MAD of the system that always predicts the average function
(Av. MAD). This measure removes the effect of the dimension of the variables. In
Table 2 it is shown the MAD of the system that always predicts the average function
for each time series.

Table 2. MAD of the system that always predicts the average function

Mc Td1 ptes1 pstlp Tstlp pcp Thot ∆p Lch Tw,i Tw,o

MAD 47.22 3.20 0.03 0.40 2.30 6.97 2.39 61.82 0.79 0.25 1.91

In Table 3 it is shown the RMAD forecasting errors for BJTS , FANN without and
with term regularization and some CMLS when the real values of the delays are used
to forecast the next value of the time series (TO 1). It is also shown the best (BEST)
RMAD for each time series.



Table 3. RMAD for BJTS, FANN  whitout and with term regularization, some CMLS (Cubist,
M5’ and RT) and the best RMAD when TO 1

FANN MLS
BJTS

-Reg +Reg Cubist M5' RT
BETTER

Mc 13.18% 10.89% 14.72% 10.99% 10.67% 16.79% 10.67%
Td1 10.52% 9.31% 12.03% 9.39% 9.55% 15.31% 9.31%
ptes1 11.39% 8.71% 9.38% 7.68% 7.86% 12.61% 7.68%
pstlp 9.70% 7.03% 14.01% 7.17% 7.11% 15.13% 7.03%
Tstlp 51.89% 31.21% 30.65% 29.92% 31.167% 35.60% 29.92%
pcp 13.65% 12.35% 14.26% 12.41% 12.32% 18.59% 12.32%
Thot 12.29% 11.30% 12.06% 11.13% 11.14% 16.97% 11.13%
∆p 22.43% 17.41% 19.04% 17.61% 17.84% 22.96% 17.41%
Lch 20.87% 16.78% 22.05% 15.80% 16.66% 20.46% 15.80%
Tw,i 12.31% 12.31% 13.49% 16.57% 16.62% 23.99% 12.31%
Tw,o 14.02% 12.45% 15.08% 12.84% 12.73% 18.28% 12.45%
Av. 17.48% 13.61% 16.07% 13.77% 13.97% 19.70% 13.27%

In Table 4 it is shown the RMAD forecasting errors for BJTS , FANN without and
with term regularization and some CMLS when the forecasted values of the delays are
used to forecast the next value of the time series (TO N). It is also shown the best
(BEST) RMAD for each time series.

Table 4. RMAD for BJTS, FANN  whitout and with term regularization, some CMLS (Cubist,
M5’ and RT) and the best RMAD when TO N

FANN MLS
BJTS

-Reg +Reg Cubist M5' RT
BETTER

Mc 60.13% 90.58% 53.16% 86.07% 119.74% 117.30% 53.16%

Td1 58.99% 97.97% 53.90% 133.03% 121.88% 150.34% 53.90%
ptes1 62.66% 89.13% 64.67% 129.63% 116.96% 121.63% 62.66%
pstlp 70.19% 57.50% 68.89% 111.89% 66.96% 122.42% 57.50%
Tstlp 111.74% 97.84% 96.30% 99.95% 123.15% 235.94% 96.30%
pcp 56.75% 79.77% 54.11% 117.16% 94.21% 126.79% 54.11%
Thot 56.36% 93.05% 53.85% 124.96% 119.29% 129.08% 53.85%
∆p 88.55% 90.14% 87.24% 99.33% 94.77% 114.56% 87.24%
Lch 84.00% 73.58% 79.92% 97.73% 90.86% 152.25% 73.58%
Tw,i 86.62% 48.63% 47.90% 138.96% 98.75% 106.38% 47.90%
Tw,o 63.82% 94.77% 57.86% 92.60% 99.04% 137.10% 57.86%
Av. 72.71% 83.00% 65.25% 111.94% 104.15% 137.62% 63.46%

Looking at results in Table 3 it is noticed that FANN without regularization term
outperforms BJTS for all time series. However FANN with regularization and BJTS



are similar. Cubist and M5’ do the same except for Tw,i, although the difference is
insignificant. Cubist and M5’ are also better than FANN with regularization. The
performance of FANN without regularization, Cubist and M5’ are similar. However,
the results of RT are worse even than BJTS.

Looking at results in Table 4 it is noticed that FANN with regularization term
outperforms BJTS and CMLS for all time series. However CMLS do not have learned
well given that most of the RMAD are above the 100%, that is the MAD is worse than
the MAD of the function that predicts the average. FANN without regularization are
worse than BJTS and FANN with regularization.

5. Conclusions

This paper describes the employment of the widely used forecasting technique BJTS
to identify the inputs of FANN or the attributes of CMLS. This methodology is then
applied to some time series collected in a seawater refrigerated power plant condenser
subject to tide effects.

The use of BJTS as a feature selector to FANN and CMLS results promising since
these latter techniques reaches significantly more accurate than BJTS. Cubist (a
CMLS) performs the best although M5’ (another CMLS) and FANN also give good
results.

FANN without regularization, Cubist and M5’ outperforms BJTS when the real
values of the delays are used to forecast the next value of the time series. However,
FANN with regularization is the only system that outperforms BJTS when the
forecasted values of the delays are used to forecast the next value of the time series. In
this latter case CMLS do not learn correctly.

As future work we are interested in exploiting the power of FANN and CMLS to
deal with different variables at the same time, that is, to incorporate other variables as
inputs or attributes, fact that is computational unacceptable for BJTS .
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