
A Pomset-Based Model for Estimating Workcells' Setups
in Assembly Sequence Planning

Carmelo Del Valle, Miguel Toro, Rafael Ceballos, Jesús Aguilar

Dept. Lenguajes y Sistemas Informáticos, Universidad de Sevilla,
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

{carmelo, mtoro, ceballos, aguilar}@lsi.us.es

Abstract. This paper presents a model based on pomsets (partially ordered mul-
tisets) for estimating the minimum number of setups in the workcells in Assem-
bly Sequence Planning. This problem is focused through the minimization of
the makespan (total assembly time) in a multirobot system. The planning model
considers, apart from the durations and resources needed for the assembly tasks,
the delays due to the setups in the workcells. An A* algorithm is used to meet
the optimal solution. It uses the And/Or graph for the product to assemble, that
corresponds to a compressed representation of all feasible assembly plans. Two
basic admissible heuristic functions can be defined from relaxed models of the
problem, considering the precedence constraints and the use of resources sepa-
rately. The pomset-based model presented in this paper takes into account the
precedence constraints in order to obtain a better estimation for the second heuris-
tic function, so that the performance of the algorithm could be improved.

1 Introduction

Assembly planning is a very important problem in the manufacturing of products. It
involves the identification, selection and sequencing of assembly operations, stated as
their effects on the parts. The identification of assembly operations usually leads to
the set of all feasible assembly plans. The number of them grows exponentially with
the number of parts, and depends on other factors, such as how the single parts are
interconnected in the whole assembly, i.e. the structure of the graph of connections. In
fact, this problem has been proved to be NP-complete [1]. The identification of as-
sembly tasks is carried out analyzing the graph of connections and taking into account
the geometry of parts and the properties of contacts between parts [2] [3].

Two kinds of approaches have been used for searching the optimal assembly plan.
One, the more qualitative, uses rules in order to eliminate assembly plans that in-
cludes difficult tasks or awkward intermediate subassemblies. Another approach, the
more quantitative, uses an evaluation function that computes the merit of assembly
plans. There are various of these proposals in [4].

The criterion followed in this work is the minimization of the total assembly time
(makespan) in the execution of the plan in a multirobot system, supposed the estima-
tions of the durations of each possible task as well as of the necessary resources to
carry out them [5]. This approach allows using the results in different stages of the

whole planning process, from the design of the product and of the manufacturing sys-
tem, to the final execution of the assembly plan.

The rest of the paper is organized as follows: Section 2 describes the problem of
assembly sequence planning and the model used. Section 3 shows the proposed A*
algorithm, as well as the two basic heuristics taken from relaxed models of the prob-
lem. The pomset-based model for estimating more accurately the minimum number of
setups in the assembly machines is exposed in Section 5. Section 6 presents some of
the results obtained, and some final remarks are made in the concluding section.

2 Assembly Sequence Planning

The process of joining parts together to form a unit is known as assembly. An assem-
bly plan is a set of partially ordered assembly tasks. Each task consists of joining a set
of sub-assemblies to give rise to an ever larger sub-assembly. A sub-assembly is a
group of parts having the property of being able to be assembled independently of
other parts of the product. An assembly sequence is an ordered sequence of the as-
sembly tasks satisfying all the ordering constraints. Each assembly plan corresponds
to one or more assembly sequences.

And/Or graphs have been used for a representation of the set of all feasible assem-
bly plans for a product [6]. The Or nodes correspond to sub-assemblies, the top node
coinciding with the whole assembly, and the leaf nodes with the individual parts.
Each And node corresponds to the assembly task joining the sub-assemblies of its two
final nodes producing the sub-assembly of its initial node. In the And/Or graph repre-
sentation of assembly plans, an And/Or path whose top node is the And/Or graph top
node and whose leaf nodes are the And/Or graph leaf nodes is associated to an assem-
bly plan, and is referred to as an assembly tree. An important advantage of this repre-
sentation, used in this work, is that the And/Or graph shows the independence of as-
sembly tasks that can be executed in parallel. Figure 1 shows an example of this rep-
resentation. And nodes are represented as hyperarcs.

