
A Genetic Algorithm for solving a production and
delivery scheduling problem with time windows*

Jose Manuel Garcia1, Sebastian Lozano1, Fernando Guerrero1, Ignacio Eguia1

1 Escuela Superior de Ingenieros, Camino de los Descubrimientos, s/n, 41092
Seville, Spain; jmgs@esi.us.es1

Abstract. This paper deals with the problem of selecting and scheduling a set of
orders to be processed by a manufacturing plant and immediately delivered to the
customer site. Constraints to be considered are the limited production capacity, the
available number of vehicles and the time windows within which orders must be
served. We describe the problem relating it to similar problems studied in the lit-
erature. A genetic algorithm to solve the problem is developed and tested empiri-
cally with randomly generated problems. Comparisons with an exact procedure
and a tabu search procedure show that the method finds very good-quality solu-
tions.

1 Introduction

This paper addresses the problem of scheduling a given set of orders by a homoge-
neous vehicle fleet and under the assumption that orders require be manufactured
immediately before be delivered to the customer site. Hence, each order requires
manufacturing material in a production plant and delivering it to a predetermined
location during a time window.

This problem arises frequently in environments where the distribution stage is
connected to the production stage because of the absence of end product inventory.
These environments usually involve products with perishable character. For instance,
we could mention the ready-mix concrete manufacturing. In this process, materials
that compose concrete mix are directly loaded and mixed-up in the drum mounted on
the vehicle, and this one is immediately delivers to the customer site, due to it has
not got an excessive margin of time available before solidification concrete. Similar
situations occur in some fast-food delivery services.

We assume that all requests are known in advance. For the manufacturing of or-
ders we have a single plant with limited production capacity. We consider production
capacity as the number of orders can be prepared simultaneously, i.e. the production

* This research has been financed by the Spanish Ministry of Science and Technology under

contract no. DPI2000-0567.

order is considered as a continuous process that requires one unit of capacity during
its processing time.

In the distribution stage of an order three consecutive phases are considered: or-
der delivery, order unload and vehicle return trip. Each vehicle may deliver any or-
der, but no more than one order at a time. It is also assumed that the order size is
smaller than the vehicle capacity. Hence, the distribution stage of an order can be
considered as a single process, which is performed without interruption, and that
commences immediately after the end of the production stage. Moreover, as all of
the processing times (production and distribution times) are known with certainty,
each time window can be translated to a start time interval (Fig. 1).

 Distribution
 Production tdi
 tpi Delivery (tii) Unload(tui) Return trip(tri)

 ai si bi li ei
 Start Time window Time window

Fig 1. Order activity

In order to consider the relevance of the perishable character of this kind of prod-
uct, an ideal due date ei is assumed within time windows. We also can translate each
due date to a start due date si within the start time window [ai,bi]. In Fig.1 are repre-
sented all order data. Thus, tpi denotes production time and tdi distribution time (as
sum of delivery time tii, unload time tui and return trip time tri).

As in the problem we have performed a situation in which the plant have a limited
production capacity C and there exist a finite number of vehicles V, it may happen
that it is not feasible to satisfy all requests within their time windows. Hence and due
to orders must be serve during their time windows, we will consider as objective
function to maximize the value of orders that are selected to be served, assuming
that when an order is not served at its ideal due date, a decrease of the order original
value, proportional to the variation, is due. Let Wi be the profit associated to serve
order i at instant ei and let us use wi

- and wi
+ to denote the earliness and tardiness

corrective indexes which are used to decrease the profit or value when order i is
served prior to or after si, respectively. Thus, when an order is served at instant si+r ,
the profit of order i becomes Wi - (r-si)wi

+.
Table 1 shows a example problem. Orders are all represented in Fig. 2, shading

that ones that have been selected in the optimal solution, considering production
capacity C=1 and number of vehicles V=1.

Table 1. Example problem.

 tpi tdi si ai bi Wi wi
- wi

+
Order 1 2 6 3 2 3 12 1 1
Order 2 2 11 4 3 4 20 1 1
Order 3 2 6 4 3 5 10 1 1
Order 4 3 6 13 12 14 13 2 1
Order 5 1 5 15 14 16 10 1 1

Optimal solution was found by means of processing of order 1, 3, 4 and 6. Order
3 had to be delayed and Job 4 anticipated one time period on its ideal due date. The
maximal profit obtained was 42.

