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Abstract. In the past years, Naive Bayes has experienced a renaissance in machine learn-
ing, particularly in the area of information retrieval. This classifier is based on the not
always realistic assumption that class-conditional distributions can be factorized in the
product of their marginal densities. On the other side, one of the most common ways of
estimating the Independent Component Analysis (ICA) representation for a given random
vector consists in minimizing the Kullback-Leibler distance between the joint density and
the product of the marginal densities (mutual information). From this that ICA provides a
representation where the independence assumption can be held on stronger grounds. In this
paper we propose class-conditional ICA as a method that provides an adequate represen-
tation where Naive Bayes is the classifier of choice. Experiments on two public databases
are performed in order to confirm this hypothesis.

1 Introduction

For years, the most common use of the Naive Bayes Classifier has been to appear in classi-
fication benchmarks outperformed by other, generally more recent, methods. Despite this
fate, in the past few years this simple technique has emerged once again, basically due to
its results both in performance and speed in the area of information retrieval and document
categorization [25,15]. Recent experiments on benchmark databases have also shown that
Naive Bayes outperforms several standard classifiers even when the independence assump-
tion is not met [6]. Additionally, the statistical nature of Naive Bayes implies interesting
theoretic and predictive properties and, if the independence assumption is held and the
univariate densities properly estimated, it is well known that no other classifier can out-
perform Naive Bayes in the sense of misclassification probability. Attemps to overcome
the restriction imposed by the independence assumption have motivated attempts to relax
this assumption via a modification of the classifier [23], feature extraction in order to hold
the assumption on stronger grounds, and approaches to underestimate the independence
assumption by showing it doesn 't make a big difference [6, 18]. This paper is clearly on the
second line of research: we propose a class-conditional Independent Component Analysis
Representation (CC-ICA) together with an appropriate feature selection procedure in order
to obtain a representation where statistical independence is maximized. This representation
has already proved successful in the area of object recognition and classification of high
dimensional data [17].
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For multivariate random data, Independent Component Analysis (ICA) provides a linear
representation where the projected components (usually called independent components)
have maximized statistical independence. Additionally, in many problems the unidimen-
sional densities of the independent components belong to restricted density families, such
as supergaussian or subgaussian, exponential densities, etc. This prior knowledge allows
a simple parametric approach to the estimations. The success of performing Naive Bayes
over an ICA representation has an additional explanation. It has been shown that Naive
Bayes performance improves under the presence of low-entropy distributions [18]. In many
problems, this is precisely the type of distribution achieved by an ICA representation [1, 8,
10, 24].

In Section 2 we introduce the concept of independence and conditional independence, mak-
ing some observations that justify the need for class-conditional representations. Here, we
also introduce the Bayes Decision scheme and the particular case corresponding to the
Naive Bayes classifier. Section 3 introduces Independent Component Analysis (ICA) and
explains how it can be employed, through class-conditional representations, to force inde-
pendence on the random vector representing a certain class. Naive Bayes is adapted to our
representation. The problem of estimating the resulting marginal densities is also covered
in this section. In Section 4, using the concept of divergence, briefly provides a scheme to
select those features that preserve class separability from each representation in order to
classify using a restricted set of features. Finally, experiments are performed on the Letter
Image Recognition Data, from the UCI Repository [3] and the MNIST handwritten digits
database [13]. These experiments illustrate the importance of the independence assump-
tions by applying the Naive Bayes classifiers to different representations and comparing the
results. The representations used are the original representation, a class-conditional PCA
representation (since PCA uncorrelates the data, under our line of reasoning, it can be
understood as a second-order step towards independence) and finally our CC-ICA repre-
sentation.