A B C D E

A B C D

A C D

A B A C A D C D B E

A B C D E
Fig. 1. And/Or graph of product ABCDE.

The problem is focused on searching an optimal assembly sequence, i.e. an order-
ing of an assembly plan (one of the And/Or trees of the And/Or graph). The evalua-
tion of solutions implies a previous estimation of the durations and resources (robots,
tools, fixtures…) needed for each assembly task in the And/Or graph. Another factor
taken into account here, is the time necessary for changing tools in the robots, which
is of the same order as the execution time of the assembly tasks and therefore cannot
be disregarded as in Parts Manufacturing. (), ,cht R T T ′∆ will denote the time needed
for installing the tool T in the robot R if the tool T' was previously installed. Notice
that any change of configuration in the robots can be modeled in this way.

3 Algorithm description

An algorithm based on the A* search [7] has been developed, which has two well-
differentiated parts: one of them studies the sequential execution of assembly tasks,
and the other solves the parallel execution of assembly tasks (the representation
through the And/Or graph allows a natural study of this stage). This is actually the
most complex section, because the execution of tasks on one side of the global as-
sembly is not independent of the rest, and can influence the execution of tasks in the
other part of assembly. The heuristics showed below refer to this last part.

Because of the set-up of the And/Or graph, the assembly problem can be studied,
starting from the final situation and going towards the initial one. This way, we will
solve the opposite problem, that of disassembly, but composed by assembly tasks, so
that the solution of the original problem can be made reversing the solution obtained
by the algorithm.

Heuristic functions based on the execution of tasks taking only from the part of the
tree below the node, and the time remaining for the use of tools and robots (supposing
the minimum number of tool changes, in order to maintain the algorithm as A*) has
been used in order to expand the minimum number of nodes and avoid redundant nodes.

3.1 Sequential Execution of Tasks

An A* algorithm to search for the global assembly plan can be implemented in the
following way. Beginning with an initial node whose state represents the complete
assembly realization, and therefore corresponds to the root node of the And/Or graph
(complete assembly), all its possible successors are generated, whose states will rep-
resent the execution at the end of the assembly process of the tasks corresponding to
the And nodes coming from the root node of the And/Or graph.

Two types of nodes may be generated, depending on the destination Or nodes of
each chosen And node. If at least one of these Or nodes corresponds to an individual
part, the assembly process will continue to be sequential, and the node resulting from
the expansion may be treated as the initial node, where the node corresponding to the
non-trivial sub-assembly will take the place of the root node.

If, on the other hand, the application of the task starts from two sub-assemblies each
with various parts, in the resulting plan (or plans in general) the task arrangement is not

totally specified (various possible sequences exist for each assembly plan), or tasks may
be carried out in parallel. There is also an interdependence amongst the sub-assemblies,
because they potentially use the same set of resources. The treatment of this type of
nodes has therefore to be undertaken in a different way from those corresponding to se-
quential task execution, and this will connect with the second part of this algorithm.

The evaluation function used for the nodes generated in this part is

() () ()f n g n h n= + (1)

g(n) being the time accumulated in the execution of tasks corresponding to the state of
node n, including the delays in the necessary tool changes and in the transportation of
intermediate subassemblies, and h(n) being an optimistic estimation of the remaining
time in which to complete the global process. (h(n) should be a lower bound of the
remaining time for the algorithm to be A*.) Due to the fact that various different plans
(and therefore different task sets which would complete the assembly process) may be
reached from node n, a detailed study would be computationally costly, and therefore

()2() log () 1h n durMin a n= ⋅ + (2)

has been chosen, a(n) being the number of tasks necessary to complete the assembly
plan, and durMin the minimum duration of tasks. As can be seen, it is also impossible
to determine the minimum number of tool changes without a detailed study, and
therefore when estimating h(n) it is assumed to be zero.

All the assembly trees (task precedence trees) are obtained for the "parallel" nodes,
and are studied separately. The function h(n) corresponding to each tree is defined in
the following subsection.

