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Abstract. In this work we have made use of a new type of network with non 
linear synapses, Gaussian Synapse Networks, for the segmentation of 
hyperspectral images. These structures were trained using the GSBP algorithm 
and present two main advantages with respect to other, more traditional, 
approaches. On one hand, through the intrinsic filtering ability of the synapses, 
they permit concentrating on what is relevant in the spectra and automatically 
discard what is not. On the other, the networks are structurally adapted to the 
problem as superfluous synapses and/or nodes are implicitly eliminated by the 
training procedure. 

 
1 Introduction 
 

Remote land observation has been going on for decades. Until recently, most 
of these observations were carried out through multispectral imagery. Due to limited 
number of bands of these images, that is, their low spectral resolution, similar land 
covers could not be differentiated, thus reducing their applicability. To overcome 
these limitations, imaging spectrometry was developed to acquire images with high 
spectral resolution. This type of spectrometry is usually called hyperspectral imaging. 
Hyperspectral images can be defined as those that cover the 400-2500 nm (near 
infrared to visible) wavelength band with a number of samples between 50 and 250. 
This corresponds to a sampling of wavelengths in the order of 0.01 micrometers, 
which is adequate to describe the spectral variability of most surfaces in this 
wavelength range. This type of technology is relatively new, but we can find a 
number of commercially available hyperspectral sensors. Staenz [1] lists 14 current 
instruments with more than 100 spectral bands in this wavelength range. These 
sensors are mounted on specially prepared airplanes and, depending of the conditions 
of flight, a hyperspectral pixel can correspond to an area between 15 and 300 square 
meters, approximately. 

The main advantage of hyperspectral imaging with respect to classical 
remote sensing is the large amount of information it provides. Unfortunately, like in 
all remote sensing techniques, it still presents the problem of removing the effects 
induced by whatever is present between the target and the sensor, that is, the 
atmosphere.  

The influence of the atmosphere may be divided into two groups of effects: 
Those that are spatially and temporally constant and those that are not. In the first 
category we can include the absorption and scattering by CO2, N2, CH4 and O2 (well 
mixed in the atmosphere), and in the second, those elements that could vary in certain 



circumstances (like water vapor, ozone and aerosols –dust, water droplets and haze-). 
To eliminate such influences, it is necessary to make a transformation of the measured 
radiances into reflectances [2]. There are two possible ways to obtain such a 
transformation: by radiative transfer models or using ground truth. The use of 
radiative transfer models is not satisfactory in most cases as the necessary information 
on atmospheric conditions is seldom available, consequently the reflectance accuracy 
is limited by the simulation of the atmosphere which turns out to be a hard and 
resource consuming task due to the combined effects enumerated earlier. As an 
example of this problem, Goetz [3] assumes that surface reflectance varies linearly 
with wavelength in the spectral range from approximately 1.0 micrometers to 1.3 
micrometers. They develop an estimate of surface reflectance and atmospheric water 
vapor using reflectance data at high spectral resolution (of the order of 10 nm). If we 
look into their discussion on the physics underlying this problem and the motivation 
for addressing it, we can see how complex it becomes. Therefore the procedure used 
(regression by linear least squares) was very time consuming. Gao and Goetz [3] state 
that retrievals of water vapor for 20,000 spectra from the Advanced Visible Infrared 
Imaging Spectrometer (AVIRIS) [4] require 200 minutes of processing on their 
computers.  

The ground truth approach measures the reflectance at selected ground 
control points at the time of the remotely sensed image. Alternatively it can provide in 
situ classifications of some targets instead of measuring their reflectances [5]. This 
last approach has been used in this study.  

From the data processing viewpoint and although theoretically the use of 
hyperspectral images should increase our abilities to identify various materials, the 
classification methods used for multispectral images are not adequate and the results 
are not as good as desired. This is because most methods used are statistically based 
on decision rules determined by training samples. As the number of dimensions in the 
feature space increases, the number of training samples needed for image 
classification also increases. If the number of training samples is insufficient as is 
usually the case in hyperspectral imaging, statistical parameter estimation becomes 
inaccurate.  

Different authors have proposed methods to improve the classification 
results. One line of research is based on statistical theory to extract important features 
from the original hyperspectral data prior to the classification. In this case, the 
objective is to remove the redundant information without sacrificing significant 
information. A group of these methods are compared using classification performance 
in [6]. They are principal component analysis [7], discriminant analysis feature 
extraction [8], and decision boundary feature extraction [9]. The basic idea is not new, 
if we concentrate only on what is relevant, the classification is a lot easier. This is the 
approach we have followed in this paper, but instead of designing a statistical method 
to do it, we propose an Artificial Neural Network architecture and training algorithm 
that implement a procedure to concentrate on what is relevant and ignore what is not 
in an automatic manner straight from the training set. In addition, this structure has 
proven to be very effective in discriminating different categories within hyperspectral 
images without any atmospheric correction. The only preprocessing the image 
underwent was to remove the offset through a subtraction of the average pixel value. 
In the following sections, we will describe the network, provide a brief overview of 



its training procedure and we will test its classification abilities using one of the 
benchmark hyperspectral processing images, the Indian Pines image obtained by 
AVIRIS. This spectrometer is flown on a high altitude aircraft and it acquires image 
data in 224 spectral bands over the spectral range 0.4 to 2.5 micrometers, at 
approximately 0.01 micrometers resolution, for each of 614 samples (pixels) per 
image line. 

