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Abstract. This paper deals with the problem of selecting and scheduling a set of 
orders to be processed by a manufacturing plant and immediately delivered to the 
customer site. Constraints to be considered are the limited production capacity, the 
available number of vehicles and the time windows within which orders must be 
served. We describe the problem relating it to similar problems studied in the lit-
erature. A genetic algorithm to solve the problem is developed and tested empiri-
cally with randomly generated problems. Comparisons with an exact procedure 
and a tabu search procedure show that the method finds very good-quality solu-
tions. 

1   Introduction 

This paper addresses the problem of scheduling a given set of orders by a homoge-
neous vehicle fleet and under the assumption that orders require be manufactured 
immediately before be delivered to the customer site. Hence, each order requires 
manufacturing material in a production plant and delivering it to a predetermined 
location during a time window. 

This problem arises frequently in environments where the distribution stage is 
connected to the production stage because of the absence of end product inventory. 
These environments usually involve products with perishable character. For instance, 
we could mention the ready-mix concrete manufacturing. In this process, materials 
that compose concrete mix are directly loaded and mixed-up in the drum mounted on 
the vehicle, and this one is immediately delivers to the customer site, due to it has 
not got an excessive margin of time available before solidification concrete. Similar 
situations occur in some fast-food delivery services. 

We assume that all requests are known in advance. For the manufacturing of or-
ders we have a single plant with limited production capacity. We consider production 
capacity as the number of orders can be prepared simultaneously, i.e. the production 
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order is considered as a continuous process that requires one unit of capacity during 
its processing time.  

In the distribution stage of an order three consecutive phases are considered: or-
der delivery, order unload and vehicle return trip. Each vehicle may deliver any or-
der, but no more than one order at a time. It is also assumed that the order size is 
smaller than the vehicle capacity. Hence, the distribution stage of an order can be 
considered as a single process, which is performed without interruption, and that 
commences immediately after the end of the production stage. Moreover, as all of 
the processing times (production and distribution times) are known with certainty, 
each time window can be translated to a start time interval (Fig. 1). 
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Fig 1. Order activity 

In order to consider the relevance of the perishable character of this kind of prod-
uct, an ideal due date ei is assumed within time windows. We also can translate each 
due date to a start due date si within the start time window [ai,bi]. In Fig.1 are repre-
sented all order data. Thus, tpi denotes production time and tdi distribution time (as 
sum of delivery time tii, unload time tui and return trip time  tri).  

As in the problem we have performed a situation in which the plant have a limited 
production capacity C and there exist a finite number of vehicles V, it may happen 
that it is not feasible to satisfy all requests within their time windows. Hence and due 
to orders must be serve during their time windows, we will consider as objective 
function to maximize the value of orders that are selected to be served, assuming 
that when an order is not served at its ideal due date, a decrease of the order original 
value, proportional to the variation, is due. Let Wi be the profit associated to serve 
order i at instant ei and let us use wi

- and wi
+ to denote the earliness and tardiness 

corrective indexes which are used to decrease the profit or value when order i is 
served prior to or after si, respectively. Thus, when an order is served at instant si+r , 
the profit of order i becomes Wi - (r-si)wi

+. 
Table 1 shows a example problem. Orders are all represented in Fig. 2, shading 

that ones that have been selected in the optimal solution, considering production 
capacity C=1 and number of vehicles V=1. 

Table 1. Example problem.  

 tpi tdi si ai bi Wi wi
- wi

+ 
Order 1 2 6 3 2 3 12 1 1 
Order 2 2 11 4 3 4 20 1 1 
Order 3 2 6 4 3 5 10 1 1 
Order 4 3 6 13 12 14 13 2 1 
Order 5 1 5 15 14 16 10 1 1 



Optimal solution was found by means of processing of order 1, 3, 4 and 6. Order 
3 had to be delayed and Job 4 anticipated one time period on its ideal due date. The 
maximal profit obtained was 42. 
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Fig 2. Order activity 

The paper is organized as follows. In section 2 a review of related scheduling 
problems is presented. Section 3 proposes a genetic algorithm for solving the prob-
lem. Computational results are showed in Section 4. Finally, the conclusions of the 
study are drawn. 

2   Literature Review 

In terms of job scheduling theory, a production and delivery scheduling problem 
with time windows (PDSPTW) involves a two-station flow shop with parallel ma-
chines, no wait in process and a different due date for each job. The first station 
would be the production plant, which is composed of a number of identical machines 
equal to the plant capacity. The second station is composed of a number of identical 
machines equal to the number of vehicles. Each job would correspond with the 
production and distribution of each order.  

