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Abstract. Real time diagnosis systems are becoming an important re-

quirement in these days given the complexity of industrial systems. Some

diagnosis systems obtain data from a working process and later, o� line,

they run diagnosis in order to explain abnormal behavior. This article

presents an architecture for real time diagnosis based on probabilistic

reasoning. Probabilistic reasoning utilizes a model of the system that

expresses the probabilistic relationship between the main variables of

a process. Thus, the values of some variables are utilized as evidence

and the propagation provides an inferred value of other variables and an

abnormal condition is detected. Next, an isolation phase is executed in

order to �nd the root cause of the abnormal behavior.

This article presents the design of an architecture that performs real

time diagnosis of gas turbines of combined cycle power plants. The ar-

chitecture was designed utilizing some of the classes of the Spanish elvira

project as a double experiment: (i) to test a general purpose, probabilis-

tic reasoning package elvira in a real application in real time and (ii)

to test a previously developed theory for real time diagnosis in a gas

turbine.

1 Introduction

Given the high costs and the diÆculties for building new electric generation

plants, the current trend consists in increasing the performance, availability and

reliability of the actual installations. The performance refers to the amount of

mega watts that can be generated with a unit of fuel. The availability refers

to the hours that the central stops generating, and the reliability refers to the

probability of counting with the di�erent equipment in the plant.

Diagnosis is the technique utilized in several �elds devoted to �nd faults, to

explain abnormal behavior or to detect a faulty component in a system. Some-

times, engineers acquire data from a working process in order to analyze it o�

line, and detect the faulty component or the cause of the abnormal behavior.

Other diagnosis systems run in line, i.e., they collect data and reason about the

responses of the system. Some diagnosis systems predict the occurrence of a fail-

ure while others only explain the causes once that the fault has been propagated.



The diagnosis architecture presented in this paper is part of a larger sys-

tem formed by a monitor, an optimizer, a diagnoser and an intelligent planning

module. When the monitor detects that the process works normally, it runs the

optimizer in order to increase the performance of the process, e.g., the gener-

ation of more mega watts with less fuel. On the opposite, when the diagnoser

detects an abnormal behavior, it identi�es the faulty component and starts the

intelligent planning that generates advices to the operator in order to return the

plant to its normal state. This optimizer and diagnosis system are devoted to

enhance the performance and availability indices.

The diagnosis system utilizes probabilistic reasoning for the detection and

isolation of faults. It is based on the reasoning that an experimented operator

carries out when some sensors of the plant present abnormal readings given the

rest of signals. The operator may infer a fault in a sensor given the readings of

the related variables. The �rst step is to acquire a probabilistic model of the

process that relates the variables, i.e., a Bayesian network. Then one by one, the

variables are predicted through probabilistic propagation and compared with

the real value. If signi�cant deviation is presented, then an apparent fault is

detected. The isolation of the fault is carried out using a special property of the

Bayesian networks called the Markov blanket.

The diagnosis architecture is based on the elvira project
1. The input for the

system is a sample with data of one execution of the process without any fail-

ure. With the data, the learning module of elvira generates a Bayesian network

representing the probabilistic relationship between all the variables considered.

Once a model is established, the system runs in real time, i.e., it reads data

from the process and detects faulty components. The output of the diagnosis is

a vector with the probability of failure of all the variables considered.

This paper is organized as follows. Section 2 explains a previously developed

theory for probabilistic validation of important variables. Next, section 3 explains

the proposed architecture, and section 4 brie
y describes the application domain

and the experiments carried out with the architecture and a gas turbine simulator

in laboratory. Finally, section 5 concludes the paper and proposes future work

in this area.

2 Probabilistic Diagnosis Model

The probabilistic diagnosis model requires the construction of a Bayesian net-

work relating all the variables in the system being diagnosed. For example, Fig. 1

shows a probabilistic model of a process where variables g and a cause variable

t, and this variable together with p a�ect the behavior of variable m.

