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Abstract. In this work we have empirically investigated the general
dataset conditions that make possible to find a value of the parameter
k which classifies each test example correctly by means of the Near-
est Neighbor algorithm. In this search, we have compared different ap-
proaches based on decision trees, regression trees, and geometric prox-
imity. In addition, we have measured the difficulty of classifying a set of
UCI databases as a function of the values of k that classify the nearest
neighbor of an example correctly. At this stage of the investigation, we
can state that, in general, determining a priori the k—values which clas-
sify each test example correctly presents a high computational cost and
improves NN’s accuracy scarcely.

1 Introduction

Since their introduction in the 1950’s, important studies about the error bounds
for the Nearest Neighbor have been published [4, 1,5, 7]. Researchers have also
developed very interesting approaches which investigated new metrics [10] or new
data representations [2] for improving accuracy and computational complexity.
In [4] it was shown that the error of the Nearest Neighbor is bounded by twice
the optimal Bayes probability of error. In addition, it was proven that when the
distance among same label examples is smaller than the distance among different
label examples, the probability of error for NN and k-NN tends to 0 and %,
respectively. But this condition is not always satisfied, which is the reason that k-
NN and k-NN,,, can improve the accuracy given by NN. In [8] the behavior of NN
and k-NN is studied in depth and the experiments carried out with six synthetic
data sets confirm the two following hypotheses: a) Noisy data need large values
for k; b) The performance of k-NN is less sensitive to the choice of a metric. In
addition, four classifiers are proposed (Locally Adaptive Nearest Neighbor), where
the value of k£ can be different for each new example ¢ to be classified. In the two
first methods (localkNNys) the parameter k takes a value k, which is the most
frequent value among those that classified the M nearest neighbors of ¢ [9]. The
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Fig. 1. Horse Colic database. If the new example to be classified is a central point,
the majority class by k-NN and k-NN,,, is not highly sensitive to the chosen value of
k. If the new example to be classified is a border point, the chosen value of k can be
determinant.

third method (localkNN,yekperciass) computes and stores for each class ¢; the
single k., value that more examples it classified. The new query ¢ is evaluated as
many times as there are labels in training set, so that the used value every time is
the k., associated to each label. The fourth method (localkNNopekperciuster) USeS
the unsupervised clustering algorithm RPCL [6] to determine different clusters
from the training set. Then a single k£ value is associated to each cluster by
leave-one-out cross-validation. The new query is classified according to the k
value of the cluster it is assigned to. However, experiments with UCI data sets
[3] shows that these local Nearest Neighbor methods do not improve significantly
the performance of k-NN. So it my be difficult to justify the added computational
complexity. Nevertheless, determining with certainty when local NN learners are
a beneficial decision is still an open problem.

In this work we intend to study empirically the performance of Nearest Neigh-
bor learners even when the value of & is not constant but variable for each exam-
ple. In principle, when a new query is interior to a region (it is a central point),
the classification by proximity does not depend on the number of observed neigh-
bors. However, when a query is near a decision boundary, the value of k£ can be
critical (see Fig. 1). That is, it might be possible to improve the classification
accuracy by using different values of k for each example. From such premise, the
reason for our study is knowing if the parameter k can be tuned in continuous
regions of the search space. In other words, we have tried to find all the correct
values of k that classify an example correctly when it is near the decision bound-
aries. In the following section we present several results obtained by applying the
k-NN and k-NN,,, algorithms to datasets from the UCI repository. The weight
used in our experiments was é. These results show that, using the original space
of attributes, local Nearest Neighbor learners do not significantly improve NN’s
accuracy.
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Table 1. Percentage of examples that are correctly classified in £-NN and k-NN,,, with

