An Immunological Approach to
Combinatorial Optimization Problems

1 Introduction

The idea to use the theory of evolution as a search algorithm for optimization
problems emerged, in the sixties, independently in the USA with the J. Holland ’s
Genetic Algorithms (GA) and in Germany with the I. Rechenberg ’s Evolution
Strategies (ES). Both approaches mimicked the collective learning process of
natural populations. Today, there are several different types of Ewvolutionary
Algorithms (EAs) (GA, ES, Evolutionary Programming, Genetic Programming,
Immune Algorithms) that solve real world applications: “When we fly in the
latest airplane, the design of the turbines may have been optimized by artificial
evolution” [1].

Recently a new method has been proposed, denoted by FEztremal Optimiza-
tion, for finding solutions to hard optimization problems. The method is inspired
by self-organizing processes often found in nature [2].

Moreover, there is a deep connection between NP-complete problems and
models studied in statistical physics (e.g. spin glasses), that leads to deter-
mining computational complexity from characteristic ’phase transitions’ in K-
satisfiability [3]. This result strengthens the link between computational models
and properties of physical systems.

The paper is organized as follows: in section 2 we briefly introduce the re-
search field of Immunological Computation, in section 3 we describe the proposed
Immunological Algorithms (IA), in 4 we define the test bed where we verify the
IA’s performance and report simulations’ results. In section 5 we reports about
other related works and finally in 6 we highlight some future directions.

2 Immunological Computation

The Immune System (IS) has to assure recognition of each potentially danger-
ous molecule or substance, generically called antigen, that can infect the host
organism. The IS first recognizes it as dangerous or extraneous and then mounts
a response to eliminate it. To detect an antigen, the IS activates a recognition
process. Moreover, the IS only has finite resources and often very little time to
produce antibodies for each possible antigen [4].

Our Immune Algorithm is based on the theory of the clonal selection first
stated by Burnet and Ledeberg in 1959 [5]. This theory suggests that among
all the possible cells with different receptors circulating in the host organism,
only those who are actually able to recognize the antigen will start to proliferate
by duplication (cloning). The increase of those population and the production



of cells with longer expected life-time assures the organism a higher specific re-
sponsiveness to that antigenic pattern, establishing a defense over time (immune
memory). In particular, on recognition, B and T memory cells are produced.
Plasma B cells, deriving from stimulated B lymphocytes, are in charge of the
production of antibodies targeting the antigen.

This mechanism is usually observed when looking at the population of lym-
phocytes in two subsequent antigenic infections. The first exposition to the anti-
gen triggers the primary response. In this phase the antigen is recognized and
memory is developed. During the secondary response, that occurs when the same
antigen is encountered again, a rapid and more abundant production of antibod-
ies is observed, resulting from the stimulation of the cells already specialized and
present as memory cells.

The hypermutation phenomenon observed during the immune responses is a
consequence of the fact that the DNA portion coding for the antibodies is sub-
jected to mutation during the proliferation of the B lymphocytes. This provides
the system with the ability to generate diversity. The IS from an information
processing point of view [6] can been considered like a problem learning and solv-
ing system. The antigen is the problem to solve, the antibody is the generated
solution. At beginning of the primary response the antigen-problem is recognized
by partial candidate solution (the B cell receptor). At the end of the primary re-
sponse the antigen-problem is defeated-solved by candidate solutions (antibody
or a set of antibodies in the case of multimodal optimization). Consequently the
primary response corresponds to a training phase while the secondary response
is the testing phase where we will try to solve problems similar to the original
presented in the primary response [7].

The new field of Immunological Computation (or Artificial Immune System)
attempts to use methods and concepts such ideas to design immunity-based
system applications in science and engineering [8]. Immune Algorithms (IA)
are adaptive systems in which learning takes place by evolutionary mechanisms
similar to biological evolution.

Thus one wants, first, to understand the dynamics of such a complex behav-
ior when they face particular computational problems that are normally solved
by conventional specialized algorithms and, second, one wishes to develop new
techniques that mimic the natural systems under study to catch their ability to
solve problem otherwise difficult to be solved by conventional methods.