The diagnosis consists of two operations: (i) basic validation and (ii) isolation.

The former operation detects the presence of a fault while the later isolates the

faulty element. This corresponds to the FDI (Fault Detection and Isolation)

technique utilized in industry. These operations are made cyclically with all the

1 information about this project can be consulted in http://www.ia.uned.es/~elvira.
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Fig. 1. A Bayesian network of certain process.

variables in a model. Both, the detection and isolation modules utilize a Bayesian

network. The detection is made using the Bayesian network representing the

probabilistic relations between the variables as in the example of Fig. 1. This is

called the detection network. The isolation network is explained below.

The basic validation consists in the estimation of the value of a variable ac-

cording to the values of other related variables. A particular variable is taken as

the hypothesis while the related variables act as the evidence. Thus, the propa-

gation in the Bayesian network provides the posterior probability distribution of

the variable's estimated value, given other variables. This distribution can then

be used to infer if the variable has a proper value or if it shows an abnormal

behavior.

For example, for the validation of variablem in Fig. 1, a posterior probability

distribution P (m j t; p) is calculated2. The real value of m is compared with the

probability distribution and a conclusion is obtained. However, if the validation

of a variable is accomplished utilizing a faulty variable then a false conclusion

is expected. A basic validation algorithm then, can only tell if a variable has

a potential fault, but (without considering other validations) it can not tell if

the fault is real or apparent. The fault isolation module distinguishes between

apparent and real faults, isolating the faulty variable.

The isolation module functions as follows. When a faulty variable exists, the

fault will be manifested in all the related variables. The most closely related vari-

ables for each variable in a Bayesian network are those in its Markov blanket.

A Markov blanket (MB) is de�ned as the set of variables that makes a variable

independent from the others. In a Bayesian network, the following three sets of

neighbors are suÆcient for forming a MB of a node: the set of direct predeces-

sors, direct successors, and the direct predecessors of the successors (i.e. parents,

children, and spouses) [4]. For example, consider the Bayesian model of Fig. 1.

The MB of t consists of the set fg; a; p;mg, while MB of p consists only of fm; tg.
The set of variables that constitutes the MB of a variable can be seen as

a protection of this variable against changes of variables outside the blanket.

2 Notice that the value of a and g are not required since they are conditionally inde-

pendent of m given t.



Additionally, the extended Markov blanket of a variable vi written EMB(vi),

is formed by its MB plus the variable itself. Utilizing these concepts, if a fault

exists in one of the variables, it will be revealed in all the variables in its EMB.

On the contrary, if a fault exists outside a variable's EMB, it will not a�ect

the estimation of that variable. It can be said then, that the EMB of a variable

acts as its protection against other faults, and also protects others from its own

failure. This assumes that all the variables in theMB are instantiated. The fault

isolation module utilizes this property to update a probability of failure vector

(one for each variable) and hence, to distinguish the real faulty variable [2].

The isolation utilizes a probabilistic causal model relating the real and appar-

ent faults [4, 5]. Fig. 2 shows the causal network corresponding to the example

of Fig. 1. This is called the isolation network.

Rm Rt Rp Rg Ra

Am At Ap Ag Aa
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Fig. 2. Probabilistic causal model for fault isolation. Ri represents the real fault in

sensor i while Aj represents the apparent fault in sensor j.

The node Rm represents the real fault in variable m while Ap represents

the apparent fault in variable p. The arcs denote causality, i.e., an apparent

failure in variable m (node Am) is caused by the existence of a real fault in

one of the nodes m, t or p3. This set happens to be the EMB(m). Thus, given

more evidence about the state of apparent faults in the variables, the posterior

probability value of real fault nodes will tend either to zero or one.

The probabilistic diagnosis theory developed in [2, 3] can be summarized as

follows. After a cycle of basic validation of all variables is completed, a set S of

apparent faulty variables is obtained. Thus, based on the comparison between S

and the EMB of all variables, the following situations arise:

1. If S = � there are no faults.

2. If S is equal to the EMB of a variable X, and there is no other EMB which

is a subset of S, then there is a single real fault in X.