kin [1,11]. L NN JoNNos
DB k=1 k=3 k=5 k=7 k=9 k=11 k=1 k=3 k=5 k=7 k=9 k=11
An 92.53 88.97 87.63 83.96 85.30 85.52(92.53 91.2 91.87 91.42 91.42 92.09
Aud |74.33 66.81 63.71 59.73 58.40 60.61|74.33 76.1 73.45 72.56 69.02 69.46
Aut [75.60 66.82 60.97 57.07 57.07 57.56| 75.6 77.07 78.04 75.6 73.17 71.7
BS 79.03 79.84 80.32 86.4 88.96 88.80|79.03 79.84 80.32 87.03 89.6 89.28
BC 70.27 69.58 72.02 74.12 74.12 74.82|70.27 68.53 71.32 72.72 74.12 74.47
CHD |74.58 81.84 81.51 82.17 81.51 81.18|74.58 80.19 80.85 82.17 81.51 81.51
CR 81.88 85.94 86.52 86.52 86.81 86.37(81.88 84.63 85.21 85.65 85.94 85.94
GC 72.60 73.00 73.30 72.89 72.89 73.20| 72.6 73.0 73.0 73.1 73.1 73.7
Gl 70.09 68.22 64.01 61.21 58.87 57.47|70.09 71.49 72.89 70.56 68.69 68.22
HS 75.55 79.25 80.00 81.11 80.37 81.48(75.55 78.88 80.0 81.85 80.74 81.11
He 80.64 82.58 83.87 83.87 84.51 84.51(80.64 82.58 82.58 83.22 82.58 81.93
HC 68.47 69.29 69.02 70.38 69.83 69.02(68.47 70.65 71.46 73.64 73.09 70.92
Io 86.89 86.03 85.47 84.04 84.33 84.04(86.89 86.03 85.75 84.04 84.33 84.04
Ir 95.33 95.33 95.33 96.66 95.33 94.66(95.33 95.33 95.33 96.0 94.66 94.66
PD 70.57 74.08 74.08 75.26 73.82 73.43|70.57 73.95 73.69 74.86 73.95 73.56
PT 34.21 29.20 33.03 35.69 34.21 35.39(34.21 27.13 30.38 31.56 31.85 32.15
Son |[87.50 83.65 82.21 80.28 75.96 72.59| 87.5 83.65 82.69 82.69 81.25 77.4
Soy [91.80 91.80 91.06 90.48 90.19 89.31| 91.8 91.8 91.94 91.21 91.36 91.06
Ve 69.85 68.43 67.73 68.91 67.49 66.90(69.85 71.04 71.63 71.74 69.85 70.21
Vot [91.03 91.49 92.64 93.56 93.10 93.56(91.03 91.26 91.95 92.87 92.87 93.1
Vow [99.39 97.97 94.24 89.89 83.53 42.72(99.39 98.08 97.27 96.06 94.94 94.74
Wi 95.50 96.62 96.06 96.06 96.06 95.50| 95.5 96.62 96.06 96.62 96.62 96.06
WBC|95.27 96.56 96.99 96.85 96.85 96.70(95.27 96.56 96.99 96.85 96.7 96.7
Zoo [96.03 92.07 93.06 91.08 89.10 89.10|96.03 92.07 95.04 95.04 93.06 92.07
Av. 80.37 79.81 79.36 79.09 78.27 76.43(80.37 80.74 81.24 81.63 81.02 80.67

2 Empirical Evaluation

We begin our study observing how the classification accuracy given by k-NN and
k-NN,, changes as the value of the parameter k increases. So in the first place
we obtained the accuracy rates by leave-one-out cross-validation with the value
of k restricted to the odd numbers (to avoid ties) in the interval [1,11]. Note that
there is no need to restrict the parameter k£ to an odd number in k-NN,,,,. Table
1 shows the results obtained. Although there is significant variability in the case
of k-NN, the behavior of k-NN,,, is more stable empirically. For instance, we
can observe Autos and Vowel where the accuracy decreases from 75.60% and
99.39% to 57.56% and 42.72% respectively by k-NN. However, in k-NN,,, the
corresponding decreases in accuracy are less than 5% in both data sets. So it
seems correct to consider that k-NN,,, is more robust than k-NN with either
noise present in data or similar distributions for each attribute. Nevertheless,
with the interval [1,11] for the values of k in the studied domains, these results
are not sufficient to determine if the accuracy is an increasing or decreasing
function of k.

