
Using Max-CSP techniques for software
diagnosis

R. Ceballos, R. M. Gasca, Carmelo Del Valle y Miguel Toro

Languages and Computer Systems Department, University of Seville
Computer Engineering Superior Technical School,
Avenida Reina Mercedes s/n 41012 Sevilla(Spain)

Abstract. In computing systems programming is essential to provide
efficient software diagnosis tools to help programmers to locate bugs.
Our approach takes into account the source code and pre/post asserts.
According to this specification we generate a constraints model which
constitutes a Max-CSP. The set of wrong statements in a program can
be detected with this constraints model.

1 Introduction

The software diagnosis allows us to identify the parts of the program that fail.
Most of the approaches appeared in the last decade have based the diagnosis
method on the use of models (DBM). The JADE Project investigate the di-
agnosis based on model based debugging (MBD). The papers related to this
project use a dependence model based on the source code. The model represents
the sentences and expressions as if they were components, and the variables as
if they were connections. They transform JavaTM constructs into components.
The assignments, conditions, loops, etc. have their corresponding method of
transformation. For a bigger concretion consult [9][10].

Previously to these works, it has been suggested the Slicing technique in the
software diagnosis. This technique identifies the constructs of the source code
that can influence in the value of a variable in a given point of the program
[11][12]. Dicing [8] is an extension to this technique. A dice is defined as the
set differences among two static slices for an incorrectly processed value and a
correctly processed value. In the last years, new methods [3][5] have been arisen
to automate software diagnosis process.

In this work, we present an different approach to the previous works. The
main idea is to convert the source code to constraints, it avoid the explicit
construction of the functional dependencies graph of the program variables. To
apply this methodology the following resources must be available: Source code,
precondition and postcondition. If the source code is executed in some of the
states defined by the precondition, then it is guaranteed that the source code will
finish in some of the states defined by the postcondition. Nothing is guaranteed
if the source code is executed in an initial state that breaks the precondition.

We use Max-CSP techniques to carry out the minimal diagnosis. A Con-
straint Satisfaction is a framework for modeling and solving real-problems as



2 R. Ceballos, R. M. Gasca, Carmelo Del Valle y Miguel Toro

a set of constraints among variables. A Constraint Satisfaction is defined by
a set of variables X={X1,X2...,Xn} associated with a set of discrete-valued,
D={D1,D2,...,Dn} (where every element of Di is represented by set of vi), and a
set of constraints C={C1,C2,...,Cm}. Each constraint Ci is a pair (Wi,Ri), where
Ri is a relation Ri⊆Di1x...xDik defined in a subset of variables Wi⊆X.

If we have a CSP, the Max-CSP aim is to find an assignment that satisfies the
most constraints, and minimize the number of violated constraints. The diagnosis
aim is to find what constraints are not satisfied. The solutions searched with
Max-CSP techniques is very complex. Some investigations have tried to improve
the efficiency of this problem,[4][7].

To carry out the diagnosis we must use Testing techniques to select which
observations are the most significant, and which give us more information. In
[1] appears the objectives and the complications that a good Testing implies. It
is necessary to be aware of the Testing limits. The combinations of inputs and
outputs of the programs (even of the most trivial) are too wide.

The programs that are in the scope of this paper are:

– Those which can be compiled to be debugged but they do not verify the
specification Pre/Post.

– Those which are a slight variant of the correct program, although they are
wrong.

– Those where all the appeared methods include precondition and postcondi-
tion.

This work is part of a global project that will allow us to make the object
oriented software diagnosis. This project is in evolution and there are points
which we are still investigating about.

The work is structured as follows. First we present the necessary definitions to
explain the methodology. Then we indicate the diagnosis methodology: obtaining
of the CMP and the minimal diagnosis. We will conclude indicating the results
obtained in several different examples, the conclusions and the future works in
this investigation line.