3 Immune Algorithms

Following the track of the computer experiments performed by Nicosia et al. [7]
we focus our attention to the problem solving ability of the IS and present a new
immune algorithm. Our approach uses a simplified model of the immune system
to explore the problem solving feature. We consider only two entities: antigens
and antibodies. The antigen is the combinatorial optimization problem and the
antibody is the candidate solution. Antigen is a set of variables that models the
problem. Antibodies are modeled as binary strings of length [.



The input is the antigen problem, the population size (d) and the number of
clones for each cell (dup). The set S?*! denotes a population of d individuals of
length I, and it represents the space of feasible and unfeasible candidate solu-
tions. After a random initialization and evaluation of cell populations P(©) | the
loop iterates the cloning of all antibodies, each antibodies produce dup clones,
generating the population P°°. Next step is to mutate a random bit for each
antibody in P°° generating the population P"¥P. The mechanism of mutation
of the cell receptor is modeled by a random process with parameter [, i.e. the
length of the cell receptor. This immunological operator is important because
it modifies continuously the receptors in presence like a neural network whose
structure (the layers, the number and the nature of neurons) would change in
time. After the evaluation of P"¥? at time ¢ the algorithm selects the best d
antibodies from (PP LI PM)! (a simple elitist strategy) and creates the new
set P(+1). The output is basically the candidate solutions-clones that have
solved-recognized the antigen.

This simplistic view does not represent a strong limitation because in general
one can give whatever meaning to the bit string representing the candidate
solution and use much more complicated mutation operator than the simple
bit-flip, e.g., any map f : {0,1} — {0,1} could determine a different search
algorithm. The underlying evolutionary engine remains the same.

A pseudo-code version of the algorithm is given below.

Immune Algorithm
t:=0;
Initialize P(O) = {&q, 25, ..., x4} € S9!
Evaluate P);
while ( T( PO Y=10) do
Pelo .= Cloning (P®, dup);
P"P := Hypermutation (P°°);
Evaluate (P"?);
Pt+1):= Select the d highest affinity individual (P"¥» L P®);
t:=t+1;
od

T denotes a termination criterion, that is, the algorithm terminates if a so-
lution is found, or a maximum number of evaluations is reached.

In evolutionary computation the selection of an appropriate population size
is important and could greatly affect the effectiveness and efficiency of the opti-
mization performance. For this reason EA’s with dynamic population size achieve
better convergence rate and discover as well any gaps or missing tradeoff regions
at each generation [9].

All evolutionary algorithms need to set an optimal population size in order to
discover and distribute the nondominated individuals along the Pareto front [10].
If the population size is too small, EAs may suffer from premature convergence,

! Note that this is a multi-set union, since we want to allow an individual to appear
more than once.



while if the population size is too large, undesired computational overwork may
be incurred and the waiting time for a fitness improvement may be too long in
practice. We propose here a simple search algorithm with only two parameters
d and dup. The correct setting of these parameters allows to discover the non-
dominanted individuals without using dynamic population. We observe that the
evolutionary engine uses a process of expansion and reduction. The expansion
from population P() with | d | individuals into population P"¥? with | d x dup |
individuals is performed by cloning and hypermutation operators, the reduction
from P™P with | d x dup | into P*+Y) with | d | is performed by means of a
selection operator. The expansion phase explores the fitness landscape at a given
generation ¢, the reduction phase decides which individuals to select for the next
generation ¢ + 1.

4 NP-complete problems

To test our algorithm we chose two NP-complete problems.

4.1 The Minimum Hitting Set Problem.

An instance of the Minimum Hitting Set problem consists of a collection S of
subsets of a finite set U and a positive integer k <| U |. Question: Is there a
subset U' C U, with | U’ |< k, such that U’ contains at least one element from
each subset in S?

This problem is NP-complete. Indeed, membership to NP can be easily ob-
served, since a guessed proposed hitting set U " can be checked in polynomial
time. NP-hardness is obtained by polynomial reduction from the Vertex Cover
[11].

We work with a fitness function that allows us to allocate feasible and un-
feasible candidate solutions.

frs(x) = Cardinality(x) + (| S | —Hits(x))

The candidate solution must optimize both terms. Each population member
@ must minimize the size of set U and maximize the number of hit sets. If
(I S| —Hits(z)) =0, x is a hitting set, that is a feasible solution.