To investigate the behavior of the algorithms more fully, we extended the
range of the values of k and calculated the accuracy for each new odd number
by both techniques. In experiments with 51 as the maximum value of k, we noted
that the predominant behavior of the accuracy as a function of k£ tended to be
decreasing or increasing, depending on each database. Due to the limitations
of space, Table 2 shows only the average accuracy obtained for three intervals:
[1,11], [1,31] and [1,51]. Databases signed with + are classified with greater
accuracy as the value of k increases for the three intervals and both methods,
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Table 2. Average percentage of examples that are classified by k-NN and k-NN,,, with
an odd value of % in the intervals [1,11], [1,31] and [1,51].

k-NN k-NNy»,
DB K in [1,11] k in [1,31] k in [1,51]|k in [1,11] k in [1,31] k in [1,51]
Anneal— 87.32 84.51 83.18 91.75 91.34 90.77
Audiology — 63.93 58.51 54.11 72.49 70.46 67.75
Autos— 62.52 56.28 53.45 75.20 73.32 71.76
Balance-Scale+ 83.89 87.56 88.06 84.18 87.72 88.44
Breast-Cancer 72.49 73.68 73.60 71.91 73.51 73.66
Cleveland-HD+ | 80.47 81.47 82.07 80.14 81.82 82.40
Credit-Rating+ 85.67 85.90 86.18 84.87 85.74 86.34
German-Credit 72.98 72.93 72.78 73.08 73.38 73.39
Glass— 63.31 60.57 59.99 70.32 67.31 65.79
Heart-Statlog+ 79.62 81.20 82.16 79.69 81.06 81.92
Hepatitis 83.33 82.86 82.03 82.25 82.54 82.03
Horse-Colic— 69.33 67.45 66.96 71.37 69.98 69.34
Tonosphere— 85.13 83.26 80.11 85.18 83.60 81.10
Iris 95.44 95.58 95.25 95.22 95.41 95.56
Pima-Diabetes+ | 73.54 74.20 74.58 73.43 74.51 74.73
Primary-Tumor+| 33.62 37.62 38.88 31.21 33.99 34.78
Sonar— 80.36 73.58 72.61 82.53 75.72 74.90
Soybean— 90.77 86.91 80.23 91.53 90.60 88.39
Vehicle— 68.22 67.20 65.97 70.72 69.49 68.36
Vote 92.56 92.39 91.94 92.18 92.35 91.90
Vowel— 84.62 34.40 21.17 96.75 95.63 95.63
Wine 95.97 96.34 96.45 96.25 96.52 96.65
Wisconsin-BC 96.54 96.54 96.35 96.51 96.55 96.38
Z00— 91.74 86.26 80.69 93.89 92.69 90.74
Averages 78.89 75.72 7412 80.94 80.63 80.11

whereas databases signed with — are classified with decreasing accuracy as the
value of k increases. In both Tables, the data obtained for Vowel database are
very meaningful with respect to the sensitivity of k-NN and k-NN,,, to the chosen
value of k. The loss of accuracy in k-NN,,, reaches about 5% whereas in k-NN
it can exceed 50%. Thus we can state that, in the most studied domains, the
performances of both techniques are similar, although there is a slight average
tendency in favor of k-NN,,,. In addition, k-NN,,, gives generally a more robust
performance. From Tables 1 and 2 we can also observe that some databases have
low levels of accuracy, e.g. Audiology, Glass, Horse-Colic, Primary-Tumor, and
Vehicle. In these difficult databases the accuracy changes smoothly as a function
of the values of k. Such data can be taken as an approximate indicator of the
distribution of the examples in the search space.

Aiming for the correct values of k, we wonder: “What gain we would obtain if
such values were known?”, that is, “How many examples are correctly classified
for some value of k?”. Posing the question in another form: “How many examples
are not correctly classified for any value of k by the Nearest Neighbor?” i.e., there
is no value of k for which most of the k nearest neighbors of an example has
the same label as such an example. This is an important question because the
answer can provide an error bound for the Nearest Neighbor and generally, for
any classifier based on geometric proximity. To answer the question, we measured
for each example all the odd values of k (between 1 and 51) that classified it
correctly. If there was no value of k for an example, then it was indicated as
non-classifiable. Table 3 shows the percentage of examples for which there is no
value of k that classifies them correctly by means of k-NN and k-NN,,,,. This data
give an approximated indicator of the degree of difficulty to classify a database