2 Notation and definitions

Definition 1. Test Case(TC): It is a tupla that assigns values to the observable
variables. We can use Testing techniques to find what TCs can report us a more
precise diagnosis. The Testing will give us values of the input parameters and
some or all the outputs that the code source generates. The inputs that the
Testing provides must satisfy the precondition, and the outputs must satisfy the
postcondition. The Testing can also provide us an output value which cannot be
guaranteed by the postcondition. If this happens, an expert must guarantee that
they are the correct values. Therefore, the values obtained by the Testing will be
the correct values, and not those that we can obtain by the source code execution.
We will use test cases obtained by white box techniques. In the example 1a (see
figure 3) a test case could be: CT≡{a=2,b=2,c=3,d=3,e=2,f=12,g=12 }



Using Max-CSP techniques for software diagnosis 3

Definicin 2. Diagnosis Unit Specification: It is a tupla that contemplates
the following elements: The Source Code (SC) that satisfy a grammar, the pre-
condition asserts (Pre) and the postcondition asserts (Post). We will apply the
proposed methodology to this diagnosis unit, using a TC, and then we will obtain
the sentence or set of sentences that are possibly bugs.

Fig. 1. Diagnosis Process

Definition 3. Observable Variables and Non Observable Variables: The set of
observable variables (Vobs) will include the input parameters and those output
variables whose correct value can be deduced by the TC. The rest of the variables
will be non observable variables (Vnobs).

Definicin 4. Program Constraints Model (CMP): It will be compound of a
constraints network C and a set of variables with a domain. The set C will
determine the behavior of the program by means of the relationships among the
variables. The set of variables set will include (Vobs) and (Vnobs). Therefore:
CMP(C,Vobs,Vnobs)

3 Diagnosis methodology

The diagnosis methodology will be a process that transforms a program into
a Max-CSP; as it appears in figure 1. The diagnosis process consists of the
following steps:

1. Obtaining the CMP:
– Determining the variables and their domains.
– Determining the CMP constraints.

2. Obtaining the minimal diagnosis:
– Determining the function to maximize.
– Max-CSP resolution.



4 R. Ceballos, R. M. Gasca, Carmelo Del Valle y Miguel Toro

3.1 Obtaining the CMP

Determining the variables and their domain: The set of variables X={X1,
X2... ,Xn} (associated to a set of discrete values or domains D={D1,D2,... ,Dn})
will be compound of Vobs and Vnobs. The domain or concrete values of each
variable will be determined by the variable declaration. The domain of every
variable will be the same as the compiler fixes for the different data types defined
in the language.

Determining the CMP constraints: The CMP constraints network will
be compound of Precondition Constraints, Postcondition Constraints and Code
Constraints. Precondition Constraints and Postcondition Constraints will be ob-
tained by the precondition asserts and postcondition asserts respectively. These
constraints must be satisfied necessarily.

In order to obtain the Code Constraints, we will divide the source code into
basic blocks, like : Sequential blocks (assignments and method calls), conditional
blocks and loop blocks.

Fig. 2. Basic Blocks

– Sequential blocks: Starting from a sequential block as the one that appears in
figure 2, we can deduce that the execution sequence will be: S1...Si...Sn. The
first step will be to rename the variables: We have to rewrite the sentences
between the precondition and the postcondition in a way that will never
allow two sentences to assign a value to the same variable. For example the
code x=a*c; ...x=x+3;... {Post:x =... } would be transformed into x1=a*c;
...x2=x1+3;... {Post:x2 =... }.
Assignments: We will transform the source code assignments into equality
constraints.



Using Max-CSP techniques for software diagnosis 5

Method Calls: Our methodology only permits the use of methods calls that
specify its precondition and postcondition. At present this specification is
viable in object oriented languages as Java 1.4. For every method call, we
will add to the CMP the constraints defined in the precondition and the
postcondition of this method. When we find a recursive method call, this in-
ternal method call are supposed to be correct to avoid cycles in the diagnosis
of recursive methods.

Our work is in development in this point and there are still points that we
are investigating. Due to it, we have to suppose that only exists functional
methods (those that cannot modify the state of the object which contains
the method declaration) and doesn’t exist methods which can return objects.

– Conditional blocks: We often will find a conditional block as it appears in
the figure 2; we can deduce that the sequence will be :
Sequence 1: {Pre }bB1{Post} (condition b is true)
Sequence 2: {Pre}¬bB2{Post} (condition b is false)
Depending on the test case, one of the two sequences will be executed. There-
fore we will treat the conditional blocks as if they were two sequential blocks
and we will choose one or another depending on the test case. Then, we
will transform it into constraints that will be part of the CMP. If we com-
pare the software diagnosis with the components diagnosis it would be as
incorporating one or another component depending on the system evolution;
something that has not been very treated in the components diagnosis the-
ory. In this point we introduces improvements to our previous work [2], this
methodology allows us to incorporate inequality constraints (in particular
those which are part of the condition in the conditional sentences).