2 Independence and the Bayes Rule

Let X and Y be random variables and p(z,y), p(z), p(y) and p(z|y) be, respectively, the
joint density of (X,Y"), the marginal densities of X and Y, and the conditional density of X
given Y = y. We say that X and Y are independent if any of the following two equivalent
definitions hold [5]:

p(z,y) = p(x)p(y) (1)
p(zly) = p(z) (2)

It proves useful to understand independence from the following statement derived from (2):
Two variables are independent when the value one variable takes gives us no knowledge on
the value of the other variable. For the multivariate case (X1, ..., Xn), independence can
be defined by extending (1) as p(z) = p(z1)...p(zN).

In the context of statistical classification, given K classes in a D-dimensional space {2 =
{C4,...Ck} and a set of new features xt = (z1,...,£p) we wish to assign xt to a particular
class minimizing the probability of misclassification. It can be seen that the solution to this
problem is to assign xt to the class that maximizes the posterior probability P(Cy|xr. The
Bayes rule formulates this probability in terms of the likelihood and the prior probabili-
ties, which are simpler to estimate. This transformation, together with the assumption of



independence and equiprobable priors results on the Naive Bayes rule,

D
CNaive = arg max H P(24|Chk) (3)
N

The simplification introduced in (3), transforming one D-dimensional problem into D 1-
dimensional problems, is particularly useful in the presence of high dimensional data, where
straightforward density estimation proves uneffective [19,7]. Notice that class-conditional
independence is required so a representation that achieves global independence of the data
(sometimes referred to as ”linked independence”) is useless in this sense. A frequent mistake
is to think that the independence of the features implies class-conditional independence,
being Simpson’s paradox [20] probably the most well known counterexample. The falseness
of this implication can also be visualized considering a set of bivariate features (z,y) with
uniform distribution in the square 2 = [0, 1] x [0, 1] and classes C1 = {(z,y) € 2,2 > y},
Cs = C1. We conclude that in order to assume class-conditional independence, it is not
enough to work in an independent feature space. For this particular case, in which class-
conditional independence is not true, we now introduce a local representation where this
assumption can be held on stronger grounds.

3 Independent Component Analysis

The ICA of an N dimensional random vector is the linear transform which minimizes
the statistical dependence between its components. This representation in terms of inde-
pendence proves useful in an important number of applications such as data analysis and
compression, blind source separation, blind deconvolution, denoising, etc. [2, 14,24, 11]. As-
suming the random vector we wish to represent through ICA has no noise, the ICA Model
can be expressed as

W(x—X)=s (4)

where x corresponds to the random vector representing our data, X its mean, s is the random
vector of independent components with dimension M < N, and W is called the filter or
projection matriz. This model is frequently presented in terms of A, the pseudoinverse of
W, called the mizture matriz. Names are derived from the original blind source separation
application of ICA. If the components of vector s are independent, at most one is Gaussian
and its densities are not reduced to a point-like mass, it can be seen that W is completely
determined [4].

In practice, the estimation of the filter matrix W and thus the independent components
can be performed through the optimization of several objective functions such as likelihood,
network entropy or mutual information. Though several algorithms have been tested, the
method employed in this article is the one known as FastICA. This method attempts to
minimize the mutual information by finding maximum negentropy directions, proving to be
fast and efficient [11]. Since mutual information is the Kullback-Leibler difference between
a distribution and its marginal densities, we would be obtaining a representation where the
Naive Bayes rule best approximates the Bayes Rule in the sense of Kullback-Leibler.

As mentioned, global feature independence is not sufficient for conditional independence. In
[17] we introduced a class-conditional ICA (CC-ICA) model that, through class-conditional
representations, ensures conditional independence. This scheme was successfully applied in
the framework of classification for object recognition. The CC-ICA model is estimated from



the training set for each class. If W, and s, are the projection matrix and the independent
components for class Cj with dimensions M; x N and M}, respectively, then from (4)

s" = WF(x — xF) (5)

where x € C) and x* is the class mean, estimated from the training set. Assuming the
class-conditional representation actually provides independent components, we have that
the class-conditional probability noted as p*(s) def p(s¥) can now be expressed in terms of
unidimensional densities,

p(x|Cx) = vip"(s) = vi [T »"(sm) (6)

with v, = ([p*(s)ds)™!, a normalizing constant. Plugging in (6) in (3) and applying
logarithms, we obtain the Naive Bayes rule under a CC-ICA representation,