3. If S is equal to the EMB of a variable X, and there are one or more EMBs

which are subsets of S, then there is a real fault in X, and possibly, real

faults in the variables whose EMBs are subsets of S. In this case, there are

possibly multiple undistinguishable real faults.

3 The parameter cij correspond to the noisy{or condition [4, 3].



4. If S is equal to the union of several EMBs and the combination is unique,

then there are multiple distinguishable real faults in all the variables whose

EMB are in S.

5. If none of the above cases is satis�ed, then there are multiple faults but they

can not be distinguished. All the variables whose EMBs are subsets of S

could have a real fault.

For example, consider the network shown in Fig. 1 and its corresponding

probabilistic causal model shown in Fig. 2. Suppose a failure in the value of

variable p. The basic validation of m will produce an apparent fault given that

its estimation was made using an erroneous value. This imply the instantiation

of node Am in Fig. 2 as true. At this point, the probability of failure will show

an estimation of the most suspicious real faulty nodes. Following the procedure

for all nodes, will result in the detection of apparent faults in nodes m, p, and t.

Thus, instantiating those apparent fault nodes in Fig. 2 will provide the posterior

probability of all real fault nodes Rvariable. In this example, a high probability

value in node Rp will be obtained.

This theory assumes that all the variables in the MB are insaniated when

a variable is validated. This is not always feasible in model{based diagnosis.

However, the in
uence of an instantiation of a variable outside its MB is not

too strong. So it is considered that a faulty variable only a�ects the variables in

its MB and the previous theory can be applied.

3 The diagnosis architecture

At the highest level, the architecture is a typical intelligent system, i.e., it con-

tains a knowledge base, an inference mechanism and the output. The knowledge

base is a Bayesian network representing the probabilistic model that relates all

the variables. The network is constructed from a data set and using an auto-

matic learning program. The inference mechanism is the propagation methods

of elvira, and the output is a vector with the probability of failure of all the

variables. From a functional point of view, the diagnosis has two tasks: fault

detection and fault isolation.

Figure 3 shows the most general architecture. The learning module utilizes

a data set and produces a Bayesian network to be utilized by the detection

module. This module is the inference mechanism mentioned above. The detection

module reads data from the plant through the real time data acquisition module.

Real time data is utilized as evidence in the propagation, so apparent faults are

detected as explained in section 2. The list of apparent faults is the input to

the isolation module. The isolation module utilizes a causal model and produces

the �nal output of the diagnosis system, namely, a vector with the probability of

failure of every variable in the system. This vector is transmitted to the graphical

user interface (GUI) for indication to the operator of the plant. Notice that the

diagnosis is carried out in a cycle between the detection and isolation modules

until all the variables have been diagnosed. The proposed architecture described



in this paper includes only the modules inside the dashed square. They are

described in the following sections.
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Fig. 3. High level architecture of the diagnosis system.

3.1 Learning module

The learning process starts with the acquisition of historical data from the

process without faults. Normally, the variables monitored in industrial processes

are continuous, i.e., discretization is required. When the sampled information

has been discretized, the K2Learning class from elvira is utilized. There are

several di�erent learning algorithms in elvira depending the characteristics of the

data. The elvira's learning module produces a �le with the resulting Bayesian

network in elvira's format (detection.elv). Figure 4 shows the steps needed in the

learning process.
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Fig. 4. Learning the probabilistic model for diagnosis.

3.2 Creating the Bayesian network

Creating a Bayesian network object in elvira requires a network description in

elvira's format. This format is an ascii description of the nodes and arcs, their

characteristics and the parametric information. For the detection module, the



network is obtained with the learning module mentioned above. The isolation

network is formed with the detection network and the Markov blanket property

of Bayesian networks as explained in section 2. Figure 5 shows that, once the

elvira format has been de�ned, a syntactic and semantic validation is required.