3.2 Parallel Execution of Tasks

The objective of this part of the algorithm is to determine the total minimum time for
the execution of the precedence trees obtained in the previous section. In order to do
this, an A* algorithm is again used. The nodes of the expansion tree now present partial
information about the execution of the assembly process. Concretely, at each expansion
step only one assembly task is introduced, and its processing time will affect only one of
the workstations, the same state being retained by the other workstations.

The state corresponding to a node of the expansion tree is represented by using the
tasks available for introduction in the state of the next step, termed "candidates", and
their earliest starting times, denoted est(Ji). At the same time, the last tool used is in-
cluded for each robot, denoted lastTool(Rj), as well as the final time of use, denoted
lastTime(Rj).

The evaluation function for the nodes obtained by this algorithm is similar to (1),
being now g(n) the largest of the earliest starting times of cand(n), the set of candi-
dates, and the final times of the already finished in n without successors. The function
h(n) must be an optimistic estimation of the time remaining, taking into account the
slacks between g(n) and the different times describing the state of n. Two different
heuristic functions have been defined in this work, taken from relaxed models of the
problem in which some constraints have been disregarded.

The heuristic function h1: precedence of tasks. It corresponds to an estimation of
the time remaining if the interdependencies between different branches in the tree are
not taken into account. It is looked at only in depth. It can be defined as follows:

()()1 1()
() max 0, max () (,)

i
i icand nJ

h n h J e n J
∈

= − (3)

where (,) () (,)i ie n J g n est n J= − (4)

()()1 1()
() () max () , (), ()

i
i iJ suc J

h J dur J h J J R J T J
∈

= + + τ (5)

())()()1() 1(, ,) max 0, max () , (), () ()
i

i iJ suc J
J R T h J J R J T J h J

∈
τ = + τ − (6)

In the above expressions, n is an expansion node, J is an assembly task, and e(n, J)
is the existing time slack. R(J) and T(J) are the robot and tool necessary for the execu-
tion of task J, and dur(J) is its duration. τ(J, R, T) is the added delay, due to the fact
that the tool T is being used by robot R in task J and successors, because of the neces-
sary tool changes. The equation (6) defines τ(J, R, T) when R ≠ R(J). In the case R =
R(J), τ(J, R, T) is defined as ∆cht(R, T(J), T) (that could be zero if T = T(J)).

Notice that h1(J) does not depend on the expansion nodes, and thus allows one to
calculate a lower bound prior to using the A* algorithm.

The heuristic function h2: use of resources. It corresponds to an estimation of the
time needed if only the remaining usage times of the tools in each robot are taken into
account, further supposing the number of tool changes to be at a minimum. It can be
defined as follows:

()2 2() max (,) (,)i irobots
h n h n R e n R= − (7)

where (,) () (,)e n R g n lastTime n R= − (8)

and h2(n, Ri) is the minimum time of use of robot Ri without considering the task
precedence constraints. If each tool is associated with only one robot, the calculation
of h2(n, R) is equivalent to the traveling salesman problem, when considering the tools
not yet used and an initial node corresponding to the last used tool in the robot R:

()2 2
()

(,) (,) , ()
j i

i j cht
H R J cand n

h n R h J T n R
∈ ∈

= +� ∆� �� �
� �
� � (9)

with h2(J, T) the remaining time of usage of tool T by task J and its successors. The
term (), ()chtn R∑ ∆ refers to the time needed for the tool changes. In the usual case
that tool changing times do not depend on the type of tool, it can be calculated easily:

(), () (,) ()cht cht chtn R N n R R∑ ∆ = ⋅ ∆ (10)

where Ncht(n, R) is the number of tool changes needed in R for the remaining tasks for
completing the assembly form n, and ∆cht(R) is the duration of a simple tool change in
R. Without considering any precedence information, an in order to maintain the ad-

missibility of the heuristic, it must be supposed that the remaining tools will be in-
stalled only once in the estimation of Ncht(n, R).

4 The Pomset-Based Model

The heuristic h2 does not consider any information about precedence of tasks, and, in
order to meet an admissible heuristic, it must be supposed that every tool will be in-
stalled once, so that the number of tool changes is minimized. The heuristic h3 is based
on h2, but it estimates more accurately the number of tool changes. For that, a pomset-
based model is used that reflects some of the precedence constraints of the problem.