Searching for a pattern of k in the Nearest—Neighbor Algorithms 5

Table 3. Percentage of examples that can not be correctly classified by k-NN and
k-NN,, for any k in the intervals [1,11], [1,31] and [1,51].

k-NN k-NNy

DB k in [1,11] k in [1,31] k in [1,51]|k in [1,11] k in [1,31] k in [1,51]
Anneal 2.78 2.56 2.45 4.90 4.56 4.34
Audiology 17.69 15.92 15.92 17.69 16.37 15.92
Autos 12.68 9.27 9.27 17.07 14.14 13.65
Balance-Scale 8.32 8.16 8.16 8.32 8.16 8.16
Breast-Cancer 14.68 12.93 12.58 17.83 16.78 16.43
Cleveland-HD 11.22 9.90 8.58 12.87 11.55 10.89
Credit-Rating 9.13 7.82 7.68 11.15 9.71 8.55
German-Credit 13.0 10.50 10.39 13.40 11.29 10.90
Glass 19.15 13.55 13.08 19.15 16.35 15.42
Heart-Statlog 9.63 9.26 8.89 10.0 9.26 8.89
Hepatitis 9.68 7.74 7.10 12.90 10.96 9.03
Horse-Colic 17.11 14.94 14.13 17.39 15.21 14.13
Ionosphere 8.55 6.84 6.84 8.55 7.69 7.69
Iris 3.33 2.67 2.0 4.0 3.33 2.0
Pima-Diabetes 14.19 11.19 10.28 14.71 11.97 11.19
Primary-Tumor| 48.37 42.18 40.70 57.52 53.39 51.91
Sonar 6.25 4.33 4.33 6.25 4.33 4.33
Soybean 5.12 4.10 4.10 5.42 4.25 4.25
Vehicle 14.53 11.58 10.04 15.24 12.41 11.46
Vote 4.14 4.14 4.14 4.83 4.83 4.83
Vowel 0.50 0.50 0.50 0.50 0.50 0.50
Wine 1.68 1.12 1.12 1.68 1.12 1.12
‘Wisconsin-BC 2.0 1.72 1.72 2.0 1.72 1.72
Zoo 2.97 1.98 1.98 2.97 1.98 1.98
Averages 10.67 8.95 8.58 11.93 10.49 9.97

by means of the Nearest Neighbor. We can observe that for certain databases,
increasing the possible values of k has a little effect (Anneal, Iris, Vote, Vowel,
Wine, Wisconsin, Zoo) whereas in other difficult databases (Glass, Horse-Colic,
Pima-Diabetes, Primary-Tumor, Vehicle) this increase can condition strongly
the classification accuracy. Although in the first group of domains, the difference
between restricting k to 6 values and allowing 26 values is scarcely appreciable,
in the second group it can have considerable improvements to classify a new
query. Primary-Tumor shows clearly this phenomenon decreasing from 67% to
40%, i.e., the relative improvement of examples that find a correct value of & is
relatively about 50%.

In all the studied databases, the value of k£ that more examples classified
correctly was 1 for both methods. Table 4 shows (in Columns 2 and 6 for k-NN
and k-NN,,, respectively) the percentage of examples classified correctly using
k = 1. These percentages are given with respect to only the examples that were
classified by a greater value of k. Columns 1 and 3 show the number of different
values of k that k-NN found in the interval [1,51] and the highest of these values.
Columns 5 and 7 are the same for k-NN,,. Columns 4 and 8 show the mean
and the standard deviation for the different values found in each database. After
calculating such data, we observed that the highest values classified few examples
in comparison with the number of examples that were classified by low values of
k. In addition, as k was extended, the difference between the two last values of k&
which classified some examples increased. It seems logical to consider that such
examples, although classified, could be outliers of the database. If we also observe
the mean and the standard deviation for each database, it seems sufficient to
use few and low values for k.
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Table 4. Number of different values of k£ that classified correctly some example by
k-NN and k-NN,y.