– Loop blocks: We will find a loop block as it appears in figure 2. The sequence
will be:
Sequence 1: {Pre}{Post} (none loop is executed)
Sequence 2: {Pre}bB1{Post} (1 loop is executed)
Sequence 3: {Pre}b1B1b2B2...bnBn{Post} (2 or n loops are executed)
Depending on the test case one of the three sequences will be executed.
To reduce the model to less than n iterations, and to obtain efficiency
in the diagnosis process, we propose to add an sentence for each variable
that changes value in the loop and adds the necessary quantity (positive
or negative) to reach the value of the step n-1. The sequence 3 would be
like:{Pre}b1βBn{Post} where β will substitute B1b2B2...bn.

For every variable X that changes its value in the loop, we will add the
constraint Xn−1=X1+βx that would allow us to conserve the value of Xn in
the last step, and it would save us the n-1 previous steps. The value of βx

will be calculated debugging the source code. The constraints which add the
β values can’t be a part of the diagnosis, because they are unaware of the
original source code.



6 R. Ceballos, R. M. Gasca, Carmelo Del Valle y Miguel Toro

3.2 Obtaining the minimal diagnosis:

Determining the function to maximize: The first step will be to define
a set of variables Ri that will allow us to make a reified constraint model. A
reified constraint is of form Ci⇔Ri. It consist of a constraint Ci together with
an attached boolean variable Ri, where each variable Ri representing the truth
value of constraint Ci (0 means false, 1 means true). The operational semantics
are as follows: If Ci is entailed, then Ri=1 is inferred; if Ci is inconsistent, then
Ri=0 is inferred; if Ri=1 is entailed, then Ci is imposed; if Ri is entailed, then
¬Ci is imposed.

Our objective is that most numbers of these auxiliary variables take a true
value. This objective will imply that we have to maximize the number of satisfied
constraints. The solution search will be to maximize the sum of these variables,
therefore the function to maximize will be: Max(R1+R2+...+Rk).

Max-CSP resolution: Solving the Max-CSP we will obtain the sentences set of
sentences with smaller cardinality, that cause the postcondition non satisfaction.
To satisfy the postcondition we have to modify these sentences. To implement
this search we used ILOGTM Solver tools [6]. It would be interesting to keep in
mind the works proposed in [7] and [4] to improve efficiency in some problem
cases.

4 Examples Diagnosis

We have chosen five examples that show the grammar’s categories to cover (a
subset of the whole JavaTM language grammar). To prove the validity of this
methodology, we will make changes in the examples source code. With these
changes the solution won’t satisfy the postcondition. The diagnosis methodology
should detect these changes, and it should deduce the set of sentences that cause
the postcondition non satisfaction.

Example 1 : With this example we cover the grammar’s part that includes
the declarations and assignments. It will allow us to prove if the methodology is
able to detect the dependencies among instructions. If we change the sentence
S5 by g=y-z, we will have a new program (named Ejemplo 1a) that won’t satisfy
the postcondition. The assignments of the source code will be transformed into
equality constraint. In the example 1a the sentences S1 to S5 will be transformed
into the result that appears in table 1. As we can observe, the methodology add
5 equality constraints and the result is assigned in every case to a variable Ri

which will be stored if the constraint is satisfied or not. These variable Ri will
be necessary to carry out the search Max-CSP to obtain the minimal diagnosis.
These variables Ri will take the value 1 if the constraint is true or the value 0 if
it is false.

Using a test case TC≡{a=2,b=2,c=3,d=3,e=2,f=12,g=12}, the obtained
minimal diagnosis includes the sentence S5 that is, in fact, the sentence that



Using Max-CSP techniques for software diagnosis 7

Fig. 3. Examples

we have changed; and also the sentence S3. If we change S3, it won’t influence in
S4 but it will influence in S5 that is the sentence that we have changed, therefore
we will be able to return the correct result changing S3, and without modifying
S5. It is necessary to highlight that S5 also depends on S2, but a change in S2

could imply a bug in S4.

