The Hitting set problem and Evolutionary
Techniques: the use of viruses (HEAT-V)

1 Introduction

We start by formally introducing the optimization problem we intend to study,
and by recalling that the corresponding decision problem is N"P-complete [1].

— Instance: A finite set U, with | U |= m; a collection of sets C = {S1,...,S,}
such that S; CU Vi ={1,...,n}. A weight function w : S; = N\ {0}.

— Solution: A hitting set for C, that is to say H C U such that H N S; # 0,
Vi=1,...,n.

— Optimal Solution: a hitting set H such that w(H) =} __, w(s) is mini-
mal.

The above definition is very general and, by simply putting w(s) = 1, Vs € U,
we obtain the standard definition of the Minimum Hitting Set problem.
Some interesting computational results show that

— the problem can be approximated within 1 + lnn [2];

— it is not approximable within ¢Inn, for some ¢ > 0 [3];

— moreover (see [4]), optimal solutions cannot be approximated within (1 —
€)Inn Ve > 0, unless NP C DTIME (nlo8lo8),

— Finally, in [5] is proven that it is not possible to approximate Set Cover with
a ratio of clogn, V¢ < 1/4 unless NP C DTIME (np01yl°g n); furthermore,
if ¢ < 1/8 it would be NP C DTIME(n'°81°8 ™). Same results apply to the
MHSP since it is a dual problem of Set Cover.

1.1 Why the WMHSP ?

The Weighted Minimum Hitting Set Problem (WMHSP) and the standard Mini-
mum Hitting Set Problem (MHSP), are combinatorial problems which lend them-
selves quite naturally to an evolutionary approach.

Many problems can be reduced either to an instance of either WMHSP or
MHSP. For instance, airline crew scheduling [6, 7]; simplification of boolean ex-
pressions [8]; location of emergency service facilities [9]. See also [10].

2 The description of our algorithm

Our evolutionary approach and the resulting genetic algorithm [11] is based on
the idea of a mutant virus. The proposed algorithm will be denoted by HEAT-V,
while the the variations of it (obtained modifying the used fitness function) will
be denoted by adding an integer index to the general algorithm’s name.

In details, three fitness functions were introduced and compared.

2.1 Fitness 1: algorithm HEAT-V1

The fitness function f; : P — R* that HEAT-V1 tries to maximize is defined
as follows:

if ¢ is not a hitting set for C

if ¢ is a hitting set for C
0.0 ifw()=0

where cC U, p=|U |, a = p—|c|, w(U) =,y w(u), and in general w(c) =
> wee w(u) and P is the population set. Intuitively, this is a two-phase fitness
function. If the chromosome is not a hitting set its fitness function increases
very rapidly when new elements are added to it. If it is a hitting set, the fitness
increases when the cardinality of ¢ decreases.

2.2 Fitness 2: algorithm HEAT-V2

The fitness function fy : P — AN\ {0} that HEAT-V?2 tries to minimize is defined
as follows:

fa(e) = w(e) + w(Le,nr)

where

Lovm={e:EKCU)st. KNe=0Ae€ KAw(e) =max{w(e') :e' € K}}.

Intuitively, f2 is computed by adding to the weight of a chromosome, the maxi-
mum weight of elements of sets which ¢ does not hit. In some sense, f2 acts as a
large upper-bound to the fitness function of any chromosome that could become
a hitting set by including c.

2.3 Fitness 3: algorithm HEAT-V3

The fitness function f3 : P — A\ {0} that HEAT-V3 tries to minimize is defined
as follows:

f3(e) = w(e) + w(Le,m)

where
Lem={e:FKCU)st. KNec=0Ae€ KAw(e) =min{w(e') : e € K}}.

Intuitively, f3 is computed by adding to the weight of a chromosome, the min-
imum weight of elements of sets which ¢ does not hit. Thus, f3 acts as a strict
upper-bound to the fitness function of any chromosome that could become a
hitting set by including c.