The flow shop with multiple processors (FSMP), also called flexible flow lines 
scheduling, involves sequencing of a set of jobs in a set of processing stations. All 
jobs must be processed on each station in the same order. At each station, a job can 
be processed on any machine. A no-wait scheduling problem occurs in industrial 
environments in which a product must be processed from start to finish, without any 
interruption between the stages that compose its performance. FSMP with no-wait in 
process has been studied by several authors (see [1] and [2]). Both in FSMP and 
FSMP with no-wait in process, researchers consider objectives of satisfying meas-
ures of performance that involve the processing of all jobs. It is assumed that any job 
can be processed at any time, that is, jobs have a infinite start time window. In most 
of the cases, the objective is to minimize the makespan. When due dates and weights 
for jobs are considered, objectives are to minimize the weighted tardiness or similar 
measures of performance. As a different case, in [3] is studied a problem with two 
stages and no-wait in process whose objective is to maximize the set of jobs to be 
processed. Nevertheless, due dates are not considered for the jobs but a finite 
scheduling time.  

Instead, in this paper we present a scheduling problem where the objective is to 
find a subset of jobs with maximum total value that can be completed within their 



time windows. What makes the problem different from other scheduling problems is 
that the orders served must satisfy time requirements imposed by customers. Sched-
uling problems that focus on the problem of finding a subset of jobs with maximum 
total value assuming due dates are the fixed job scheduling problem (FSP) [4] and the 
variable job scheduling problem (VSP) [5] and [6]. However, these problems con-
sider a single stage for the processing of jobs, so these cases would correspond to a 
particular case of PDSPTW where the production capacity was unlimited or we had a 
number unlimited of vehicles. 

3   GA for solving PDSPTW  

Genetic algorithms [7] are search and optimisation algorithms based on the Dar-
winian theory of evolution. Essentially, a GA is an iterative procedure that maintains 
a population of a few individuals that represent problem solutions. An initial popula-
tion is generated at random or heuristically. During each iteration, the individuals are 
evaluated and given a fitness value. From each iteration to the next, a new population, 
with the same size, is generated by evolutionary operations such as selection, cross-
over and mutation. In the following, we will describe the representation and opera-
tions employed in our GA. 

3.1 Individual Representation: Genotype and Phenotype  

An important concept is the strict separation of problem constraints and evolution-
ary method. Such separation results in two completely different views of an individ-
ual. On the one hand, there exist the phenotype representation for the problem in 
order to evaluate the individual by fitness function. On the other hand, the genotypic 
representation is one that genetic algorithms see, that is, an encoded representation 
over which the evolutionary operators are applied.  
A string will be used to represent the genotype of an individual. The length of the 
string corresponds with the number of jobs. Each string position, also denoted as 
gene, corresponds to one job, and contains the time period in which the job should 
start. This time period is defined with respect to ideal start due date of the job. Fig-
ure 3 shows the genotype representation of an individual for a problem with 6 jobs. 
For that individual, job 2 should start at instant si-1, job 3 at instant si+1 and the rest 
of jobs on their ideal start due dates. 

 
0 -1 1 0 0 0 

Fig 3. Genotype representation 

Let ri the start value of order i in a individual. The profit wi of each order can be 
calculated as follow: wi = {Wi + riwi

- if ri<0 or Wi - riwi
+ if ri?0}  

  



We have not guarantee that all the orders can be served using those start instants, 
therefore, a subset of orders that maximize the total profit is to be searched. This 
situation represents a production and delivered scheduling problem with fixed start 
due date [8]. In that problem is also hard to find optimal solutions as the number of 
jobs increases, so we concentrate on a fast heuristic that yield satisfactory (and not 
necessarily optimal) solutions. The heuristic exploits the observation that PDP can 
be modelled as a minimum cost flow problem if the production capacity is enough to 
process all the orders at he production stage. Hence, in our algorithm the restric-
tions associated with not preparing simultaneously a number of orders greater that 
the production capacity are relaxed.  

The construction of the underlying direct graph G used to solve this PDP can be 
described as follow: Each job i is represented in G by two nodes, l i and fi that corre-
spond with start time period and end time period of the distribution stage. There also 
is a arc associated with each job, from the node corresponding to sj to the node cor-
responding to fj. This arc has an upper capacity of one on the amount of flow that can 
be transported, and associated costs of –wi. Furthermore, there is an arc from every 
node fi to every node sj as long as sj ?  fi with zero costs and capacity equals one. 
Moreover, and start node s is connected to all the nodes si and all nodes fi are con-
nected to a end node e with zero cost arcs and capacity equ 

 . A feasible schedule for a subset of jobs of maximum total value corresponds to 
a minimum cost flow of V (number of vehicles) units of flow from node s to node t 
in the graph G. A order i is carried out if and only if in the solution to the minimum 
cost flow problem one unit of flow passes through the arc (li,fi). Fig. 4 shows the 
graph G corresponding to genotype showed in Fig. 3 and referred to the problem 
represented in Table 1 for a number of vehicles V=2. 