k-NN k-NNy.
DB |values % (k=1) k-max meanz+sd|values % (k=1) k-max mean+sd
An 9 95.2 49 1.3+2.1 12 97.2 30 1.24+1.8
Aud 11 86.0 45 1.94+4.1 11 85.6 46 2.0+£4.9
Aut 14 84.7 29 2.3+4.3 13 86.6 51 2.5+6.4
BS 12 88.4 23 1.6+1.8 12 84.7 23 1.6+1.8
BC 9 77.6 27 1.9+2.5 10 79.9 29 1.8+2.6
CHD 13 81.9 43 2.3+5.2 10 84.1 46 1.8+3.4
CR 11 88.8 41 1.5+£2.7 | 22 89.4 49 1.9+4.5
GC 17 81.0 37 2.243.7 | 23 81.6 48 2.24+4.1
Gl 15 80.6 45 2.945.8 12 82.9 36 2.5£5.5
HS 8 82.9 45 1.8+3.3 11 82.9 51 1.94+3.7
He 9 86.8 39 2.1+4.8 10 88.1 48 2.5+6.8
HC 13 79.7 41 2.4+4.8 16 79.7 42 2.5+4.9
To 9 93.2 31 1.6+3.1 7 94.2 17 1.3+1.6
Ir 5 97.2 35 1.4+3.1 5 97.3 40 1.74+4.7
PD 23 78.7 51 2.7+5.7 28 79.5 50 2.5+5.2
PT 29 55.7 47 5.8+9.3 22 69.1 49 4.0+£7.1
Son 8 91.5 23 1.7+2.9 8 91.5 23 1.74+2.8
Soy 14 95.1 25 1.3+2.0 14 95.2 25 1.3+2.1
Ve 36 77.5 49 3.0£6.3 33 78.8 49 2.7£5.5
Vot 4 95.7 7 1.1+0.6 5 96.1 8 1.1+0.6
Vow 2 99.9 9 1.04+0.3 2 99.9 9 1.0+0.3
Wi 5 96.6 29 1.3+2.2 5 96.6 29 1.3+2.2
WBC 6 97.2 25 1.1£1.2 6 97.2 26 1.1+£1.2
Zoo 2 99.0 11 1.1+0.9 2 99.0 10 1.1+0.9
Av. 11.8 87.4 33.6 1.6+3.4 12 88.5 34.2 1.9%+3.5

Returning to Table 3, consider the Horse-Colic database. The 17.11% of
examples does not correctly classify with any value of k in [1,11], 14.94% does
not correctly classify with any % in [1,31] and 14.14% are not correctly classified
when k belongs to interval [1,51]. Thus, we can state that there is not significant
difference between the limits 31 and 51, or between k-NN and k-NN,,,. From this
Table a maximum bound of the classification ability of k-NN can be obtained,
even if the value of k is known a priori. That is, although k-NN could adapt
locally so that we could hit a correct value of k for each new example to be
classified, the error rates of Table 3 can not be avoided. However, there are
some databases in which the improvement in the accuracy can be worth the
computational effort (the calculation of that local k). So, taking again Horse-
Colic as an example we can observe in Tables 2 and 3, that we would have an
error rate of 14.13% (Column 6 in Table 3) instead of 30.77% (Column 1 in
Table 2), i.e., an improvement of around 50%. Logically, in general the highest
increment is given for those databases that we point out previously as difficult
to be classified using a technique based on the Nearest Neighbor.

Related to our initial objective, that was to find a relationship among the
values of the attributes of an example and a value of k to classify it correctly, we
built two new databases, where the label of each example was substituted by the
minimum value of k£ for which such an example was correctly classified by k-NN
and k-NN,,. All non-classifiable examples were removed. Different approaches
were attempted for predicting the value of k: regression trees by M5, decision
trees by J4.8 (C4.5) and the Nearest Neighbor itself in a similar form to Locally
Adaptive k-NN [9]. None of these techniques improved the average accuracy rate
obtained by the standard k-NN using ten-fold cross-validation. Note that it is
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Table 5. Prediction of the value of k by decision trees, regression trees, and geometric
proximity. The value of k was calculated by k-NN.