Examples 2 y 3 : We will use the example 2 to validate the diagnosis of re-
cursive methods. We will change the sentence S4 by p=2*p+3, with this change
we will obtain the program Example 2a. The Example 3 will allow us to val-
idate the diagnosis of non recursive methods. We will change the sentence S2

by y=object1.mult(b,c) in operate method, obtaining the program that we will
name Example 3a.

The CMP constraints of the examples 2a and 3a appear in table 1. For the
Example 3a, we show the constraints of operate method CMP. In both cases, the
method calls are substituted by the constraints obtained of the postcondition of
those methods. We should also have included the precondition constraints of
the called methods, but we have not done it to simplify table 1. The precondi-
tion constraints won’t help to restrict the domains, because this constraints are
considered in the precondition of the operate method.

The variable R3 (associated to the method call) should take the value 1 to
avoid cycles in the recursive method diagnosis (as we explain in the previous
section). In the example 2a we will use the test case CT≡{n=7,i=1,p=1 }, the
diagnosis process reports us the sentences S6 and S4; the last one is, in fact, the



8 R. Ceballos, R. M. Gasca, Carmelo Del Valle y Miguel Toro

sentence that we have changed. If we change S6 we can modify the final result
of s variable, and therefore, to satisfy the postcondition with only one change.

If we apply TC≡{a=2,b=7,c=3 } to the emphoperate method (Example 3a),
we obtain that the sentences S1,S2 and S3 are the minimal diagnosis. The bug
is exactly in S2 because we called to the method with wrong parameters b and
c instead of a and c. If we change the parameters that are used in the sentences
S1 and S3 we can neutralize the bug in S2. An interesting modification of the
Example 5 would be to change the sentence S3 by f=sum(x,x). If we apply this
change, the sentences S1 and S3 would constitute the diagnosis result. Now S2

won’t be part of the minimal diagnosis because sentence S2 doesn’t have any
influence on the method result.

Example 4 : This example covers the conditional sentences. We have changed
the sentence S4 by x=2*x+3, and we will obtain the example 4a). If the inputs
are a=6 and b=2, we can deduce that x>y; therefore S4 will be executed. The
result of the transformation of conditional sentence would be the constraint x>y
and the transformation of sentence S4 (in this occasion it is an assignment). We
can see the result in table 1.

If we apply CT≡{a=7,b=2} to the example 4a we obtain the sentences S1

and S4 as a minimal diagnosis; this last one is in fact the sentence that we
have changed. If we change S1, we can modify the final result of x variable and,
consequently, we will satisfy the postcondition. Therefore, it is another solution
that would only imply one change in the source code.

Example 5 : We use this example to loop diagnosis. We will change the sentence
S7 by s=2*s+p and we will obtain the program example 5a). In this example
the variables i, p and s change their values inside the loop. If i0 is the value of
i before the loop and in−1 is the value of i in the step n-1, let’s name βi to the
difference between in−1 and i0. Then the instruction in−1=i0+βi (which will be
before the loop) would allow us to conserve the dependence of the value in with
previous values, and it would save us the n-1 previous steps. The constraints
which add the values β should not be part of the minimal diagnosis since they
are unaware of the original source code. Therefore, the variables R4,R5 and R6

must take the value 1 (as appears in table 1), this will avoid that they would be
a part of the minimal diagnosis.

With CT≡{n=5,βi=4,βp=15,βs=30 } we will obtain the sentence S9 as min-
imal diagnosis. S9 is exactly the sentence that we had already changed. The
minimal diagnosis doesn’t offer us S11 as minimal diagnosis because p takes a
correct value (validated by the postcondition), although the value of s variable
depends on the value of p variable. The problem is only in the s value, which
doesn’t satisfy the postcondition.