Given a precedence tree of tasks, the tasks using the same machine must be done
sequentially. For each sequence of tasks using the same machine, it can be defined a
sequence of tools, in the same order that that of the tasks which use them. Because we
are only interested in the tool changes, we must transform that sequence of tools in
another one substituting consecutive repetitions of the same element for an instance of
it. These sequences will be denoted as sequences of tools.

The objective is to find, for each robot, the minimum number of times that each
tool must be installed, but estimated in the more realistic way possible. Figure 2
shows a simple example: for the precedence tree of tasks (a), the precedence tree of
usages of tools in the robot R1 is shown (b); in order to minimize the number of tool
changes, T1 must be installed once, so that (c) represents the constraint precedence
graph of tools, each node corresponding to possibly more than one consecutive usage
of the tool. Finally, (d) represents the pomset1 corresponding to a simplified model of
(c), maintaining only the precedence constraints referring to the tool in the top node.

The data structure pomset was introduced by Pratt [8] in the specification of con-
current programs. An alignment is a sequence of the elements of the pomset satisfying
the ordering constraints. In our pomset-based model, not all the possible alignments
from the pomset will correspond to valid sequences of tools, because of the con-
straints that have been disregarded. For example, the pomset in Figure 2 (d) has an
alignment {T2,T3,T2,T1}, which does not correspond to any possible sequences of
tool formed from (c). However, this in not the main purpose, but the number of tool
changes, which is related to the cardinality of the pomset.

According to the previous comments, the pomset can be defined as a tuple
,< >B F , B being a multiset containing the same elements (and multiplicity) as the

optimal sequence of tools taken from the precedence tree. On the other hand, F de-
notes the set of tools which can appear the first in any optimal sequence.

Two basic operations are needed in the recursive definition of the pomsets (one for
each robot) for a precedence tree. The first operation, denoted push, allows adding
one element to the pomset, proceeding from the root node. The other operation, de-
noted merge, is about merging the pomsets from the subtrees.

The pomset ,< >B F corresponding to a precedence tree whose root node is the
task J and robot R, denoted P (J, R), is given by

1 pomset = partially ordered multiset. A multiset is a set in which the elements can be repeated.

(
(,J

R R=
P

if R is the

(

The o

that show
that and
when the
reflecting

The o

where

and

The m
element,
the poms
dominan

J1
R1
T1 J2 R2

T4

J7 J8

J4
R2
T3J3

R2
T3 J5

R1
T1

J6
R1
T3

J0
R1
T2

R1
T2

R2
T4

R1

– T2T3

T1 –

–– T1

T2
T2

T1

T3 T2

T2

{T1,T2,T3}

(pomset)

(a) (b)

(c)

(d)
)

{ } { }
()

()()
1 1

1 2 1 2

() , () if ()
) (), (,) if () { }

() (), (,), (,) if () { , }

T J T J suc J
R push T J J R suc J J
J push T J merge J R J R suc J J J

< > = ∅
≡ =
 =

P
P P

 (11)

 robot used by J. If robot R is not the used by J, then the pomset is defined by

) ()
1 1

1 2 1 2

if ()
(,) (,) if () { }

() (,), (,) if () { , }

suc J
J R J R suc J J

R R J merge J R J R suc J J J

∅ = ∅
≡ =
≠ =

P P
P P

(12)

peration push is defined by

() ,{ } if
, ,

{ },{ } if
x x

push x
x x x

< > ∈< > ≡< > ∉ �

B F
B F

B F
 (13)

s that the set of first elements must contain the element pushed only, and
instance of this element must be added (operator �, multiset additive union)
 element does no belong to the set of first elements of the original pomset,
 the corresponding additional change tool.

peration merge is defined by

() ()
()

1 2 1 2 1 2
1 2

1 2 1 2 1 2

, , if ,
(,)

, if ,
merge

< > ≠ ∅≡ < > = ∅

F F

F

B B D P P D P P
P P

B B F F D P P
∪

∪ ∪
 (14)

() () () ()1 2 1 2 1 2 2 1, , ,′ ′≡F F FD P P F F D P P D P P∩ ∪ ∪ (15)