L My,
CNaive = arg max log P* Sim) | + Lug 7
g s, 2 (25 o) 2
In practice, classification is performed as follows. Representative features are extracted from
the objects belonging to class C, conforming training set Tj. T} is then used to estimate
the ICA model and projected into this model. From the projected features, the M} one di-
mensional densities are estimated, together with the normalization constants. If we have no
prior information on these marginal distributions, nonparametric or semiparametric meth-
ods can be used in the one dimensional estimation. Given a test object, its representative
features are projected on each class, and the class-conditional likelihoods calculated. The
test object is assigned to the class with the highest probability.

As a matter of fact, the nonparametric density estimation is not even necessary. In the next
subsection we will see how the ICA Model gives us a priori information that can be used
in the estimation of the marginal densities of the independent components.

3.1 Marginal Density Estimation

It can be seen that progressive maximization of mutual information is achieved in the
directions of maximum nongaussianity [9]. This results in independent components with
strongly nongaussian distributions. A natural, but sensible measure for the nongaussianity
of unimodal distributions is kurtosis. Kurtosis measures how ”peaky” a distribution can
be. In the range of unimodal distributions the uniform distribution can be considered the
least "peaky”, Dirac’s delta its opposite. Kurtosis or the fourth-order cumulant is defined
as k(s) = E(s*) — 3 for a zero mean, unit variance variable (true for the independent
components). It refers to the concentration of the variable around zero. The higher the
concentration the higher the kurtosis. It can be seen that, expressed in this way, kurtosis
is zero for a standard gaussian variable. Negative kurtotic variables are referred to as
subgaussian and positive kurtotic supergaussian or sparse variables. In our problems we
can use kurtosis as an additional statistic for prior information on the distribution of the
independent components.

A close relationship between sparsity and ICA has been pointed out [8,10,24,1]. In our
particular problem, as in many others, a very high sparsity is observed in the independent
components. Classification can be interpreted in terms of sparsity in the following way. If
a test feature belongs to a certain class, then a sparse representation for this feature will



be provided. This means that the independent components of the projected feature will be
nearly zero for most values and consequently should have a large probability. Instead, if
the feature does not belong to the class, it should activate several independent components
at the same time and consequently have a low probability. This property is illustrated in
Figure (3.1) for two class-conditional representations obtained in the experiments.
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Fig. 1. For classes ”0” and ”9” of the MNIST database a representative
was taken and shown in the top row. The bottom row plots the features
of each representative on its own and on the other’s class-conditional
representations. Sparsity of the first representation (straight black line)
is observed as well as random feature activation when class belonging is
not met (dotted red line).

Though several parametric, semi-parametric and nonparametric approaches are possible,
the experiments were performed using Laplacian or Gaussian mixtures. Figure (2) shows
the performance of these estimations on real data.

4 Feature Selection

The fact the features we are dealing with are statistically independent can also be an
advantage in the context of feature selection. Divergence, a frequently used measure for
feature selection is additive for statistically independent variables.

Class separability is a standard criterion in feature selection for classification. Measures for
class separability are generally obtained from the distance among the previously estimated
class-conditional distributions. A commonly used distance measure for (class-conditional)
densities, for its connection with information theory, is the Kullback-Leibler distance,

KL(C:,C;) = /QP(X@) log I%d}( Y
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Fig.2. Two of the proposed densities are estimated from a typical in-
dependent component obtained in the experiments (MNIST database).
The true histogram of the component (dashed) and the standard gaussian
density are also plotted as a reference.

where 1 < ¢,j < K. The asymmetry of Kullback-Leibler motivates the symmetric measure
of divergence, since long ago used for feature selection [16], defined as

Dy; = D(Cy,C;) = KL(C;,C;) + KL(C;, Ci) (9)