2.4 Some comments on the obtained results

The first two fitness functions are equivalent from a quality point of view, i.e. the
corresponding algorithms find the same minimal hitting sets. However, fitness 2
gives more stability since HEAT-V2 finds the best result in all the runs, whereas
HEAT-V1 only 50% of the time. On the other hand, HEAT-V1 converges more
rapidly than HEAT-V2.

HEAT-V3, which uses the third function, is less stable than the other two
algorithms, yet in 33% of the cases, it produces better solutions.

2.5 Some details about HEAT-V

Each chromosome in the population is a binary string of fixed length (see below
for details). The selection operator is tournament selection (see [12]) and the
selected individuals mate with probability p = 1. Reproduction uses uniform
crossover (however this does not involve the virus part as we will describe later).

Elitism is used on three specific elements (not necessarily distinct) of the
population:

— best fitness element;
— hitting set of smaller cardinality;
— hitting set of smaller weight.

3 Virus description

Chromosomes contain some extra genes, specifically 2+ [log | U []. These genes
represent the genetic patrimony of the wvirus. As a consequence, the total length
of a chromosome is | U | +2 + [log | U |]. We have

— The extra [log | U |] bits uniquely identify one of the first | U | loci of
the chromosome. If | U | is not a power of 2, the above bits will cause the
algorithm to go past the first | U | bits. In such cases, the virus will have
no effect. The virus is characterized by two behavioral phases, positive and
negative, and it switches between them dynamically, specifically whenever
the population has gotten used to the disease, that is to say when no im-
provements are generated after a specific number of runs. If the virus hits
the individual, with probability one half, it is decided whether it will act
selectively or generally.

o If it acts selectively, the position identified by the [log | U |] and another
randomly chosen are hit by the virus. That means, that if the virus is
acting positively [resp. negatively] the gene with smaller weight (of the
chosen two) is put to one [resp. the gene with higher weight of the chosen
two, is put to zero|.

o If it acts generally, the position identified by the [log | U |] extra bits is
put to one if the virus acts positively and zero otherwise.

— Viruses will hit an individual if the remaining two extra bits, control bits,

have both value 1.
Thus, chromosomes can be partitioned into three groups:

e healthy (control bits are both 0);

e disease carrier (control bits have different values);

e sick (control bits are both 1).
However, all individuals, including the healthy ones, carry in their genes the
virus genes. Two disease carrier chosen for reproduction, will produce a sick
offspring with probability 1/4.

During the first generation, the viruses bits are randomly generated with a
uniform distribution. Control bits are instead put to 1 with a probability p,;
that has to be set. In all the cited tests, we did set p,; = 1/10.

Virus reproduction is slightly different than uniform crossover. If we denote
by 1, ¢2 the two chromosome chosen for reproduction, by ncl, nc2 the two off-
spring, and by V the virus set of genes, the following pseudo-code explains the
reproduction procedure for the viruses.

Procedure Virus_reproduction
for j €V do

if virus|cl][j] # virus[c2][j] then
virus[nel][j] + {0,1} with probability p =
1/2.
virus[nc2][j] < {0,1} with probability p =
1/2.

end for
end Algorithm

Basically, in the case that the viruses bits differ in one location, the offspring are
given a random value (in the uniform crossover, such a case would imply that
one offspring will get the value 1 and the other the value 0).

Control bits have also their specific reproduction procedure. If ¢1,¢2 are the
control bits of the offspring and cl1, ¢12 are the control bits of the first parent,
while ¢21, ¢22 are the control bits of the second parent, the following pseudo-code
will give us the reproduction procedure:

Procedure Control_bits_reproduction

c1 = choose randomly {cl11, c12};

¢2 = choose randomly {c21, ¢22};

Get true with probability p,o

if true and control bits of chromosome are both 0
then set the first control bit of the child to 1.

end for
end Algorithm

4 Tests and results

We compared HEAT-V to a greedy algorithm which is a very well known and
good approximation algorithm. Such an algorithm approximates the optimal
solution to a factor of O(lnn), where n =| U | . In [13] ratio factor is improved
to Inn —Inlnn + (1), and, basically, no known polynomial algorithm can have
a better performance [4].