The syntactic analysis is made with the parser class, indicating if an error

is found. Next, the network class reads the network description in memory

and generates a Bnet object. The Bnet object is the basis for the probabilistic

inference described next.
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Fig. 5. Acquisition of the Bayesian networks for diagnosis.

3.3 Detection module

The detection module compiles a Bnet object it with the bnet class and loads the

network in memory. The in line cycle consists in the validation, one by one, of all

the variables of the model. The validation consists in the prediction of a variable's

value given all the related variables. Thus, the value of the related variables are

read and compared with the ranks of values generated in the discretization step

of the variable. This discrete value forms the evidence for the evidence class.

Next, the propagation class is called to obtain the posterior probability of

the validated variable given all the evidence. The real value of the variable is

compared with the probability distribution and if the deviation is higher than a

speci�c threshold, then an apparent failure is detected. This process is repeated

with all the evidence for each variable and for all variables. Figure 6 shows this

process
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Fig. 6. Fault detection module.



3.4 Isolation module

The isolation module also utilizes a Bnet object, an evidence information and

generates a posterior probability distribution. The Bnet object is obtained from

the isolation causal network deduced as indicated in Fig. 5. The evidence is the

decision of fault or no fault obtained in the detection module. The propagation

of probabilities in the isolation module, provides the �nal output of the diagnosis

system, namely, the probability of being faulty of all the variables in the system.

The next section presents an experiment of a diagnosis of gas turbines utilizing

the proposed architecture.

4 Diagnosis of gas turbines

A gas turbine consists fundamentally of four main parts: the compressor, the

combustion chamber, the turbine itself and the generator. The compressor feeds

air to the combustion chamber, where the gas is also fed. Here, the combustion

produces high pressure gases at high temperature. The expansion of these gases

in the turbine produces the turbine rotation with a torque that is transmitted

to the generator in order to produce electric power output. The air is regulated

by means of the inlet guide vanes (IGV) of the compressor, and a control valve

does the same for the gas fuel in the combustion chamber. The control valve is

commanded by the control system or by the operator in manual operation mode,

and its aperture can be read by a position sensor. The temperature at the blade

path, which is the most critical variable, is taken along the circumference of the

turbine. Other important variables, measured directly through sensors are the

mega watts generated and the turbine speed in revolutions per minute.

The architecture has been utilized in diagnosis experiments in a gas turbine

simulator at the laboratory. Due to hardware limitations of the simulator, only 10

analog signals can be sampled every half second. The simulation executed for this

experiment includes the load increasing from 2 MW to 23 MW. This procedure

took about 20 minutes, so a number of 2111 records were obtained. Next, from a

visual revision of the data table, three variables were discarded since they never

changed during the experiment. The number of di�erent discrete values varies

depending on the precision required for each variable.

The learning module of elvira with the K2 algorithm [1] were executed utiliz-

ing the data table with the seven variables. Figure7 shows the resulting Bayesian

network involving only six variables. The seventh variable was reported as com-

pletely independent from the rest of the variables.

The speed variable represents the measure of the velocity of the turbine in

revolutions per second (RPS). The power variable is the measure of the mega

watts generated, temp is the exhaust gas temperature in the turbine, variable

gas press is the gas fuel pressure, gas valv is the position of gas control valve,

and variable gas demd is the gas valve demand.

According to the experts, the model can be interpreted as follows. The ve-

locity or mechanical work produces mega watts and this generation produces



Fig. 7. Bayesian network learned from the experiment.

heat. The temperature is related with the demand of gas, the aperture of the

valve and the pressure of the fuel. Notice that the direction of the arcs repre-

sents probabilistic relationship between any pair of nodes and not necessarily

a causal relation. The variables were discretized in 3 to ten intervals according

to the variation of their values along the experiment. Several tests were made

with di�erent discretization values in order to see the best result in the learning

process.

Figure 8 shows the isolation network that corresponds to the probabilistic

network of Fig. 7.