  
2 Structure of the Network and GSBP 
 

The architecture employed in this type of networks is very similar to the classical 
Multiple Layer Perceptron. In fact, the activation functions of the nodes are simple 
sigmoids. The only difference is that each synaptic connection implements a gaussian 
function determined by three parameters: its center, its amplitude and its variance: 

 
 
To train this structure we have developed an extension of the backpropagation 

algorithm, called Gaussian Synapse Backpropagation (GSBP) [10]. In what follows 
we will provide a brief overview of it. 

First, as in any other backpropagation algorithm, we must determine what the 
outputs of the different layers are. We must also define the error with respect to the 
target values we desire and backpropagate it to the parameters determining the 
synaptic connections, in this case the three parameters that correspond to the gaussian 
function. In order to do this, we must obtain the gradients of the error with respect to 
each one of the parameters for each synapse. Consequently, if we define the error as 
the classical sum of the squares of the differences between what we desire and what 
we obtain: 

 
 

And as the outputs of the neurons in the hidden and output layers are: 
 

Output: 
 
Hidden: 
 
 

If we now calculate the gradients of the error with respect to each one of the 
parameters of the gaussians in each layer we obtain the following equations that will 
be used for the modification of the gaussian corresponding to each synapses every 
iteration. In the ouput layer the gradient of the error with respect to Ajk is: 
 
 
 
In the case of  Bjk, and Cjk we obtain: 
 
 
 
 

e ChBOFTOh
A
E

jkjjkNetkkkj
jk

tot 2)()´()( −−=
∂
∂

e ChBChAOFTOh
B
E

jkjjkjkjjkNetkkkj
jk

tot 22 )()()(́)( −−−=
∂
∂

e ChBChOFTOBAh
C
E

jkjjkjkjNetkkkjkjkj
jk

tot 2)())(´()(2 −−−−=
∂
∂

( )





=








= ∑ − OeAhO Net

FChBF
k

jkjjk

j
jkjk

2

( )





=








= ∑ − heAIh NetFCIBF

j

ijiij

i
ijij

2

( ) ( )e CxBAxg
2

* −=

( )∑ −=
k

kktot OTE
2

2
1



 
 
 
For the hidden layer we have: 
 
 
 
 
and the variation of the error with respect to Aij, Bij and Cij is: 
 
 
 
 
 
 

 
 
 

3 Segmentation system 
 

The segmentation system we have constructed is presented in figure 1. It consists 
of a set of Gaussian synapse based networks working in parallel over the spectral 
dimension of each pixel of the image. These detectors produce a detection probability 
surface associated with the category they have been trained for. Obviously, a pixel 
may be assigned a detection probability by two or more detectors. This may be due to 
several causes: non discriminant training sets, very similar spectra, mixtures of 
categories within the same pixel (take into account that depending on the altitude of 
the flight and the spatial resolution of the instrument a pixel may represent very large 
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Fig. 1: Structure of the detector based segmentation system. The spectral cube is scanned 
in the x-y dimension and each spectrum is processed by the different detectors in parallel. 
The decision module constructs the final detection image. 
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areas areas), noise, etc. Thus, after going through the detectors, each pixel is 
characterized by a detection probability vector and the way this detection vector is 
used will depend on the application. Consequently, to decide on the final label 
assigned to the pixel, all the detectors send their information to a final decision 
module. The final decision will be made depending on the desires of the user. For 
instance, the decision module may be trained to choose the most likely category for 
the pixel or to assign combinations of detections to new categories so that the final 
image indicates where there is doubt or even prioritize some types of detections when 
searching for particular objectives such as minerals.   
 
4 Experimental Results 
 

The spectra used for this work correspond to the Indian Pines 1992 image 
obtained by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) developed 
by NASA JPL which has 224 contiguous spectral channels covering a spectral region 
form 0.4 to 2.5 µm in 10 nm steps. It is a 145 by 145 pixel image with 220 spectral 
bands that contains a distribution of two-thirds of agricultural land and one-third of 
forest and other elements (two highways, a rail line and some houses and smaller 
roads). The ground truth available for this image [11] designates 16 not mutually 
exclusive classes. This scene has been studied by Tadjudin and Landgrebe [8][12], 
and also by Gualtieri et al. [13]. 