C4.5 M5 1-NN
DB PA RE RE NR| PA RE
An 95.2 92.0 99.1 17 [93.7 72.1
Aud |86.1 84.2 113.3 84.0 68.3
Aut |82.8 87.0 113.3 80.1 74.0
BS 84.7 95.5 100.5 84.0 84.2
BC 77.6 95.5 98.2
CHD | 79.8 94.3 102.9
CR 88.8 94.5 94.0
GC 81.0 96.7 97.2
Gl 76.3 81.0 105.4
HS 80.9 88.1 101.9
He 86.8 83.1
HC 79.7 94.0
To 91.7 89.9
Ir 97.3 68.8
PD 75.2 93.1
PT 55.7 94.9
Son |[90.9 71.4
Soy [95.1 84.5
Ve 74.0 91.4
Vot 95.7 93.0
Vowl | 99.9 66.8
Wi 96.6 76.9
WBC| 97.2 89.0
Zoo |[99.0 68.4
Av. 86.17 86.42 4.04|190.81 2.95(84.24 73.51
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not necessary to apply again the k-NN method to validate it because for each
example we calculated if a certain k produced a correct classification. The results
obtained for the new databases with the k-label calculated by k-NN and k-NN,,
are shown in Tables 5 and 6 respectively. We used the WEKA Environment [11]
with the default options for M5 and J4.8. Since determining the value of k is a
prediction task rather than a classification task, the accuracy rate is no longer
appropriate: errors are not simply present or absent, they come in different sizes.
So we also observed the relative-absolute-error, defined as:

Ipi — kil
=1 |k2 . k| ( )

where n is the number of examples (see Table 3), p; is the prediction of k for each
example i, k; is the new label assigned to each example i and %k the mean of k.
Columns PA indicate the prediction accuracy given by NN and C4.5. Columns
RE indicate the relative-absolute-error given by the three predictor method.
Finally, Columns NR indicate the number of rules or leaves generated by C4.5
and M5. We can observe that, in both cases, the best prediction method is the
Nearest Neighbor itself. Although the average accuracy in C/.5 is about 2%
greater than in 1-NN, the average relative-absolute-error is smaller by means
of 1-NN. When the value of k is calculated by k-NN (Table 5), the average
relative-absolute-error of the prediction given by C4.5 and 1-NN is 86.42% and
73.51% respectively. That is to say, 1-NN offers an improvement with respect
to C4.5 of about 17%. When the value of k is calculated by k-NN,,, (Table 6),
the average error in the prediction given by C4.5 and 1-NN,, is 85.68% and
61.17% respectively. In this case, 1-NN,,, offers an improvement with respect to
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Table 6. Prediction of the value of k by decision trees, regression trees, and geometric
proximity. The value of k was calculated by k-NN,,.

C4.5 M5 1-NNy»

DB PA RE NR| RE NR| PA RE
Anneal 97.2 823 1 99.5 1 |96.0 59.5
Audiology 83.6 90.8 3 |113.8 1 |83.6 60.5
Autos 86.6 84.5 1 |108.6 1 |84.9 53.8
Balance-scale |84.7 95.5 1 |100.5 1 |84.0 83.3
Breast-cancer |[79.9 94.1 1 |101.0 7 |[77.8 75.3
Cleveland-HD | 84.1 92.8 1 |105.1 1 |79.6 68.2
Credit-rating |[89.4 88.6 1 [104.2 1 |87.8 56.4
German-credit | 81.6 95.4 1 95.6 1 |72.9 81.3
Glass 78.4 85.7 9 |101.3 3 |79.6 59.7
Heart-statlog 78.9 93.6 14 | 93.3 2 | 81.3 58.4
Hepatitis 86.6 85.7 1 |100.5 4 |85.2 59.2
Horse-colic 79.4 927 1 |108.0 3 |72.5 75.7
Ionosphere 93.5 859 6 |104.6 3 |92.3 61.5
Iris 97.3 68.8 1 98.5 1 [97.3 36.2
Pima-diabetes | 77.7 92.7 23 | 91.8 2 |73.0 71.3
Primary-tumor| 69.1 909 1 | 93.0 2 |63.6 69.4
Sonar 90.9 71.4 5 |112.6 15 |88.9 60.6
Soybean 95.2 84.0 1 |101.4 2 |93.7 70.6
Vehicle 77.0 90.2 1 97.4 9 |73.2 68.1
Vote 96.1 89.7 1 91.7 2 [95.9 58.6
Vowel 99.9 66.8 1 |100.1 1 |99.9 34.5
Wine 966 76.9 1 | 979 5 |96.6 41.9
Wisconsin-BC | 97.2 89.0 1 | 93.9 7 |96.2 64