Fig. 8. Isolation network for the example of the gas turbine.

Consider the following scenario. The plant is generating and incrementing the

demanded load. The demand of gas (gas demd) is at 57.11 units, corresponding

to state s3, the gas pressure (gas press) is at 152.26, and the gas fuel position



(gas valv) is at 56.85 units or s3 state. The exhaust gas temperature (temp) is at

its 337.46 degrees and the gas turbine speed (speed) is at its 5085 rpm or the s5

state. Thus, instantiating those nodes in the network of Fig. 7, and propagating

probabilities, the following results are obtained in the power variable: P (power =

s2) = 100 %, and 0 in the rest of the power value intervals. In this case, the

propagation enforces the value of power variable to the interval corresponding

to the state s2. In other cases, the posterior probability distribution presents

di�erent shapes, e.g., sharper forms.

Now, consider a failure in the electric generator or a failure in the power

generation sensor, in the above scenario. Table 1 shows the diagnosis process. The

second column indicates the result of the basic validation step, i.e., it provides the

probability of �nding an apparent fault. The third column indicates the result of

the detection module according to the value of second column. This result is the

value of ok or failure indicated in Fig. 6. The following 6 columns indicate the

posterior probability of the Real fault nodes in the isolation network (Fig. 8).

They are in fact, the ultimate output of the diagnosis system: the probability of

failure of each variable. First, variables gas demd, gas press and gas valv are

validated. The propagation of probabilities indicates a 
at distribution in these

variables, and the real value coincide in an interval with a real probability to be

correct, i.e., P (gas demd = correct) = 88 %, P (gas press = correct) = 54 %,

and P (gas valv = correct) = 75 %,. This implies the instantiation of nodes

Agasdemd, Agaspress and Agasvalv with no apparent faults in the isolation

network of Fig. 8.

Table 1. Diagnosis experiment simulating a failure in the power generation.

variable P (app:failure) state

validated (%) assigned Rspeed Rpower Rtemp Rgasdemd Rgaspress Rgasvalve

gas demd 88 ok 50 50 9 9 50 50

gas press 54 ok 50 50 1 9 9 50

gas valv 75 ok 50 50 0 9 9 9

temp 86 nok 50 80 0 15 15 15

power 20 nok 57 90 0 13 13 13

speed 1 ok 26 81 1 15 15 15

Notice the �rst row in the table. With the propagation after Agasdemd was

instantiated as ok, the probability of failure vector shows that the variables temp

and gas demd have a 9 % probability of failure, i.e., they are free of faults while

the rest of the variables are completely uncertain (50 %). After the three �rst

variables have been validated, the results indicate that the temperature reading

is securely correct, the gas variables are very low suspicious, the speed is still

uncertain and the power starts to be the faulty variable. As expected from the



theory, the last step in the validation cycle con�rms that the faulty variable is

indeed the power.

5 Conclusions and future work

This paper has presented a proposed architecture for the diagnosis of indus-

trial processes. The architecture is formed by a detection module and a isolation

module. Both modules utilize probabilistic reasoning. The �rst, requires a prob-

abilistic model that represents the conditional dependence and independence of

all the variables in the process. The isolation module utilizes a special property of

the Bayesian networks, namely the Markov blanket. A causal network is formed

utilizing the �rst model and the Markov blanket of every variable.

The architecture was implemented utilizing the elvira software. It is a soft-

ware package devoted to the probabilistic reasoning and decision support. The

main classes of elvira were integrated to the diagnosis architecture and were ini-

tially tested with the diagnosis of six variables model in a gas turbine of a power

plant.

The next step in this project is the fully utilization of this architecture in

the diagnosis and optimization of a complete power plant. First, the selection

of the most common failures reported in power plants is required. Next, the

speci�cation of all the variables involved and the probabilistic model is obtained

with the learning tools Finally, with the installation of the architecture and the

acquisition of the process data, faults can be detected and isolated inline.
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