Instead of the atmospheric correction model used by these authors, we have 
started with a very simple preprocessing stage consisting in subtracting the average of 
the pixels in the whole image in order to eliminate offsets. The final spectra for each 
pixel are quite complex and misleading. As shown in figure 2 spectra corresponding 
to the same category may be much different than spectra from different categories. 
Consequently, the use of systems that incorporate the ability to obtain non linear 
divisions of the input space is needed. This is the context in which the Gaussian 
synapse networks have been used. 

We have built seven networks for detecting categories in the Indian Pines image. 
The detectors were trained for: Soybean, Corn, Grass-Pasture, Grass-Trees, Hay-
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Fig. 2: In the left, two similar spectra corresponding to different categories. Right, two 
different spectra corresponding to the same category vs. a spectrum from a different 
category. 



windrowed, Wheat and Woods. We group the different types of soybean and corn that 
were present in original image because the only difference between the types is the 
amount of weeds. We don’t use more categories because there were insufficient 
number of pixels to train a network. 

The training set used for all the detectors contained different numbers of pixels 
corresponding to the different categories (Soybean, 220; Corn, 350; GP, 220; GT, 
292; HW, 320; Wheat , 130; Woods, 450). These training points were extracted from 
certain regions of the image, but the tests were carried out over the whole image in 
order to prove the generalization capabilities of the networks. In fact only less than 
1% of the points of the image were used as training pixels.   

The networks initially consist of 220 inputs, corresponding to the different 
spectral bands of AVIRIS. Due to the non-physical character of the pre-processing 
stage, unlike many other authors that manually reduce the number of spectral bands to 
facilitate the detector’s work, we have decided to use the whole spectrum and let the 
network decide what is relevant. There are two hidden layers, with 18 nodes each, and 

Fig. 3: Information provided by three of the detectors over the whole image. Top 
left: Grass pasture. Top Right: Soybean. Bottom left: Wheat. Bottom right: 
Ground truth. 



one output layer corresponding to the presence or absence of the category. The 
training process consisted of 50 epochs in every case, with the same values for the 
training coefficients: 0.5 for amplitude training, 2 for variance training, and 0.5 for 
center training.  

In figure 3 and for the purpose of providing an idea of the operation of the 
individual networks, we present the outputs of three of the detectors after scanning the 
hyperspectral image. The detectors correspond to the categories of grass pasture, 
soybean and wheat. There are pixels that are detected to different degrees by more 
than one of the detectors and in figure 4 we present the results after going through the 
final decision module. In this case, the figure corresponds to a maximum likelihood 
decision, which does not take into account any neighbourhood information. We also 
provide the ground-truth image in the NASA-JPL set for Indian Pines.  

Several considerations may be made about these results. First of all, we must 
indicate that the ground truth provided had enormous areas without any labels. In the 
original ground truth image this areas were called background. The labelling provided 
by our system for these areas was very good and consistent with the indications found 
by other authors [8][13]. In addition, the ground truth is not detailed in the sense that 
there are elements within the labelled zones that were not indicated, such as roads, 
pathways, trees within other types of areas, etc. The system consistently detects these 
features. The network performs a very good classification of the whole image 
including all of the image regions that were no used in training at all. The only 
problem in the classification is the double label obtained in corn and soybean regions, 
where both detectors indicate the presence of their species. This is because the image 
was taken when the plants were only three or four weeks old and only occupied 5% of 
the areas labelled as soybean and corn. Corn and Soybean plants at this age are very 
similar from a spectroscopic point of view. Grass and wheat also present a similar 
problem and a double label is also obtained in some regions. 
 

Fig. 4: From right to left. Color code of the categories, ground truth obtained in the 
literature for this categories and result of our networks with a final  maximum 
likelihood decision module  in segmenting the image 



5 Conclusions 
 

In this paper we have considered the application of Artificial Neural Networks 
with High-Order Gaussian Synapses and a new algorithm for training them, Gaussian 
Synapses Backpropagation (GSBP), to the segmentation of hyperspectral images. The 
structure of the segmentation system implies the use of Gaussian Synapse based 
networks as detectors act in parallel over the hyperspectral images providing each 
providing a probability of the presence of its category in each pixel. The inclusion of 
gaussian functions in the synapses of the networks allows them to select the 
appropriate information and filter out all that is irrelevant. The networks that result for 
each detector are much smaller than if other network paradigms were used and require 
a very small training set due to their great generalization capabilities. The final 
segmentation is made by a decision module that is trained depending on the type of 
segmentation desired. In the case of hyperspectral images and using a maximum 
likelihood decision modeule, the segmentation performed is quite good taking into 
account that no atmospheric modeling has been performed and, consequently, we are 
basically segmenting the image straight from the sensor. This makes the procedure 
very adequate for reducing the amount of processing required for this type of sensing 
strategies. 
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