() { }, | # , # ,() ()i j i i jx x x′ ≡ ∈ >FD P P F B B (16)

ultiset union operator is defined taking the maximum multiplicity of each
so that is the adequate operator for the resultant multiset from the merge of
ets. The resultant set of first elements is formed according to the concept of
ce. Figure 3 shows two cases. The symbol ⊗ represents the merge operator,

Fig. 2. An example of a pomset from the model.

and ⊕ is used for expressing the different possibilities we can obtain. In (a), we can
obtain a pomset without increasing the number of instances of each element, because
the element A in F1 has more instances in B1 than in B2, so we say that A is dominant.
Moreover, B is not dominant because it cannot appear as first element in any optimal
sequence of tools, i.e. without increasing the number of instances. In this situation,
DF(P1,P2) is not empty, so we can determine the set of first elements without any
problems. In case (b), A and B are not dominants, but the set of first elements cannot
be empty. Notice that the optimal sequences can be taken from two different pomsets,
in which the number of instances for A and B are different, expressing that the first
element in an optimal sequence can be A or B, and depending of which is choosed, it
has an additional instance. We say that there is an indetermination in the number of
instance of A and B. The model proposed in this work makes a simplification about
this aspect (see eq. (14)), so that the number of instances of A and B are not in-
creased, and both appear as possible first element in an optimal sequence. This way,
the resultant heuristic is admissible, but losing accuracy. On the other hand, if an ele-
ment is present in the set of first elements in both pomsets, it must be present in the
set of first elements in the resultant pomset.

A last operation must be defined for the pomset structure, for obtaining the number
of tool changes. This operation is denoted as ntrans, and for the model proposed in
this work is defined as the number of elements of the multiset less one:

() #(,) 1
x

ntrans x
∈

= −∑
B

P B (17)

Finally, the new heuristic h3 is defined in the same way as h2 (eq. (9)), but in the
calculation of (), ()chtn R∑ ∆ (eq. (10)), the term Ncht (n, R) is now estimated more ac-
curately. If the candidate tasks in n are J1, ..., Jm, and T is the last tool used in R,

() ()()(), , (,),..., (,)chtN n R ntrans push T merge J R J R= 1 mP P (18)

5 Results

The algorithm has been tested in a variety of situations, considering different product
structures (number of parts, number of connections between parts), different types of

A

{ A, B, C }

B

{ A, C }

A

{ A, B, C }

A

{ B, C }

B

{ A, C }

A

{ A, B, C }

B

{ A, B, C }

(a)

(b)

Fig. 3. An example of dominance.

And/Or graphs (number of sub-assemblies, number of assembly tasks for each sub-
assembly), and different assembly resources (number of robots, number of tools).

The results in Tables 1-4 correspond to a hypothetical product of 30 parts, with 396
Or nodes and 764 And nodes in the And/Or graph. The number of linear sequences is
about 1021. The tables show the effect of having more or less resources for assembling
the product in the performance of the algorithm. The results refer to 10 different com-
binations of durations and resources for assembly tasks.

The heuristic functions defined present two different effects in calculating h(n).
The estimation made from h1 is due to the most unfavorable candidate task. In the
other hand, h2 and h3 shows an additive effect, because of the uses of robots by all
candidate tasks. Therefore, two new heuristic functions can be defined from the com-

Table 1. Results for 2 machines and 2 tools/machine

Nodes visited Time (ms) Heuristic Ave Max Min Ave Max Min N-Pr N-F %
Error

h1 41492 89189 2520 19429 30590 180 4 6 0,990
h2 9316 42775 32 1422 6420 0 5 0 0,000
h3 617 3019 32 176 870 0 2 0 0,000

max(h1, h2) 16385 71585 32 4291 30050 0 4 1 0,248
max(h1, h3) 3422 30506 32 3257 31470 0 1 1 0,248