Using Max-CSP techniques for software diagnosis 9

Table 1. CMP Examples

Example 1a CMP

Precondition Postcondition Code Observable Non observable
Constraints Constraints Constraints Variables Variables

a>0 f==a*b+b*d R1==(x==a*c) a,b,c,d,e x,y,z
b>0 g==b*d+c*e R2==(y==b*d) f,g
c>0 R3==(z==c*e)
d>0 R4==(f==x+y)

R5==(g==y-z )

Example 2a CMP

Precondition Postcondition Code Observable Non observable
Constraints Constraints Constraints Variables Variables

i>=0 s1==1+ R1==(i0<=n0) n,i0,p0, s1

p>0
∑

φ:i0≤φ≤n:2φ R2==(p1==2*p0+3 ) p1,s0
R3==(s0==1+∑
φ:(i0+1)≤φ≤n:2φ)

R3==1
R4==(s1==s0+p1)

Example 3a CMP

Precondition Postcondition Code Observable Non observable
Constraints Constraints Constraints Variables Variables

a>0 f==a*b+a*c R1==(x==a*b) a,b,c, x,y
b>0 R2==(y==b*c) f
c>0 R3==(f==x+y)

Example 4a CMP

Precondition Postcondition Code Observable Non observable
Constraints Constraints Constraints Variables Variables

a>0 (a+b>2*b+3 ∧ R1==(x0==a+b) a,b,x2 x0,x1,y0
b>0 x2=2a+2b) ∨ R2==(y0==2*b+3)

(a+b<=2*b+3 ∧ R3==(x0>y0)
x2=3a+3*b) R4==(x2==2*x1+3 )

Example 5a CMP

Precondition Postcondition Code Observable Non observable
Constraints Constraints Constraints Variables Variables

n>0 s2 =
∑

φ:0≤φ≤n:2φ R1==(i0==0) n,s2,p2, s0,s1,p0,
p2=2n R2==(p0==1) βi,βp,βs, p1,i0,i1,

R3==(s0==1) i2
R4==(i1==i0+ βi)

R5==(p1==p0+ βp)
R6==(s1==s0+ βs)
R4==R5==R6==1
R7==(i2==i1+1)
R8==(p2==2*p1)

R9==(s2==2*s1+p2 )



10 R. Ceballos, R. M. Gasca, Carmelo Del Valle y Miguel Toro

5 Conclusions and future works

In this work we has applied the Max-CSP techniques to diagnose the software
behavior. The explicit construction of the functional dependencies graph (pro-
posed in other methodologies) has been avoided. We used only one CT to carry
out the diagnosis, but we think that the use of a greater number of CTs will
improve our methodology to obtain software diagnosis. The investigation will
continue in that line, looking for the way to incorporate the result of several
CTs to the diagnosis process of a same program. This will give us a more exact
diagnosis. The final objective of our investigation is to extend the methodology
to the complete grammar of a object oriented language.

References

1. Robert V. Binder.: Testing Object-Oriented Systems : Models, Patterms, and
Tools. Addison Wesley.

2. R. Ceballos, R. M. Gasca, Carmelo Del Valle y Miguel Toro: Diagnosis basada en
modelos para la depuracin de software mediante tcnicas simblicas. IV Jornadas de
ARCA, Sistemas Cualitativos y Diagnosis, Vilanova i la Geltr, Spain, June 2002.

3. Khalil, M.: Automated strategies for software diagnosis. The Ninth International
Sympsosium on Software Reliability Engineering, Paderborn, Germany, Nov. 1998.

4. K. Kask.: New Search Heuristics for Max-CSP In Proceeding of CP’2000, pg. 262–
277, 2000.

5. Khalil, M.: An Experimental Comparason of Software Diagnosis Methods. 25th

Euromicro Conference 1999.
6. ILOG: ILOG Solver 4.4 User’s Manual. ILOG 1999.
7. J. Larrossa and P. Meseguer.: Partition-based lower bound for max-csp. Proceed-

ings CP, pages 303–315, 1999.
8. Lyle J. R. and Weiser, M.: Automatic bug location by program slicing. Second

International Conference on Computers and Applications, Beijing, China, pag.
877-883,June 1987.

9. Cristinel Mateis, Markus Stumptner, Dominik Wieland and Franz Wotawa.: De-
bugging of Java programs using a model-based approach. DX-99 Work-Shop,Loch
Awe, Scotland (1999).

10. Cristinel Mateis, Markus Stumptner, Dominik Wieland and Franz Wotawa.: Ex-
tended Abstract - Model-Based Debugging of Java Programs. AADEBUG, August
2000,Munich.

11. Weiser, M.: Programmers Use Slices When Debugging. Communications of the
ACM, Vol. 25, No. 7, pp.446-452,1982.

12. Weiser, M.: Program Slicing. IEEE Transactions on Software Engineering SE-10,
4, pp. 352-357, 1984