 Job 1 Job 4
 Job 2 Job 6
 Job 3 Job 5
 0 2 4 6 8 10 12 14 16 18 20 22 24 time

Fig 2. Order activity

The paper is organized as follows. In section 2 a review of related scheduling
problems is presented. Section 3 proposes a genetic algorithm for solving the prob-
lem. Computational results are showed in Section 4. Finally, the conclusions of the
study are drawn.

2 Literature Review

In terms of job scheduling theory, a production and delivery scheduling problem
with time windows (PDSPTW) involves a two-station flow shop with parallel ma-
chines, no wait in process and a different due date for each job. The first station
would be the production plant, which is composed of a number of identical machines
equal to the plant capacity. The second station is composed of a number of identical
machines equal to the number of vehicles. Each job would correspond with the
production and distribution of each order.

The flow shop with multiple processors (FSMP), also called flexible flow lines
scheduling, involves sequencing of a set of jobs in a set of processing stations. All
jobs must be processed on each station in the same order. At each station, a job can
be processed on any machine. A no-wait scheduling problem occurs in industrial
environments in which a product must be processed from start to finish, without any
interruption between the stages that compose its performance. FSMP with no-wait in
process has been studied by several authors (see [1] and [2]). Both in FSMP and
FSMP with no-wait in process, researchers consider objectives of satisfying meas-
ures of performance that involve the processing of all jobs. It is assumed that any job
can be processed at any time, that is, jobs have a infinite start time window. In most
of the cases, the objective is to minimize the makespan. When due dates and weights
for jobs are considered, objectives are to minimize the weighted tardiness or similar
measures of performance. As a different case, in [3] is studied a problem with two
stages and no-wait in process whose objective is to maximize the set of jobs to be
processed. Nevertheless, due dates are not considered for the jobs but a finite
scheduling time.

Instead, in this paper we present a scheduling problem where the objective is to
find a subset of jobs with maximum total value that can be completed within their

time windows. What makes the problem different from other scheduling problems is
that the orders served must satisfy time requirements imposed by customers. Sched-
uling problems that focus on the problem of finding a subset of jobs with maximum
total value assuming due dates are the fixed job scheduling problem (FSP) [4] and the
variable job scheduling problem (VSP) [5] and [6]. However, these problems con-
sider a single stage for the processing of jobs, so these cases would correspond to a
particular case of PDSPTW where the production capacity was unlimited or we had a
number unlimited of vehicles.

3 GA for solving PDSPTW

Genetic algorithms [7] are search and optimisation algorithms based on the Dar-
winian theory of evolution. Essentially, a GA is an iterative procedure that maintains
a population of a few individuals that represent problem solutions. An initial popula-
tion is generated at random or heuristically. During each iteration, the individuals are
evaluated and given a fitness value. From each iteration to the next, a new population,
with the same size, is generated by evolutionary operations such as selection, cross-
over and mutation. In the following, we will describe the representation and opera-
tions employed in our GA.

3.1 Individual Representation: Genotype and Phenotype

An important concept is the strict separation of problem constraints and evolution-
ary method. Such separation results in two completely different views of an individ-
ual. On the one hand, there exist the phenotype representation for the problem in
order to evaluate the individual by fitness function. On the other hand, the genotypic
representation is one that genetic algorithms see, that is, an encoded representation
over which the evolutionary operators are applied.
A string will be used to represent the genotype of an individual. The length of the
string corresponds with the number of jobs. Each string position, also denoted as
gene, corresponds to one job, and contains the time period in which the job should
start. This time period is defined with respect to ideal start due date of the job. Fig-
ure 3 shows the genotype representation of an individual for a problem with 6 jobs.
For that individual, job 2 should start at instant si-1, job 3 at instant si+1 and the rest
of jobs on their ideal start due dates.