 
 

 

 

 

 

Fig 4. Graph G corresponding to genotype of Fig 3. 

The thick lines in G denote the minimum cost flow path. Orders to be served are 
1, 2, 4 and 5. 

Once a solution is obtained for G, production process feasibility of the orders 
selected is checked. For this task, we make use of Kroon’s lemma on the Fixed Job 
Scheduling Problem (FSP) [4], to give a necessary and sufficient condition for the 
existence of a feasible schedule for all orders selected: 
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Let Os be the set of orders selected. A feasible schedule including all orders be-
long to Os exist if and only if the maximum order overlap of Os in plant is less than 
or equal to the plant capacity C.  

Suppose orders are to be processed in the time-interval [0,T], the maximum order 
overlap is defined as follows:  L = max {Lt: 0?  t ?  T} with Lt  = {i? Os:si ?  t ?  li-1} 
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Fig 5. Production stage for orders selected in graph G of Fig. 4 

In Fig. 5 the bars indicate the production time (tpi) of the orders selected previ-
ously. For this case L equals 3. It is clear that if and only if C?2 can all orders be 
processed in the plant. 

If the maximum order overlap of Os exceeds C, then the solution provided for the 
minimum cost flow problem is not feasible. In this case, the heuristic will try to find 
a subset of orders with maximum total profit that can be processed with capacity C. 
This problem becomes equivalent to the Maximum Fixed Job Scheduling Problem 
(Max. FSP). This problem has been considered by a number of authors including 
Arkin and Silverberg [9], Kroon, Salomon and Van Wassenhove [4] and Gabrel [6], 
who show that it can be solved by a minimum cost flow algorithm.  

The construction of the graph G’ that we use in this paper is more direct than the 
constructions proposed for those authors, and can be described as follows. The set 
R= {rp: p = 1, …, P} is used to represent all starting times of the jobs belong to Ok 
in chronological order. That is, R= {s i: i? Os} and rp-1<rp. The set of nodes of the 
graph is in one-to-one correspondence with the set R plus a finish node. There is an 
arc from each node to the following with zero costs and unlimited capacity. Fur-
thermore, there are arcs from each node to the node corresponding to the first order 
which could be produced by the plant once it has finished the production of the order 
origin of the arc. These arcs can carry only one unit of flow and have a cost equal to 
–wi. At the leftmost node, C units of flow are injected which must reach the finish 
node. As an example, Fig. 6 shows the graph corresponding to the data of Fig. 5 for a 
production capacity of one.  

 

 

 

Fig 6. Graph associated to the example of Fig. 5 

Once the optimal solution to this minimum cost flow problem is obtained, let set 
E denote the set of orders belonging to Os that have not been selected (E={1} for the 
example). For each order j? E, we modify the graph G, constructed initially, in order 
to forbid that order j can be processed. To this end, we just need to assign capacity 
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zero to the arc that joins lj with fj. With this new graph G, all the process described 
above is repeated again until a feasible solution is found. 

3.2 Population reproduction and Selection 

Two techniques of population reproduction are currently used in the field of ge-
netic algorithms: generational and steady-state. Briefly, generational reproduction 
replaces the entire population at each iteration, while steady-state reproduction re-
places only a few members at a time. 

In our algorithm we have used the steady-state technique, replacing one individual 
at each iteration. Therefore, at each iteration a new individual is generated using the 
operators described below. At each iteration an operator will be selected to generate 
an new individual. For this selection each operator will have a probability of being 
chosen.  

To select the member to be deleted, we use an approach based on the exponential 
ranking [10] of the individuals within the population. Exponential ranking assigns a 
chance of being deleted equals to p to the worst individual (worst fitness). If it is not 
selected, then the next to the last also has a p chance, and so on.  

3.3 Crossover and mutation operators 

Crossover is the most important recombination operator for generating new indi-
viduals, i.e., new search points. It takes two individuals called parents and produces a 
new individual called the offspring or child by swapping parts of the parents. We 
have used the following procedure to get the child: There are two randomly selected 
parents p1 and p2. The child is built with next rule: Let p1(i) be gene i in p1. For 
each i from 1 to n, if  p1(i) = p2(i) then  child(i) = p1(i), else child(i) is a random 
value in the interval [p1(i), p2(i)]. 

In Fig. 7 we can see an example of crossover operator. 
 

p1 2 -1 0 1 0 
p2 1 -1 1 -1 0 

Child Rnd[1,2] -1 Rnd[0,1] Rnd[-1,1] 0 

Fig 7. Crossover operator  

We also employ a standard mutation operator that randomly selects a individual to 
modify and then randomly choose a new value for one of its positions. This operator 
helps the GA to maintain diversity in the population to avoid premature convergence. 