The used fitness gives equal opportunity to the evolutionary process to min-
imize both terms. For example, if we have a collection S of 50000 sets and the
following two individuals: @1, with Cardinality(x:) = 40, Hits(z) = 49997,
frs(1) = 43; 22, with Cardinality(xze) = 42, Hits(2) = 49999, frs(x1) = 43,
it is difficult to decide which individual is the best, the choice is crucial and
strongly influences the subsequent search in the landscape.

We test our IA by considering randomly generated instances of the Minimum
Hitting Set problem. Fixed | U |= 100 we construct two types of instances
with | S | equal respectively to 1000 and 10000 (denoted by “hs100-1000” and
“hs100-10000”). The third instance, | S |= 50000 (“hs-100-50000”) is a very



hard instances for the Minimum Hitting Set problem?. The best solution found
has cardinality 39 [12].

Table 1. Minimum Hitting Set Instances

hs100-1000 hs100-10000 hs100-50000
d 25 100 50 200 50 200
dup 15 30 15 15 15 10
best 6 6 9 9 39 39
#min 1 3 3 5 3 2
AES 2275 18000 6800 27200 45050 98200

Our experimental results are reported in Table 1. One can see the best hit-
ting set found by the IA for each instance, the parameter values and the average
number of evaluations to solutions (AES). For each problem instance we per-
formed 100 independent runs. We also provide the number of minimal hitting
sets found.

100000

10000 -

Fig. 1. 3D representation of experimental results, with dimensions: d, dup and AES

By inspecting the results, one can also see that increasing the values of d and
dup, the number of optimal solutions found increases as well, and in turn, the
average number of fitness evaluations. Last column shows that for hard instances,

2 All the three instances are available at
http://www.dmi.unict.it/” cutello/eracop.html



even if we increase the population size and decrease the dup, the number of found
solutions decreases.

In figure 1, we show the 3D graphic of a set of numerical simulation. To un-
derstand the algorithm’s behavior when changing the parameters, we performed
a set of experiments on a simple Hitting Set instance, “hs100-1000”, in which d
and dup are given several values.

The problem solving ability of the algorithm depends heavily upon the num-
ber of individuals we “displace”on the space S**! and on the duplication pa-
rameter dup. The population size varies from 100 to 200 while dup from 10 to
55. The Z axis shows the average number of evaluations to solutions (we allowed
Tinaz = 100000 evaluations and performed 100 independent runs). The popula-
tion d strongly influences the number of solutions found. Indeed, when increasing
d the number of nondominated solutions found increases. On the other hand,
the average number of fitness function evaluation also increases. The value of
dup influences the convergence speed.

In figure 2, we can see the fitness function values for the optimization process
in action during the first 70 generations. The minimum hitting set is obtained
at generation 60. Subsequently, other antibodies with the same cardinality are
discovered, completing the set of (found) nondominated solutions.

T T T
Clones’ average fitness —+—

10000 f§ Population’s average fitness ---»---
Best result -

1000 |

Fitness

100

10 20 30 40 50 60 70 80
Fig. 2. Fitness function versus generations. Y axis is in log scale and origin is fixed at

X-value 39.

4.2 The 3-SAT Problem.

3-SAT is a fundamental NP-complete problem in propositional logic [11]. An
instance of the 3-SAT problem consists of a set V' of variables, a collection C



of clauses over V' such that each clause ¢ € C has | ¢ |= 3. The problem is to
find a satisfying truth assignment for C. The 3-SAT, and in general K-SAT, for
K > 3, is a classic test bed for theoretical and experimental works.

The fitness function for 3-SAT is very simple, it computes only the number
of satisfied clauses

fsat(x) = F#SatisfiedClauses(C, x)

For our experiments, we used A. van Gelder’s 3-SAT problem instance gen-
erator, MKCNF.C3.

The program mkcenf.c generates a “random” constant-clause-length CNF for-
mula and can force formulas to be satisfiable. For accuracy, we perform our tests
in the transition phase, where the hardest instances of the problem are located
[13]. In this case we have | C |=4.3 |V |.