0 -1 1 0 0 0

Fig 3. Genotype representation

Let ri the start value of order i in a individual. The profit wi of each order can be
calculated as follow: wi = {Wi + riwi

- if ri<0 or Wi - riwi
+ if ri?0}

We have not guarantee that all the orders can be served using those start instants,
therefore, a subset of orders that maximize the total profit is to be searched. This
situation represents a production and delivered scheduling problem with fixed start
due date [8]. In that problem is also hard to find optimal solutions as the number of
jobs increases, so we concentrate on a fast heuristic that yield satisfactory (and not
necessarily optimal) solutions. The heuristic exploits the observation that PDP can
be modelled as a minimum cost flow problem if the production capacity is enough to
process all the orders at he production stage. Hence, in our algorithm the restric-
tions associated with not preparing simultaneously a number of orders greater that
the production capacity are relaxed.

The construction of the underlying direct graph G used to solve this PDP can be
described as follow: Each job i is represented in G by two nodes, l i and fi that corre-
spond with start time period and end time period of the distribution stage. There also
is a arc associated with each job, from the node corresponding to sj to the node cor-
responding to fj. This arc has an upper capacity of one on the amount of flow that can
be transported, and associated costs of –wi. Furthermore, there is an arc from every
node fi to every node sj as long as sj ? fi with zero costs and capacity equals one.
Moreover, and start node s is connected to all the nodes si and all nodes fi are con-
nected to a end node e with zero cost arcs and capacity equ

 . A feasible schedule for a subset of jobs of maximum total value corresponds to
a minimum cost flow of V (number of vehicles) units of flow from node s to node t
in the graph G. A order i is carried out if and only if in the solution to the minimum
cost flow problem one unit of flow passes through the arc (li,fi). Fig. 4 shows the
graph G corresponding to genotype showed in Fig. 3 and referred to the problem
represented in Table 1 for a number of vehicles V=2.

Fig 4. Graph G corresponding to genotype of Fig 3.

The thick lines in G denote the minimum cost flow path. Orders to be served are
1, 2, 4 and 5.

Once a solution is obtained for G, production process feasibility of the orders
selected is checked. For this task, we make use of Kroon’s lemma on the Fixed Job
Scheduling Problem (FSP) [4], to give a necessary and sufficient condition for the
existence of a feasible schedule for all orders selected:

s

l
1

f
1

e

-12

l3 f3

l2 f2

l4 f4

l5 f5

-19

-9

-13

-10

[2]

Let Os be the set of orders selected. A feasible schedule including all orders be-
long to Os exist if and only if the maximum order overlap of Os in plant is less than
or equal to the plant capacity C.

Suppose orders are to be processed in the time-interval [0,T], the maximum order
overlap is defined as follows: L = max {Lt: 0? t ? T} with Lt = {i? Os:si ? t ? li-1}

 t 2 4 6 8 10 12 14 16

Fig 5. Production stage for orders selected in graph G of Fig. 4

In Fig. 5 the bars indicate the production time (tpi) of the orders selected previ-
ously. For this case L equals 3. It is clear that if and only if C?2 can all orders be
processed in the plant.

If the maximum order overlap of Os exceeds C, then the solution provided for the
minimum cost flow problem is not feasible. In this case, the heuristic will try to find
a subset of orders with maximum total profit that can be processed with capacity C.
This problem becomes equivalent to the Maximum Fixed Job Scheduling Problem
(Max. FSP). This problem has been considered by a number of authors including
Arkin and Silverberg [9], Kroon, Salomon and Van Wassenhove [4] and Gabrel [6],
who show that it can be solved by a minimum cost flow algorithm.

The construction of the graph G’ that we use in this paper is more direct than the
constructions proposed for those authors, and can be described as follows. The set
R= {rp: p = 1, …, P} is used to represent all starting times of the jobs belong to Ok
in chronological order. That is, R= {s i: i? Os} and rp-1<rp. The set of nodes of the
graph is in one-to-one correspondence with the set R plus a finish node. There is an
arc from each node to the following with zero costs and unlimited capacity. Fur-
thermore, there are arcs from each node to the node corresponding to the first order
which could be produced by the plant once it has finished the production of the order
origin of the arc. These arcs can carry only one unit of flow and have a cost equal to
–wi. At the leftmost node, C units of flow are injected which must reach the finish
node. As an example, Fig. 6 shows the graph corresponding to the data of Fig. 5 for a
production capacity of one.