4   Computational results  

The first stage in our computational experience involved the construction of a set of 
problems. Afterwards, we will compare GA results with previous results obtained on 
the same problems both a exact method and a tabu search approach. 

4.1   Generation of problems 

To construct a set of instance we used as main parameters the average order overlap 
(number of orders that may be processed simultaneously) in the production stage 
(PSO) and distribution stage (DSO). Thus, values considered for PSO and DSO were 
within the intervals (1.50, 1.60) and (5,6) respectively.  
Problem sizes used were n = 20, 25, 30 and 40 orders. Ten instances were generated 
for each problem size. Time windows [ai,bi] for every problem were generated ran-
domly with sizes between 1 and 5 time periods. The time horizon of the problems 
has been considered dependent on the number of orders in the problem according to 
the following intervals: [1,55] (20 orders); [1,65] (25 orders) ; [1,75] (30 orders); 
[1,95] (40 orders). Order values wi were randomly generated randomly within the 
interval [10,100] and penalties both for earliness wi

- and tardiness wi
+ were randomly 

selected within the interval [0,2]. To allow for different levels with regard to capac-
ity C and number of vehicles V, the pairs of values (C,V) = (1,2), (2,2) and (2,3) were 
considered for each problem. 

4.2   Exact method and tabu search approach 

To test the performance of the algorithm, we initially solved the same set of prob-
lems using a graph-based exact procedure and a tabu search approach [11]. The exact 
procedure builds a graph G that collects all feasible solutions to the problem by 
means of a simple evaluation method of feasible states in the scheduling of orders. 
The maximal weighted path from start node to end node in G is the optimal solution 
to the problem.  

The tabu search approach is based on exchange moves. A neighbour of a solution 
is obtained by replacing a order selected by another order/orders that is/are not se-
lected in that solution. Moreover, remove moves are also allowed. Each problem was 
running five times and the number of iterations was 5000. 

4.3   GA parameters 

We used the following GA parameters: 
Population initial obtained randomly. 
Population size: 20 
Probability of mutation: 0.4 
Probability p in the exponential ranking: 0.2 



Number of iterations: 1000  

4.4   Summary of results 

Tables 2 and 3 shows the summary of results using the three approaches. The per-
centage errors have been computed with respect to the optimal solution values (ob-
tained through the graph-based procedure). We have taken averages over the 10 in-
stances in each problem size n. All running times are given in CPU seconds on an 
Intel Pentium III 850 MHz. 

Table 2. Results 

  TS Approach GA Procedure 

n (C,V) Avge. Error 
(%) 

N. optimal solutions 
found Avge. Error (%) N. Optimal 

solutions found 
20 (1,2) 0.00 10 0.28 9 
20 (2,2) 1.28 6 0.00 10 
20 (2,3) 0.06 9 0.03 8 
25 (1,2) 0.90 9 0.32 7 
25 (2,2) 1.20 8 0.23 8 
25 (2,3) 0.24 9 0.02 9 
30 (1,2) 0.24 8 0.41 7 
30 (2,2) 0.81 7 0.37 7 
30 (2,3) 0.30 7 0.13 8 
40 (1,2) 0.37 7 0.22 2 
40 (2,2) 0.30 6 0.31 3 
40 (2,3) 0.50 1 0.24 3 

 

Table 3. Computation times 

  Average Computation Time in CPU seconds 
n (C,V) TS GA Exact Method 
20 (1,2) 7 97 73 
20 (2,2) 9 99 15 
20 (2,3) 11 100 1496 
25 (1,2) 9 128 278 
25 (2,2) 10 132 47 
25 (2,3) 13 137 1957 
30 (1,2) 11 196 194 
30 (2,2) 14 205 118 
30 (2,3) 16 210 6898 
40 (1,2) 14 304 97 
40 (2,2) 17 310 163 
40 (2,3) 27 319 13314 



 
TS found optimal solutions in 87 of the 120 test problems. GA found optimal so-

lutions in 81 instances. However, the total average error was equals 0.05% for TS 
and 0.02% for GA. 

With regard to the average of computation times, the exact method took longer 
time than TS and GA, showing TS the best times.   

5.    Conclusions 

In this paper, we have studied a type of no-wait production and delivery scheduling 
problem with time windows. A Genetic Algorithms procedure for solving this prob-
lem has been proposed. The quality of this solution has been empirically compared 
with the optimal solution produced by a graph-based exact solution method and a 
tabu search approach. Computational results indicate that the GA finds solutions of 
very good quality. 
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