The generated instances are the following:

(i1) “sat30-129” number of variables 30, number of clauses 129 and random seed
83791 (mkcenf.c’s input parameter useful to reproduce the same formula),

(i2) “sat30-129” (83892),

(i3) “sat30-129” (83792),

(i4) “sat40-172” with | C |= 40, | V |= 172 and random seed 62222, and

(i5) “sat50-215” with random seed 82635.

Table 2. 3-SAT Instances

(i1) @(32) (@3) (4) (15)

d 50 50 50 50 75
dup 20 30 20 30 15
AES 14632 292481 11468 24276 50269

The experimental results for the above 3-SAT instances are shown in Table
2. We underline that for each instance we performed 50 independent runs.

To conclude, we note that the first three instances involve different formulae
with the same number of variables and clauses. We can observe that among dif-
ficult formulae, there are even more difficult ones (at least for our algorithm), as
the different number of evaluations proves. Such a phenomenon can be observed
also for formulae with a higher number of variables and clauses. In determining
a truth assignment AES grows proportionally to the difficulty of satisfying the
formula.

In table 3 we show the result of the last set of experiments. In this case we use
the immune algorithm with a SAW (stepwise adaptation of weights) mechanism

3 Available by anonymous ftp at
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability /contributed /UCSS/instances



Table 3. 3-SAT Instances

Case | V' | | C' | Randseed SuccessR AES SuccessR AES

1 30 129 83791 1 2708 1 6063
2 30 129 83892 0.94 22804 0.96 78985
3 30 129 83792 1 12142 1 31526
4 40 172 83792 1 9078 1 13328
5 40 172 72581 0.82 37913 1 2899
6 40 172 62222 1 37264 0.94 82031
7 50 215 87112 0.58 17342 1 28026
8 50 215 82635 1 42137 1 60160

9 50 215 81619 0.26 67217 0.32 147718
10 100 430 87654 0.32 99804 0.06 192403
11 100 430 78654 0.04 78816 0.44 136152
12 100 430 77665 0.32 97173 0.58 109091

[14]. A weight is associated with each clause, the weights of all clauses that
remains unsatisfied after T, generation are incremented (dw = 1). Solving a
constraint with a high weight gives high reward and thus the more pressure
is given on satisfying those constraints, the hardest clauses. In the table, the
parameter SuccessR represents the number of times that the formula is satisfied.
The last two columns refer to experimental results in [15] performed with an
evolutionary algorithms with SAW mechanism. The table shows that the IA
with SAW mechanism, outperforms in many cases the results in [15], both in
terms of success rate and computational performance, i.e. a lower number of
fitness evaluations.

4.3 General remark about the obtained results

Last set of experimental results shows how a simple randomized search algorithm
coupled with a mechanism for adaptive recognition of hardest constraints, is suf-
ficient to obtain optimal solutions for any combinatorial optimization problem.
Proving the above statement, is the major goal of our research. The above is, ob-
viously, consistent with the latest assumptions in Evolutionary Algorithms, that
the most important features are the fitness function and the crossover operator.

5 Related works

The clonal selection algorithm described in [16] represent a straightforward usage
of the ideas upon which the theory of the clonal selection is stated in [5]. The
clonal selection is itself a Darwinian evolution process so that similarities with
Evolution Strategies and Genetic Algorithms are natural candidates.

Our immune algorithm, instead, does not use proportional cloning and hy-
permutation inversely proportional to fitness value. We designed and use very



simple cloning and hypermutation operators. Moreover, there is neither a birth
operator to introduce diversity in the current population nor a mutation rate
(pm) to flip a bit, B cells memory, nor threshold m, to to clone the best cells in
the present population. We had simplified the immunological approach in order
to better analyze and predict the algorithm’s dynamics.

In this sense, also the approach described in [17] is similar to ours in that
the solution is found by letting a population of unbiased potential solutions
to evolve in a fitness landscape. Indeed, we are able to find similar results to
their numerical experiments. The general philosophy agreement is expressed by
using similar coding scheme, evaluation functions and the three immunological
operators, i.e. selection, cloning and mutation.

Major differences with the above mentioned paradigms are cited below.

1. We consider relevant for the searching ability:

(a) the size of the recognizing clones (the parameter dup), since it determines
the size of the fitness landscape explored at each generation,

(b) the number of individuals (d) since it determines the problem solving
capacity. This is in contrast with most of the artificial evolution methods
where a typical fixed population’s size of a thousand or less individuals
is used [1].