Fig 6. Graph associated to the example of Fig. 5

Once the optimal solution to this minimum cost flow problem is obtained, let set
E denote the set of orders belonging to Os that have not been selected (E={1} for the
example). For each order j? E, we modify the graph G, constructed initially, in order
to forbid that order j can be processed. To this end, we just need to assign capacity

e1 2 4 5
0 0 0 0

-12

-19

-13

[1]

-10

zero to the arc that joins lj with fj. With this new graph G, all the process described
above is repeated again until a feasible solution is found.

3.2 Population reproduction and Selection

Two techniques of population reproduction are currently used in the field of ge-
netic algorithms: generational and steady-state. Briefly, generational reproduction
replaces the entire population at each iteration, while steady-state reproduction re-
places only a few members at a time.

In our algorithm we have used the steady-state technique, replacing one individual
at each iteration. Therefore, at each iteration a new individual is generated using the
operators described below. At each iteration an operator will be selected to generate
an new individual. For this selection each operator will have a probability of being
chosen.

To select the member to be deleted, we use an approach based on the exponential
ranking [10] of the individuals within the population. Exponential ranking assigns a
chance of being deleted equals to p to the worst individual (worst fitness). If it is not
selected, then the next to the last also has a p chance, and so on.

3.3 Crossover and mutation operators

Crossover is the most important recombination operator for generating new indi-
viduals, i.e., new search points. It takes two individuals called parents and produces a
new individual called the offspring or child by swapping parts of the parents. We
have used the following procedure to get the child: There are two randomly selected
parents p1 and p2. The child is built with next rule: Let p1(i) be gene i in p1. For
each i from 1 to n, if p1(i) = p2(i) then child(i) = p1(i), else child(i) is a random
value in the interval [p1(i), p2(i)].

In Fig. 7 we can see an example of crossover operator.

p1 2 -1 0 1 0
p2 1 -1 1 -1 0

Child Rnd[1,2] -1 Rnd[0,1] Rnd[-1,1] 0

Fig 7. Crossover operator

We also employ a standard mutation operator that randomly selects a individual to
modify and then randomly choose a new value for one of its positions. This operator
helps the GA to maintain diversity in the population to avoid premature convergence.

4 Computational results

The first stage in our computational experience involved the construction of a set of
problems. Afterwards, we will compare GA results with previous results obtained on
the same problems both a exact method and a tabu search approach.

4.1 Generation of problems

To construct a set of instance we used as main parameters the average order overlap
(number of orders that may be processed simultaneously) in the production stage
(PSO) and distribution stage (DSO). Thus, values considered for PSO and DSO were
within the intervals (1.50, 1.60) and (5,6) respectively.
Problem sizes used were n = 20, 25, 30 and 40 orders. Ten instances were generated
for each problem size. Time windows [ai,bi] for every problem were generated ran-
domly with sizes between 1 and 5 time periods. The time horizon of the problems
has been considered dependent on the number of orders in the problem according to
the following intervals: [1,55] (20 orders); [1,65] (25 orders) ; [1,75] (30 orders);
[1,95] (40 orders). Order values wi were randomly generated randomly within the
interval [10,100] and penalties both for earliness wi

- and tardiness wi
+ were randomly

selected within the interval [0,2]. To allow for different levels with regard to capac-
ity C and number of vehicles V, the pairs of values (C,V) = (1,2), (2,2) and (2,3) were
considered for each problem.

4.2 Exact method and tabu search approach

To test the performance of the algorithm, we initially solved the same set of prob-
lems using a graph-based exact procedure and a tabu search approach [11]. The exact
procedure builds a graph G that collects all feasible solutions to the problem by
means of a simple evaluation method of feasible states in the scheduling of orders.
The maximal weighted path from start node to end node in G is the optimal solution
to the problem.

The tabu search approach is based on exchange moves. A neighbour of a solution
is obtained by replacing a order selected by another order/orders that is/are not se-
lected in that solution. Moreover, remove moves are also allowed. Each problem was
running five times and the number of iterations was 5000.

4.3 GA parameters

We used the following GA parameters:
Population initial obtained randomly.
Population size: 20
Probability of mutation: 0.4
Probability p in the exponential ranking: 0.2

Number of iterations: 1000

4.4 Summary of results

Tables 2 and 3 shows the summary of results using the three approaches. The per-
centage errors have been computed with respect to the optimal solution values (ob-
tained through the graph-based procedure). We have taken averages over the 10 in-
stances in each problem size n. All running times are given in CPU seconds on an
Intel Pentium III 850 MHz.