Zoo 99.0 68.4 1 |2247.7 1 [99.0 40.1
Average 87.49 85.68 3.25(|190.08 3.12(85.62 61.17

C4.5 about 40%. Even so, the added computational complexity for predicting the
correct k is not worthwhile. On the other hand, the number of rules generated by
(4.5 and M5 was 1 in most of the databases, in which the only value predicted
was k=1.

In a second approach we considered that perhaps the problem could be in
the choice of the minimum k as the class of the databases, because the pos-
sible relationship between the space of attributes and the value of k could be
determined for a set of several values. That is, the best k& might not necessarily
coincide with the minimum k. In order to solve this problem and to obtain more
exact information, a second set of databases was built. In these new domains,
the label of each example was replaced with a set formed by several values of
k that classified such an example correctly. With the mean and the standard
deviation for the values of k obtained in a previous experiment (see Table 4), we
restricted the size of the set of k values to 5 for all databases. Due to the special
features of these data sets (multi-labelled), we attempt different approaches by
means of regressions (linear and quadratic). In this manner, the adjustment was
correct if for each example the value obtained by means of regression was some
label assigned that example. However, as in the previous experiment, the results
obtained did not improve significantly the accuracy obtained with a single k
value.

To examine the extent of the relationship between the value of k& obtained
for each example and the region of the space where this example is found, we
calculated the number of common values of k for each example and its nearest
neighbor. The results are shown in Table 7. In this table we can observe that,
again for the database Horse-Colic, only 70.65% of the examples have at least one
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Table 7. Percentage of examples that have at least a number cvk of common values
of k which classify it correctly and classify its nearest neighbor correctly by means of
k-NN, when k € [1,51] and cvk € {1,3,5,7,9,11,31,51}.

DB/cvk 1 3 5 7 9 11 31 51

Anneal 93.65 91.09 88.86 86.41 85.30 84.18 78.06 63.91
Audiology 78.31 68.58 62.83 61.94 61.06 59.73 39.38 23.89
Autos 79.51 70.24 63.90 60.0 57.56 57.07 35.60 15.12

Balance-scale |84.0 82.24 81.92 81.44 81.12 81.12 78.88 53.12
Breast-cancer |76.92 68.53 66.78 66.43 66.08 65.73 61.18 29.37
Cleveland-HD (79.86 76.56 75.24 74.25 73.26 71.94 68.31 53.46
Credit-rating |84.20 82.6 81.44 80.28 80.28 80.0 75.79 60.43
German-credit |77.10 69.19 66.0 64.50 63.70 62.70 56.49 32.80

Glass 71.49 64.95 61.68 57.0 55.14 54.20 46.72 31.30
Heart-statlog [80.37 73.33 73.33 72.59 71.11 71.11 69.62 55.18
Hepatitis 85.16 82.58 81.93 77.41 76.77 76.77 69.67 59.35

Horse-colic 70.65 63.58 58.96 56.79 55.97 54.89 51.63 31.52
Tonosphere 89.17 85.18 83.19 82.90 82.05 81.48 69.80 61.53
Iris 96.0 96.0 95.33 94.66 94.66 94.66 94.66 86.66
Pima-diabetes |75.52 70.44 68.75 67.57 66.53 66.01 57.94 38.28
Primary-tumor|36.87 34.21 31.26 30.97 30.08 29.79 23.0 9.44