For sake of completeness, we present here the pseudo-code of the greedy
algorithm:

Procedure GREEDY

Input: A finite set U. Matrix mat_ss of subsets of U..
Vector w of weights.

Output: An hitting set H for mat_ss.

Put H = () and temp = mat_ss

while temp # 0 do

Compute T = {t1,...,tn} such that t; is the
number of subsets in temp hit by u; € U.
Choose t; € T such that ¢; /w; is maximum.
Put H=HU{t}.

Put temp = temp \ {S; : S; N {t;} # 0}

end while
return H
end Algorithm

Basically, the procedure greedy chooses at every step the element that maximizes
the ratio between the number of hit sets (among the remaining ones) and its
weight. The hit sets are eliminated.

HEAT-V was also compared to the results in [14], where an extension of
the MHSP was studied. In such an extension, denoted by T-constrained, the
problem is to find hitting set of minimal cardinality with the highest number
of elements belonging to a given set T C U.. It has been proven in [15], that
such an extension cannot be approximated within | U |, for some € > 0. It is
easy to see how the T-constrained version of the MHSP can be mapped into the
WMHSP by assigning a small weight to the elements of T and a large weight
to the elements outside of T'. In our experiments we chose w(t) =1, V¢t € T and
w(s) =10,Vs ¢ T.

5 Performed tests

Many tests were performed. For each test HEAT-V was tested three times. The
population contained 200 individuals and each test ran for 500 generations.

5.1 Tests on guaranteed hitting set families

The following procedure generates family of subsets of a universe U that have
hitting sets of guaranteed cardinality.

Table 1. Weight results for guaranteed MHS

Suite

Guaranteed Greedy HEAT-V3 HEAT-WV

50A
50B
100A
100B
200A
200B

115 194 115 115
102 129 102 102
501 837 501 584
537 793 537 626
2054 3094 2054 2552
428 668 428 623

Procedure Random_Guaranteed _W-MHS
Input: Matrix mat_ss of the subsets.

Output: Guaranteed W-MHS in mat_ss.

Choose randomly k € {1,...,| U | /4}. for ¢ €
{0,...,k—1} do

end for
j=0
for i € {0,...,| N | -1} do

end for
end Algorithm

choose randomly j € {0,...,| K| -1}

v_ind[i] = j;

Comment: v_ind collects the elements of the guar-
anteed W-MHS.

mat_ss[i][vand[j]] = 1;

j=(j+1) mod k;

Comment: The cardinality of such a guaranteed
W-MHS will certainly be no more than k. ;

For our experiments, we randomly created three test collections

(50) | U |= 50, and | C |= 50000 where for each subset, each element of U

belongs to it with probability 1;

(100) | U |= 100, and | C |= 100000 where for each subset, each element of U

belongs to it with probability %;

(200) | U |= 200, and | C |= 200000 where for each subset, each element of U

belongs to it with probability .

Table 1 shows the results obtained by HEAT-V3. Note that we created two
tests series (A and B) for each of the collections described above. Note that
HEAT-WYV is a variation of HEAT-V where no viruses are used but instead we

use the mutation operator with probability 1/ |U | .

Table 2. Results on T-MHSP.

Suite Algorithm |H| €T

T-100 Greedy 51 100%
T-100 HEAT-V3 49 100%
T-100 HEAT-WV 51 80%
T-100 IEEE Code 49 60%

5.2 Some results on T-MHSP

In table 2 we show the results obtained by HEAT-V3 on the T-constrained
MSHP. In this case, | T |= 10, whereas | U |= 100 and | C |= 100000. To
randomly generate the elements of C, we acted as follows:

— We fixed two integer interval parameters [aj,. .., as] and [b1,. .., bs].
— For each element C' € C and for each bit in C,
e we draw randomly two numbers a' € [ay,...,az2] and b’ € [by,...,ba].

e If o' < b the bit is given the value 1 otherwise is given the value 0.

The test set A is characterized by the intervals [0,...,9] and [1,...,10]. What is
the probability that @' < ' ? The event space is made of the 100 possible pairs
of values [a’,b']. Of these 100 pairs, the ones for which a’ < b’ are exactly 55.
Thus, with probability % a bit is set to 1. Any set in C will therefore have a
little over one half of its bits equal to 1.