Table 2. Results

 TS Approach GA Procedure

n (C,V) Avge. Error
(%)

N. optimal solutions
found Avge. Error (%) N. Optimal

solutions found
20 (1,2) 0.00 10 0.28 9
20 (2,2) 1.28 6 0.00 10
20 (2,3) 0.06 9 0.03 8
25 (1,2) 0.90 9 0.32 7
25 (2,2) 1.20 8 0.23 8
25 (2,3) 0.24 9 0.02 9
30 (1,2) 0.24 8 0.41 7
30 (2,2) 0.81 7 0.37 7
30 (2,3) 0.30 7 0.13 8
40 (1,2) 0.37 7 0.22 2
40 (2,2) 0.30 6 0.31 3
40 (2,3) 0.50 1 0.24 3

Table 3. Computation times

 Average Computation Time in CPU seconds
n (C,V) TS GA Exact Method
20 (1,2) 7 97 73
20 (2,2) 9 99 15
20 (2,3) 11 100 1496
25 (1,2) 9 128 278
25 (2,2) 10 132 47
25 (2,3) 13 137 1957
30 (1,2) 11 196 194
30 (2,2) 14 205 118
30 (2,3) 16 210 6898
40 (1,2) 14 304 97
40 (2,2) 17 310 163
40 (2,3) 27 319 13314

TS found optimal solutions in 87 of the 120 test problems. GA found optimal so-

lutions in 81 instances. However, the total average error was equals 0.05% for TS
and 0.02% for GA.

With regard to the average of computation times, the exact method took longer
time than TS and GA, showing TS the best times.

5. Conclusions

In this paper, we have studied a type of no-wait production and delivery scheduling
problem with time windows. A Genetic Algorithms procedure for solving this prob-
lem has been proposed. The quality of this solution has been empirically compared
with the optimal solution produced by a graph-based exact solution method and a
tabu search approach. Computational results indicate that the GA finds solutions of
very good quality.

References

1. Hall N.G. and Sriskandarajah C.: A survey of machine scheduling problems with blocking and
no-wait in process. Operations Research, 44, (1996) 510-525.

2. Sriskandarajah C.: Performance of scheduling algorithms for no-wait flowshops with parallel
machines. European Journal of Operations Research, 70, (1993) 365-378.

3. Ramudhin A. and Ratliff H.D.: Generating daily production schedules in process industries. IIE
Transactions, 27, (1995) 646-656.

4. Kroon L.G., Salomon M. and Van Wassenhove L. N.: Exact and approximation algorithms for
the operational fixed interval scheduling problem. European Journal of Operational Research,
82, (1995) 190-205.

5. Gertsbakh I. and Stern H.: Minimal Resources for Fixed and Variable Job Schedules. Opera-
tions Research, 26 (1), (1978) 68-85.

6. Gabrel V.: Scheduling jobs within time windows on identical parallel machines: New model and
algorithms. European Journal of Operations Research, 83, (1995) 320-329.

7. Goldberg, D. E.: Genetic Algorithms in Search, Optimization, and Machine Learning. (1989).
New York, NY: Addison-Wesley.

8. Garcia J. M., Smith K., Lozano S. and Guerrero F.: A Comparison of GRASP and an Exact
Method for Solving a Production and Delivery Scheduling Problem. Proceedings of the
International workshop on Hybrid Intelligent Systems HIS'2001, Adelaide, Australia. (2001).

9. Arking E.M., Silverberg E.B.: Scheduling jobs with fixed start and end times. Discrete Applied
Mathematics 18, (1987) pp. 1-8.

10. Kaufmann, M.: Fundations of Genetic Algorithms. Edited by Gregory J.E. Rawlins, San Mateo
California, (1991).

11. Garcia J. M., Smith K., Lozano S., Guerrero F. and Calle M.: Production and Delivery Sched-
uling Problem with Time Windows. Proceedings of The 30-th International Conference on
Computers and Industrial Engineering, Tynos Island, Greece (2002)