Table 2. Results for 2 machines and 4 tools/machine

Nodes visited Time (ms) Heuristic Ave Max Min Ave Max Min N-Pr N-F %
Error

h1 40093 56108 3020 25025 30930 710 2 8 2,648
h2 5311 19398 267 790 4230 50 1 0 0,000
h3 1458 6120 32 198 930 0 1 0 0,000

max(h1, h2) 5078 19009 387 1143 4450 60 1 0 0,000
max(h1, h3) 1303 4805 32 418 1870 0 1 0 0,000

Table 3. Results for 4 machines and 2 tools/machine

Nodes visited Time (ms) Heuristic Ave Max Min Ave Max Min N-Pr N-F %
Error

h1 16905 85540 32 2357 11700 0 1 0 0,000
h2 2751 7195 32 263 710 0 2 0 0,000
h3 1781 7011 32 533 2030 0 3 0 0,000

max(h1, h2) 804 2098 32 99 220 0 2 0 0,000
max(h1, h3) 794 2098 32 148 330 0 2 0 0,000

Table 4. Results for 4 machines and 4 tools/machine.

Nodes visited Time (ms) Heuristic Ave Max Min Ave Max Min N-Pr N-F %
Error

h1 22697 93376 32 6084 30530 0 4 1 0,302
h2 1808 5907 128 197 660 0 1 0 0,000
h3 1072 5014 119 396 2260 0 1 0 0,000

max(h1, h2) 1765 5907 32 278 980 0 2 0 0,000
max(h1, h3) 1062 5014 119 396 2260 0 1 0 0,000

bination of both effects, taking the most realistic estimation, ()1 2max (), ()h n h n and
()1 3max (), ()h n h n .

The use of A* algorithms presents some problems. The most important is the stor-
age space that could be occupied. The algorithm was adapted so that it uses a depth-
first search periodically for finding a new solution whose value could be used for
pruning the search tree. Another improvement was done in order to detect symme-
tries, so that redundant nodes are avoided.

Apart from the number of nodes visited and execution times, the tables show how
many times the optimal solution was found by a depth-first movement (N-Pr), how
many times the algorithm did not find the optimal solution in 30 seconds, when the
available memory was exhausted (N-F), and the error rate.

6 Conclusions

A model for the selection of optimal assembly sequences for a product in a generic mul-
tirobot system has been presented. The objective of the plan is the minimization of the
total assembly time. To meet it, the model takes into account, in addition to the assem-
bly times and resources for each task, the times needed to change tools in the robots.

A pomset-based model has been proposed for estimating the number of workcells’
setups needed in Assembly Planning. The model is used in the definition of a heuristic
function for an A* algorithm. The result is a more informed heuristic than the one
which was based on, due to the combination of two kinds of constraints, the prece-
dence constraints and the use of the resources.

References

1. R.H. Wilson, L. Kavraki, T. Lozano-Pérez and J.C. Latombe. Two-Handed As-
sembly Sequencing. Int. Jour. of Robotic Research. Vol. 14, pp. 335-350, 1995.

2. L.S. Homem de Mello and A.C. Sanderson. A Correct and Complete Algorithm for
the Generation of Mechanical Assembly Sequences. IEEE Trans. Robotic and
Automation.Vol 7(2), 1991, pp. 228-240.

3. T. L. Calton. Advancing design-for-assembly. The next generation in assembly
planning. Proc. 1999 IEEE International Symposium on Assembly and Task Plan-
ning, pp. 57-62, Porto, Portugal, July 1999.

4. M. H. Goldwasser and R. Motwani. Complexity measures for assembly sequences.
Int. Journal of Computational Geometry and Applications, 9:371-418, 1999.

5. C. Del Valle and E.F. Camacho. Automatic Assembly Task Assignment for a Mul-
tirobot Environment. Control Eng. Practice, Vol. 4, No. 7, 1996, pp. 915-921.

6. L.S. Homem de Mello and A.C. Sanderson. And/Or Graph Representation of As-
sembly Plans. IEEE Trans. Rob. Automation. Vol. 6, No. 2, pp. 188-199, 1990.

7. J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Reading, MA, Addison-Wesley, 1984.

8. V.R. Pratt. Modeling Concurrency with Partial Orders. Int. Journal of Parallel
Programming. Vol. 15, No. 1, pp. 33-71, Feb 1986.