Sonar 91.34 87.01 83.17 79.32 74.03 69.23 61.05 39.42
Soybean 92.38 91.36 90.04 88.72 87.84 87.70 73.20 54.02
Vehicle 76.71 69.26 65.13 62.17 60.28 59.33 50.35 33.68
Vote 92.41 90.80 90.11 90.11 89.19 89.19 88.04 84.13
Vowel 99.49 96.66 90.70 85.65 77.07 35.75 0O 0

Wine 98.87 98.31 97.75 97.75 96.62 96.62 94.94 87.07
Wisconsin-BC |95.56 94.27 94.13 94.13 94.13 94.13 93.13 89.98
Zoo 96.03 94.05 91.08 89.10 86.13 85.14 78.21 60.39
Averages 83.39 79.20 76.81 75.08 73.58 71.18 63.15 48.08

common k value with its nearest neighbor, and this percentage decreases quickly
when the number of common k values required is higher. This means that if we
tried to predict the k that classifies an example correctly according to the k that
classified its nearest neighbors correctly, we would have a minimum error rate of
29.35%. This percentage represents the examples for which there is no value of
k such that the example and its nearest neighbor are both correctly classified. It
is necessary to point out that the values in Table 6 provide a superior bound of
the probability to guess the value of k as a function of their nearest neighbors.
But it does not mean that this probability will be reached easily. In fact, we can
observe that for the domains that we have identified as difficult databases, with
3 or 4 common values of k, the percentage is so low that it seems complicated
to determine the correct k by means of the Nearest Neighbor algorithm.

3 Conclusions and Future Directions

A priori, we might consider that the value of k in the Nearest Neighbor must
depend on the region of the original attribute space in which each example is
located. Thus, when the example is a central point the value of & would be low,
and when it is a border point the value of k£ would be higher. In order to verify
this assumption, we have carried out different tests on a set of UCI databases in
an attempt to bound the classification accuracy given by the Nearest Neighbor.
After our experimental study, we must conclude that it is not possible to identify
a relationship between the values of the attributes for border point and the values
of k that classify it correctly by means of k-NN.
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In this sense, we can infer that to find a distribution of the values of k£ in
the original attribute space is not an easy task. Verifying that the percentage of
common values of k that classify an example and its nearest neighbor decrease
quickly in difficult databases is a sufficient test. In addition, the added compu-
tational complexity can be prohibitive. Therefore, the location of the k values
in different regions for obtaining a later correct estimation of them it does not
seem feasible. At least by traditional techniques such as regression trees (M5),
decision trees (C4.5), and geometric proximity (NN). In our current research,
we are trying to predict the k values by data transformation, using prototypes
and feature construction. We are also investigating another approach based on
the nearest enemy instead of the nearest neighbor. This can provide us with a
measurement of the proximity of an example to the decision boundaries which
define the region in which it is located.

References

1. D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms.
Machine Learning, 6:37-66, 1991.

2. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An opti-
mal algorithm for nearest neighbor searching. In Proceedings of 5th ACM SIAM
Symposium on discrete Algorithms, pages 573-582, 1994.

3. C. Blake and E. K. Merz. Uci repository of machine learning databases, 1998.

4. T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Trans-
actions on Information Theory, IT-13(1):21-27, 1967.

5. R. C. Holte. Very simple classification rules perform well on most commonly used
datasets. Machine learning, 11:63—91, 1993.

6. A. Krzyzak L. Xu and E. Ola. Rival penalized competitive learning for clustering
analysis, rbf net, and curve detection. IFEE Transactions on Neural Networks,
4(4):636-649, 1993.

7. D. Heath S. Salzberg, A. Delcher and S Kasif. Best-case results for nearest neigh-
bor learning. IEEFE Transactions on Pattern Analysis and Machine Intelligence,
17(6):599-610, 1995.

8. C. Wettschereck. A Study of Distance-Based Machine Learning Algorithms. PhD
thesis, Oregon State University, 1995.

9. D. Wettschereck and T.G. Dietterich. Locally adaptive nearest neighbor algo-
rithms. Advances in Neural Information Processing Systems, (6):184-191, 1994.

10. D. R. Wilson and T. R. Martinez. Improved heterogeneous distance functions.
Journal of Artificiall Intelligence Research, 6(1):1-34, 1997.

11. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementatios. Morgan Kauffman, 1999.