2. We consider only two immunological entities, antigens and antibodies, two
parameters, dup and d, and simple immune operators.

6 Conclusions

One relevant disadvantage of our IA is that the search process may stop with
a local minimum, when you are working with a small population size and a
duplication parameter not sufficiently large. Moreover, the computational work
increases proportionally to the size of these parameters. This slows down the
search process in the space of feasible solutions although it gives better chances of
finding good approximations to optimal solutions. The selection operator makes
use of elitism, which on one hand speeds up the search, but on the other hand,
may force the population to get trapped around a local minimum, reducing the
diversity.

In conclusion, our algorithm is simple, efficient and it is certainly suitable for
further studies and tests and a deep theoretical analysis.

Acknowledgments

GN gratefully acknowledge the Italian Universities Consortium Computing Cen-
ter (CINECA) and University of Catania project “Young Researcher” for partial
support.

References

1. Brooks, R.: The relationship between matter and life. Nature 409 (2001) 409-411.



10

10.

11.

12.

13.

14.

15.

16.

17.

Boettcher, S., Percus, A.: Nature’s way to optimizing. Artificial Intelligence 119
(2000) 275-286.

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: De-
terming computational complexity from characteristic ’phase transitions’. Nature
400 (1999) 133-137.

. Perelson, A. S., Weisbuch, G., Coutinho, A. Eds.: Theoretical and Experimental

Insights into Immunology. New York, NY: Springer-Verlag (1992).

Burnet, F. M.: The Clonal Selection Theory of Acquired Immunity. Cambridge,
U.K.: Cambridge Univ. Press (1959).

Forrest, S., Hofmeyr, S. A.: Immunology as Information Processing. Design Prin-
ciples for Immune System & Other Distributed Autonomous Systems. New York:
Oxford Univ. Press, SFI Studies in the Sciences of Complexity (2000).

Nicosia, G., Castiglione, F., Motta, S.: Pattern Recognition by primary and sec-
ondary response of an Artificial Immune System. Theory in Biosciences 120 (2001)
93-106.

Dasgupta, D. Ed.: Artificial Immune Systems and their Applications. Berlin, Ger-
many: Springer-Verlag (1998).

Tan, K. C., Lee, T. H., Khor, E. F.: Evolutionary Algorithms with Dynamic Pop-
ulation Size and Local Exploration for Multiobjective Optimization. IEEE Trans-
actions on Evolutionary Computation 5 (2001) 565-588.

Coello Coello, C. A.: An Updated Survey of GA-Based Multiobjective Optimiza-
tion Techniques. ACM Computing Survey 32 (2000) 109-143.

Garey, M. R., Johnson, D. S.: Computers and Intractability: a Guide to the Theory
of NP-completeness. New York: Freeman (1979).

Cutello, V., Mastriani, E., Pappalardo, F.: An Evolutionary Algorithm for the T-
constrained variation of the Minimum Hitting Set Problem. Proc. of the IEEE
World Congress on Computational Intelligence. Honolulu, HI (2002).

Mitchell, D., Selman, B., Levesque, H. J.: Hard and easy distributions of SAT
problems. Proc. of the AAAIL San Jose, CA (1992) 459-465.

Eiben, A. E.; van der Hauw J. K., van Hemert J. I.: Graph coloring with adaptive
evolutionary algorithms. J. of Heuristics 4 (1998) 25-46.

Bick, T., Eiben, A. E.; Vink, M. E.: A superior evolutionary algorithm for 3-SAT.
Proc. of the 7th Annual Conference on Evolutionary Programming. Lecture Notes
in Computer Science 1477 (1998) 125-136.

De Castro, L. N., Von Zuben, F. J.: The Clonal Selection Algorithm with Engineer-
ing Applications. Workshop Proc. of the Genetic and Evolutionary Computation
Conference (GECCO’00). Las Vegas, NV: Morgan Kaufmann (2000) 36-37.
Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-Nonself discrimination in
a computer. Proc. of the IEEE Symposium on Research in Security and Privacy.
Oakland, CA: IEEE Press (1994) 202-212.