Besides being symmetric, divergence is zero between a distribution and itself, always posi-
tive, monotonic on the number of features and provides an upper bound for the classification
error [12]. The two main drawbacks of divergence are that it requires density estimation
and has a nonlinear relationship with classification accuracy. While the second drawback is
usually overcomed by using a transformed version of divergence, introduced by Swain and
Davis [22, 21], the first inconvenient is not present when class-conditional features are inde-
pendent. For this case, it can be seen that divergence is additive on the features. So, for this
particular case, unidimensional density estimation can be performed and the calculation
of divergence for a feature subset S C {1,..., N} (noted by ﬁf]) is straightforward. A very
important property besides montonicity shared by transformed divergence and divergence,
is that

(n1 ¢ S,na & S) A (D}} < D7) = (D;V™ < DZU™) (10)

This property of order suggests that, at least for the two class case, the best feature subset
is the one that contains the features with maximum marginal (transformed) divergence,
and thus provides a very simple rule for feature selection without involving any search
procedure.

Although, (transformed) divergence only provides a measure for the distance between two
classes there are several ways of extending it to the multiclass case, providing an effective
feature selection criterion. The most common method is to use the average divergence,
defined as the the average divergence over all class pairs. This approach is simple and
preserves the exposed property of order for feature subsets, but it is not reliable as the
variance of the pairwise divergences increases. A more robust approach is to sort features
by their maximum minimum (two-class) divergence. This works fine for small subsets but
decays as the size of the subset increases: sorting features by maximum minimum divergence
is a very conservative election.

In the CC-ICA context we have K local linear representations, each one making x|Cj
independent. This involves the selection of possibly distinct single features belonging to



different representations. We now provide an alternative definition of divergence, adapted
to local representations.
The log-likelihood ratio (L) is defined as,

L;j(x) = log p(x|C;) — log p(x|C}) (11)

L;j(x) measures the overlap of the class-conditional densities in x. It can be seen from (9)
that D;; = Ec,;(Lij) + Ec;(Lji) where Ec; is the class-conditional expectation operator.

Approximating Ec; (9()) = (1/#Ci) 3o, cc, 9(%) def 9(z).,, and reordering the terms, we
have

de
D ~ (logp(x|Ci)Oi - logp(a:|Ci)O]_> + (logp(x|Cj)O]_ - logp(x|Cj)Oi> lef D;; + Dj;

(12)
DQJ- measures the difference in the expected likelihood of classes ¢ and j, assuming all
samples are taken from class ¢. It is no longer symmetric but still additive for conditionally

independent variables. Introducing (6) DQJ- can be expressed as,

M; M;
- - def m
Dy=w) (logpl(sm)ci —logpl(Sm)cj> = viy Dj (13)
m=1 m=1

Divergence is maximized by maximizing both Dj; and Dj;. The assymetry and locality of
the latter will cause different feature subsets on each class representation, meaning that
while certain features might be appropriate for separating class C; from class C; in the
it" representation, possibly distinct features will separate class Cj from class C; in the jth
representation.

Extension to the multiclass case can be performed as with divergence. For instance, having
fixed the representation, the average has to be taken over only one index,

K
! 1 !
Dii=— D Diff (14)
J=1ji

5 Experiments

A first experiment is performed on the Letter Image Recognition Data [3]. Each instance
of the 20000 images within this database represents a capital typewritten letter in one of
twenty fonts. Each letter is represented using 16 integer valued features corresponding to
statistical moments and edge counts. Training is done on the first 16000 instances and test
on the final 4000. There are approximately 615 samples per class in the training set. Fig.
(5) illustrates the results of the Naive Bayes Classifier for different representations and
feature subsets. The divergence feature selection criterion was used for ICA (a global ICA
representation), CC-ICA and ORIG (the original representation), while for PCA, features
were selected as ordered by the representation. For all the Naive Bayes Classifiers, the
mixture of two gaussians was used to estimate the resulting unidimensional densities. The
results of Maximum Likelihood classification on PCA were also included as a reference.