6 Conclusions

In this paper, we present an evolutionary algorithm, HEAT-V, which makes use
of extra bits of data, called virus, and we studied its performance on the Weighted
Minimum Hitting Set Problem. We think the algorithm is very simple yet flexible
and efficient in finding approximate solutions even for variations of the studied
problem. It does not require any a-priori knowledge about the problem instance
and it does not use any reduction techniques. Because of it, we were able to test
its performance even on different problems such as the Minimum Vertex Cover
Problem.

One of the major novelties of HEAT-V, is the usage of a virus, which has a
different definition than others present in literature [16]. Its efficacy relies on a
merging of the power of the mutation operator with the fundamental function of
locally improving the solutions found by evolution. Computationally, its usage
has no meaningful extra costs.

HEAT-V was tested on a large set of test cases, and, compared with the best
know greedy algorithm, it obtained better results in 100% of the cases. It also
wins against the same algorithm that makes use of the mutation operator, but
not the viruses. We intend now to study more in depth the usage of the defined
viruses, and perform tests on other hard combinatorial problems.

The used test suites can be found at www.dmi.unict.it/~francesco/heat-
v.html.

References

10.

11.
12.

13.

14.

15.

16.

. Garey, M. R., Johnson, D. S.: Computers and Intractability: A guide to the theory

of NP-completeness. San Francisco: W. H. Freeman and Company (1979).

. Johnson, D. S.: Approximation algorithms for combinatorial problems. J. Comput.

System Sci. 1 (1974) 256-278.

Raz, R., Safra S.: A sub-constant error-probability low-degree test, and sub-
constant error-probability PCP characterization of NP. Proceedings of the 29th
Ann. ACM Symp. on Theory of Computation (1997) 475-484.

Feige U.: A threshold of logn for approximating set cover. Journal of ACM 45
(1998) 634-652.

Bellare, M., Goldwasser, S., Lund, G., Russel, A.: Efficient probabilistically check-
able proofs and applications to approximations. Proceedings of the 25th Annual
ACM Symposium on Theory of Computing (1993) 294-304.

Bartholdi, J. J.: A guaranteed-accuracy round off algorithm for cyclic scheduling
and set covering. Operations Research 29 (1981) 501-510.

Shepardson, F., Marsten, R. E.: A Lagrangean relaxation algorithm for the two
duty period scheduling problem. Management Science 26 (1980) 274-281.
Breuer, M. A.: Simplification of the covering problem with application to boolean
expressions Journal of the ACM 17 (1970) 166-181.

Toregas, C., Swain, R., Revelle, C., Bergman, L.: The location of emergency service
facilities. Operations Research 19 (1971) 1363-1373.

Franco J., Swaminathan R.: Toward a good algorithm for determining unsatis-
fiability of propositional formulas. To appear in Journal of Global Optimization
(1995).

Mitchell, M.: An Introduction to Genetic Algorithm. The MIT Press (1996).

D.E. Goldberg, D. E.: A comparative analysis of selection schemes used in genetic
algorithms. In Gregory Rawlins, editor, Foundations of Genetic Algorithms, San
Mateo, CA: Morgan Kaufmann Publishers (1991).

Slavik, P.: A tight analysis of the greedy algorithm for set cover. Proceedings of
28th ACM Symposium on Theory of Comp. (1996) 435-439.

Cutello, V., Mastriani, E., Pappalardo, F.: An evolutionary algorithm for the T-
constrained variation of the Minimum Hitting Set Problem. Proceedings of 2002
IEEE Congress on Evolutionary Computation (2002).

Zuckerman, D.: NP-complete problems have a version that’s hard to approximate.
Proceedings of Eight Ann. Structure in Complexity Theory Conf. IEEE Computer
Society (1993) 305-312.

Saito, S., Sako, T.: A Genetic Algorithm By Use Of Virus Evolutionary Theory For
Combinatorial Problems. Proceedings of The Fifth Conference of the Association
of Asian-Pacific Operations Research Societies within IFORS (2000).