We can observe in Fig. (5) the importance of the independence assumption when using,
both Naive Bayes and the divergence criterium. The CC-ICA representation, by seeking
this independence, achieves much better results than all the other implementations. To
test the feature selection criterion, on this database we also tried Naive Bayes on 10000
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Fig. 3. Naive Bayes performance on the original, PCA (class-conditional),
PCA-ML (global), ICA (global) and CC-ICA representations of the Let-
ter Database. The importance of the independence assumption on Naive
Bayes performance is observed. Maximum Likelihood on a global PCA
representation is added as a reference.

random 8-feature combinations for each class, resulting that no combination achieved our
classification results (83.17%).

The second experiment was performed on the MNIST handwritten digit database [13],
which contains 60000 training and 10000 test samples. The images were resized from 28 x 28
to 16 x 16 resulting in 256 dimensional samples. 5000 and 750 samples per digit were
randomly chosen for training and test sets, respectively. Overall accuracy using 1 through
128 features is plotted in Fig. (5). In all cases, a Naive Bayes classifier was used and the
unidimensional densities estimated using the same approach (mixture of three gaussians) for
adequate comparison. Also in all cases using simpler estimation methods such as gaussian
or nonparametric (frequential) estimation performs worst than the exposed results. In the
graph, PCA stands for a class-conditional PCA representation using the features as given
by PCA. This approach performs poorly for a low number of features (< 50) but, after
60 features outperforms all the other methods, starting to decrease in performance after
100 features. Using the divergence feature selection criterion on PCA (PCA-FS) improves
the performance of Naive Bayes on a PCA representation for a low number of features.
CC-ICA obtains the best accuracy when the number of features is less than 60, obtaining
an accuracy of .9 with as few of 50 features and .8 with only 9 features. The accuracy of
CC-ICA is monotonic on the number of features. Several hypothesis can be thought of when
analyzing lower accuracy of CC-ICA with respect to PCA for a large number of features.
From the ICA perspective, it is well known that in large dimensions degenerate independent
sources can arise. This seems to be our case since, in order to allow a dimensionality of
128, we have included sources with estimated kurtosis as high as 100. This affects both the
classifier and the feature selection criterion.

Mencionar: In all cases unidimensional feature densities are estimated using the same
approach (gaussian mixtures) for adequate comparison. Also in all cases using simpler
estimation methods such as gaussian or nonparametric (frequential) estimation performs
considerably worst than the exposed results.



Naive Bayes Accuracy - MNIST Dataset
T

Overall Accuracy
e o
@ o

°
=

— CC-IcA

o1 & PCA

O PCA-FS
ORIG

Fig. 4. Naive Bayes performance on the original representation and class-
conditional PCA and ICA of the MNIST Database. Two feature selection
criterions are employed on PCA. Logarithmic scale on the x-axis is em-
ployed.

6 Conclusions

The Naive Bayes classifier, though its generally unmet assumptions and notorious simplic-
ity, still performs well over a large variety of problems. In this article, by making use of
Independent Component Analysis, we present a class-conditional representation that allows
to hold the Naive Bayes independence assumption on stronger grounds and thus improve
the performance. Reinforcing the hypothesis is not the only reason for this improvement.
It has been shown that Naive Bayes performance has a direct relationship with feature low
entropy, and it is also well known that in several cases the independent components have
low entropy (supergaussian/sparse distributions). For this representation we also introduce
a scheme for selecting those (class-conditional) features most adequate for the task of clas-
sification. This scheme takes advantage of the property that states that feature divergence
is additive on statistically independent features. Precisely the assumption we will make
when using Naive Bayes.

A first experiment is performed in order to show that our proposed representation and
feature selection criterion performs well even in low dimensional problems. The second
experiment, on the MNIST database, evaluates Naive Bayes improvement in a high dimen-
sional database. In both experiments results are compared against applying Naive Bayes
on the original representation and on a PCA representation.
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